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r � d and indeed can be replaced by r � d. This result includes an affirmative answer
to a question by Tsaban on a possibly weaker still sufficient condition. We show that it
is consistent relative to ZFC that g � r < d and there are subgroups of the Baer–Specker
group whose kth power is Menger-bounded and whose (k + 1)st power is not.
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1. Introduction and some estimates

Machura, Shelah and Tsaban [12] showed that under the condition, that a relative d′(P ) of the dominating number is
at least d, for every k there are groups G ⊆ Z

ω whose kth power is Menger-bounded and whose (k + 1)st power is not
Menger-bounded. The aim of this note is to give more information on the strength of this premise. We show that it implies
r � d, that the possibly weaker r � d is a sufficient condition as well, and that r � d is not a necessary condition.

First we recall some definitions.

Definition 1.1. The Baer–Specker group is Z
ω with pointwise addition. Let G ⊆ Z

ω be a subgroup. For g : ω → Z, we write
ĝ(n) = max{|g(m)|: m � n}. Let k ∈ ω\{0}. We say “Gk is Menger-bounded” or “G has Menger-bounded kth power” iff

(∃ f ∈ ωω
) (∀F ∈ [G]k) (∃∞n

)
(∀g ∈ F )

(
ĝ(n) � f (n)

)
.

This is syntactically the simplest of the equivalent characterisations given in [12, Theorem 5]. Menger-boundedness in
a broader sense is defined for topological groups and also called o-boundedness. We refer the reader to [2] for more
information.

Now we recall the definitions of the possibly new family of cardinal characteristics d′(P ) from [12] and of some relatives.
A function from the natural numbers into the natural numbers is called weakly increasing if for all n < m, f (n) � f (m).
The set of all weakly increasing functions is denoted by ω↑ω . The set of all infinite subsets of ω is denoted by [ω]ω . The
quantifier ∃∞ means “there are infinitely many” and the dual quantifier ∀∞ means “for all but finitely many”.
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Definition 1.2.

(1) Let P = {An: n < ω} be a partition of ω into infinite sets. We call a family F ⊆ ω↑ω good for d∗(P ) iff

(∀h ∈ ω↑ω
)

(∃A ∈ P ) (∃ f ∈ F )
(∀∞n ∈ A

) (
f
(
h(n)

)
� h(n + 1)

)
.

We let

d∗(P ) = min
{|F |: F is good for d∗(P )

}
.

(2) Let A ∈ [ω]ω . We let

d∗(A) = min
{|F |: F ⊆ ω↑ω ∧ (∀h ∈ ω↑ω

)
(∃ f ∈ F )

(∀∞n ∈ A
) (

f
(
h(n)

)
� h(n + 1)

)}
.

(3) Let P = {An: n < ω} be a partition of ω into infinite sets such that for every n there are infinitely many i such that
i, i + 1 ∈ An . We call a family F ⊆ ω↑ω good for d′(P ) iff

(∀h ∈ ω↑ω
)

(∃A ∈ P ) (∃ f ∈ F )
(∀∞n ∈ A

) (
f
(
h(n)

)
� h(n + 1) ∨ f

(
h(n + 1)

)
� h(n + 2) ∨ n + 1 /∈ A

)
.

We let

d′(P ) = min
{|F |: F is good for d′(P )

}
.

(4) Let A ∈ [ω]ω be such that (∃∞i) (i, i + 1 ∈ A).

d′(A) = min
{|F |: F ⊆ ω↑ω ∧ (∀h ∈ ω↑ω

)
(∃ f ∈ F )

(∀∞n ∈ A
)

(
f
(
h(n)

)
� h(n + 1) ∨ f

(
h(n + 1)

)
� h(n + 2) ∨ n + 1 /∈ A

)}
.

Machura, Shelah and Tsaban’s sufficient condition for the existence of subgroups of Z
ω whose kth power is Menger-

bounded but whose (k + 1)st power is not, is the following:

There is a partition P = {An: n < ω} of ω into infinite sets such that

for every n there are infinitely many i with i, i + 1 ∈ An and d′(P ) � d. (1.1)

There are numerous questions about modifications, e.g., we could also replace ω↑ω by the set of all strictly increasing
functions in the second appearance. We do not know whether the analogously defined cardinals might drop.

Some estimates for the cardinals are known: In [12] it is shown that for all P that meet the conditions,

max
(
cov(M),b

)
� d′(P ) � d.

For the definitions of the cardinal characteristics d, cov(M), u, r, g and of “groupwise dense” we refer the reader to Blass’
handbook article [8].

In the International Conference on Set-Theoretic Topology in Kielce in August 2006 Tsaban asked whether the syntac-
tically simpler family of cardinals d∗(P ) (see Definition 1.1(1)) enjoys similar properties. We do not know whether the
cardinals do coincide, nor whether r � d implies (∃P ) (d′(P ) = d), however, we have the following main results.

Theorem 1.3. For every partition P into infinitely many infinite sets we have d∗(P ) = min(d, r).

Hence r � d is equivalent to (∃P ) (d∗(P ) = d) and to (∀P ) (d∗(P ) = d). Nevertheless we still formulate the following
theorem with the help of d∗(P ). The condition d∗(P ) � d (combined with d∗(P ) � r) is handier for the construction than
working with r � d.

Theorem 1.4. “There is a partition P = {A�: � ∈ ω} into infinite sets such that d∗(P ) = d” is a sufficient condition for the existence of
subgroups of Z

ω whose kth power is Menger-bounded but whose (k + 1)st power is not.

Corollary 1.5. r � d is a sufficient condition for the existence of subgroups of Z
ω whose kth power is Menger-bounded but whose

(k + 1)st power is not.

In Section 2 we investigate the influence of P , in Section 3 we show that d∗(P ) � r, in Section 4 we prove Theorem 1.3,
in Section 5 we prove Theorem 1.4, and in the final section we show that r � d is not a necessary condition, and we discuss
some open questions.
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2. The influence of the partition P

It will be very convenient to know that d∗(P ) does not depend on P , and even better, for every F ⊆ ω↑ω we have that
F is good for d∗(P ) iff it is good for any other d∗(P ′).

Proposition 2.1. Let P and P ′ be partitions of ω into infinitely many infinite sets. For every F ⊆ ω↑ω we have that F is good for
d∗(P ) iff it is good for d∗(P ′). So d∗(P ) does not depend on the choice of P .

Proof. Let P = {An: n ∈ ω} and P ′ = {A′
n: n ∈ ω} be given. We show that d∗(P ) � d∗(P ′). We choose a strictly increasing

function e : ω → ω such that for all n, e[An] ⊆ A′
n . In most cases e cannot be chosen as to be a bijection. We set ẽ(n) =

min{k: e(k) � n}, then ẽ(e(n)) = n.
Let F be a family a that is good for d∗(P ′). We claim that F is also good for d∗(P ). Let h ∈ ω↑ω be given. We take

h′ = h ◦ ẽ. This may be only weakly increasing. Then by the definition of F being good for d∗(P ′), there are some A′ ∈ P ′
and some f ∈ F such that (∀∞n ∈ A′) (( f ◦h◦ ẽ)(n) � (h◦ ẽ)(n+1)). For each k ∈ A we have ẽ(e(k)+1) = ẽ(e(k+1)) = k+1.
So (∀∞k ∈ A ⊆ e−1[A′]) ( f (h(k)) � h(k + 1)). �

So we have that d∗(P ) does not depend on P . We point out that Aubrey [1] works with a cardinal d∗ (the minimal
cardinal of a finitely dominating family) and shows d∗ = min(r,d). d∗(P ) � r will be shown in Section 3. In Section 4 we
show d∗(P ) � min(r,d). So d∗(P ) = d∗ .

Now let P be as in the definition of d′(P ). Obviously d′(P ) � d∗(P ), because the disjunction in the definition of d′(P )

is weaker than the requirement in d∗(P ).
For the d′(P ) the transition from one partition {A�: � ∈ ω} to another {A′

�: � ∈ ω} is more difficult, since now we require
from the reduction e that it preserves for all k ((n ∈ Ak and n + 1 ∈ Ak) → (e(n), e(n + 1) ∈ A′

k and e(n + 1) = e(n) + 1)).

Definition 2.2. Let A ⊆ ω be infinite and coinfinite.

‖A‖ = sup
{
n:

(∃∞k
)

(k,k + 1, . . . ,k + n − 1 ∈ A)
}

is between 1 and ω, inclusively. Now let P = {An: n < ω} and P ′ = {A′
n: n < ω} be two partitions of ω into infinite sets.

We let P � P ′ if ∃σ : ω → ω bijective such that for all i ‖Ai‖ � ‖A′
σ(i)‖.

Proposition 2.3. If P � P ′ then every family F ⊆ ω↑ω that is good for d′(P ′) is also good for d′(P ), and hence d′(P ) � d′(P ′).

Proof. Let ‖Ai‖ � ‖A′
σ(i)‖. Let F be a family that is good for d(P ′). We choose a strictly increasing function e : ω → ω

such that for all n, e[An] ⊆ A′
σ(n) and such that k,k + 1 ∈ An → e(k + 1) = e(k) + 1 ∈ A′

σ(n) . We set ẽ(n) = min{k: e(k) � n},
then ẽ(e(n)) = n.

We claim that F is also good for d∗(P ). Let h ∈ ω↑ω be given. We take h′ = h ◦ ẽ. Then by the definition of F
being good for d(P ′), there are some A′ ∈ P ′ and some f ∈ F such that (∀∞n ∈ A′) (( f ◦ h ◦ ẽ)(n) � (h ◦ ẽ)(n + 1) ∨
( f ◦ h ◦ ẽ)(n + 1) � (h ◦ ẽ)(n + 2) ∨ n + 1 /∈ A′). For each k ∈ A we have ẽ(e(k) + 1) = ẽ(e(k + 1)) = k + 1 and the if k + 1 ∈ A,
then e(k + 1) = e(k) + 1 ∈ A′ . So (∀∞k ∈ A ⊆ e−1[A′]) ( f (h(k)) � h(k + 1) ∨ ( f (h(k + 1)) � h(k + 2) ∨ k + 1 /∈ A). �
3. All d′(P), d∗(P) are bounded by the reaping number

In [12] it is shown that if there is a P such that d′(P ) � d then for every k � 1 there is a subgroup of Z
ω such that Gk is

Menger-bounded but Gk+1 is not. In [7, Theorem 3.1] is shown that u < g implies that for all subgroups of Z
ω whose square

is Menger-bounded all their finite powers are Menger-bounded (also simultaneously). So u < g implies d′(P ) < d. Now we
give a direct proof of a stronger statement. Let A0 ∪̇ A1 = ω. We read the definitions of d∗(P ) and of d′(P ) in a natural way
also for partitions of ω into finitely many infinite parts. Then of course we get larger or equal cardinals.

Theorem 3.1. d∗({A0, A1}) � r and d′({ω}) � r.

Proof. Let B be a refining family of size r. Refining means: (∀A ∈ [ω]ω) (∃B ∈ B) (B ⊆∗ A ∨ B ⊆∗ ω\A). For each B ∈ B
we let f B : ω → ω be defined by letting f B(n) be the nth element of B . We shall show that { f B : B ∈ B} is a family F as
in the computation of d∗(P ). We assume that the contrary is the case. So

(∃h ∈ ω↑ω
)

(∀B ∈ B)
(∀� ∈ {0,1}) (∃∞n ∈ A�

) (
f B

(
h(n)

)
< h(n + 1)

)
.

We enumerate the infinitely many n ∈ A� with f B(h(n)) < h(n + 1) as nB
�,k , k ∈ ω. Now since f B(h(nB

�,k)) � h(nB
�,k), we have

that

(∀B ∈ B)
(

B ∩ [
h
(
nB )

,h
(
nB + 1

)) �= ∅)
. (3.1)
�,k �,k
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We set C� = ⋃
k∈ω, B∈B[h(nB

k,�
),h(nB

k,�
+ 1)). Since nB

k,�
∈ A� and since the A0 ∩ A1 = ∅, we have and C0 ∩ C1 = ∅. So (3.1)

shows that the set A = C0 is a counterexample to B’s being refining.
Now we turn to d′({ω}) � r. We assume that f B , B ∈ B, is not a family as in the computation of d′(A). Then

(∃h ∈ ω↑ω
)

(∀B ∈ B)
(∃∞n

) (
f B

(
h(n)

)
< h(n + 1) ∧ f B

(
h(n + 1)

)
< h(n + 2)

)
.

We enumerate the infinitely many n such that

f B
(
h(n)

)
< h(n + 1) ∧ f B

(
h(n + 1)

)
< h(n + 2)

as nB
k , k ∈ ω. Now we let C0 = ⋃

k∈ω, B∈B,nB
k is even[h(nB

k ),h(nB
k + 1)) and C1 = ⋃

k∈ω, B∈B,nB
k is odd[h(nB

k ),h(nB
k + 1)). Then

C0 ∩ C1 = ∅ and

(∀B ∈ B) (B ∩ C0 �= ∅ ∧ B ∩ C1 �= ∅). (3.2)

So (3.2) contradicts B’s being refining. �
Only for the case of having only one part in the partition and only one inequality there is the opposite result, that

d∗(ω) > r is consistent. This is because r < d is consistent (see [9–11,5]) and the following result, obtained by Boaz Tsaban
and Petr Simon independently:

Theorem 3.2. d∗(ω) � d.

4. d∗(P) = min(r,d)

For the proof we use the following partition order. Let Π = 〈πi: i ∈ ω〉 for a strictly increasing sequence πi , i < ω, be a
partition of ω into the cells [πi,πi+1). We say Π dominates Π ′ if each interval in Π , with finitely many exceptions, includes
an interval in Π ′ . It is easy to see and shown in [8] that there is a family of d interval partitions that every interval partition
is dominated by a member of the family and that fewer than d interval partitions do not suffice. Our first lemma is actually
Simon’s and Tsaban’s theorem (with a different proof). For X ∈ [ω]ω , we define the next-function next(X, ·) : ω → ω by
next(X,n) = min{k ∈ X: k � n}.

Lemma 4.1. For every F ⊆ ω↑ω , if |F | < d then
(∃h ∈ ω↑ω

)
(∀ f ∈ F )

(∃∞n
) (

f
(
h(n)

)
< h(n + 1)

)
.

Proof. Since F is not dominating, there is some g ∈ ω↑ω such that for every f ∈ F there are infinitely many n with
f (n) < g(n). Let for f ∈ F , X f be an infinite subset of {n: f (n) < g(n)} such that for

(∀n ∈ X f )
(

g(n) � next(X f ,n)
)
.

Identify the increasing enumeration of X f with a partition Π f = 〈π f ,n: n ∈ ω〉 of ω. Then, by Blass’ results, there is a
partition Π such that for all f , Π f := 〈π f ,n: n ∈ ω〉 does not dominate Π in the partition order, that means

for all f there are infinitely n such that there is no point π j is in [π f ,n,π f ,n+1).

Now take h ∈ ω↑ω being the increasing enumeration of Π . Given f ∈ F , take n, such that there is no point π j is in
[π f ,n,π f ,n+1). and then take k such that k is the maximal k with h(k) � π f ,n . Now

f
(
h(k)

)
� f (π f ,n) < g(π f ,n) � next(X f ,π f ,n) = π f ,n+1 � h(k + 1).

Since there are infinitely many n to start from, there are infinitely many such k. �
Lemma 4.2. Let |F | < min(r,d). Then there is a partition P such that F is not good for d∗(P ).

Proof. Since |F | < d, be the previous lemma there is h ∈ ω↑ω (∀ f ∈ F ) (∃∞n) ( f (h(n)) < h(n+1)). Enumerate these n’s as
X f = {n f ,i: i < ω}. The family X f , f ∈ F , is not reaping, and hence there are an infinite set, call it A0, and its complement,
call it A′

1, such that for all f ∈ F , both sets X f ∩ A0 and X f ∩ A′
1 are infinite. Now we continue along these lines and

partition A′
1 into A1 and A′

2. After ω steps, the partition P = {A�: � ∈ ω} is as required and the function h ∈ ω↑ω witnesses
that F is not good for d∗(P ). �

So we have proved Theorem 1.3.

Remark 4.3. The partition P in the proof of Theorem 1.3 depends on F and this does not necessarily prove that r � d

implies that there is a single P with d′(P ) = d.
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5. The proof of Theorem 1.4

Lemma 5.1. Let δ < min(d, r) and let Πγ , γ < δ, be partitions of ω into finite intervals and let Πγ = 〈πγ ,i: i ∈ ω〉. Then there are a
partition P = {A�: � < ω} of ω into infinite sets and a partition Π = 〈πi: i < ω〉, such that for every infinite � ∈ ω for every γ < δ

there are infinitely many i ∈ A� such that [πi,πi+1) contains at least two points πγ , j , πγ , j+1 .

Proof. Since γ < d there is a partition Π = 〈πi: i < ω〉 such that for every γ < δ there are infinitely many i ∈ ω such that
[πi,πi+1) contains at least two points πγ , j , πγ , j+1. Enumerate these i’s as {iγ ,n: n ∈ ω} =: Xγ . Since δ < r, the family Xγ ,
γ < δ, is not reaping, and hence there are an infinite set, call it A0, and its complement, call it A′

1, such that for all γ < δ,
both sets Xγ ∩ A0 and Xγ ∩ A′

1 are infinite. Now we continue along these lines and partition A′
1 into A1 and A′

2. After ω
steps, the partition Π = 〈πi: i < ω〉 and the partition P = {A�: � ∈ ω} are as required in the lemma. �
Proof of Theorem 1.4. Suppose the F ⊆ ω↑ω and |F | < d∗(P ). Then (∃h ∈ ω↑ω) (∀ f ∈ F ) (∀� ∈ ω) (∃∞m ∈ A�)

( f (h(m)) < h(m + 1)). Fix such an h. Let 〈m f ,�,k: k ∈ ω〉 enumerate these m’s. Thin each 〈m f ,�,k: ∈ ω〉 out in order to
get a sequence 〈m′

f ,�,k: ∈ ω〉 such that for all f , �, k, h(m′
f ,�,k) < m′

m,�,k+1.
Since |F | < d′(P ) � d, r, there are a partition 〈πi: i ∈ ω〉 and a partition P ′ = {A′

r: r ∈ ω} such that for all r ∈ ω,
〈[πi,πi+1): i ∈ A′

r〉 is not dominated by all the partitions 〈m′
f ,�,2k: k ∈ ω〉, f ∈ F , � ∈ ω, in the partition order. Set j(i) = πi

and set e(i) = r if (i ∈ A′
r and i � r) otherwise set e(i) = 0 (that is, to react onto the matrix which is just used to build the

vector). For technical reasons (i.e., for Eq. (5.13)) we need that e(i) � i. Then

(∀ f ∈ F ) (∀�, r)
(∃∞n

)
(
e(n − 1) = r ∧ the next m′

f ,�,k after j(n) is called m′
f ,�,k the last m′

f ,�,k′ strictly before j(n + 1) is called

m′
f ,�,k′ ∧ k < k′ ∧ f

(
h
(
m′

f ,�,k

))
< h

(
m′

f ,�,k + 1
)
� h

(
m′

f ,�,k′
) ∧ f

(
h
(
m′

f ,�,k′
))

< h
(
m′

f ,�,k′ + 1
)
� j(n + 1)

)
. (5.1)

We say j is chosen well for F , h.
Now one can continue the proof of [12, Theorem 9] with hα from there being j for a j chosen as above for F = Mα

(for the construction at stage α < d) and h as chosen above and the functions gα
i (from Eq. (5.7)) are constant on intervals

[ j(n), j(n + 1)) with the matrix Cr if e(n) = r (that is, iff n ∈ A′
r and we never use the original partition {A�: � ∈ ω}) and

hence everything is carried out similarly with p < j(n) in the role of the case description p < hα(n) from there.
This is a vague description and it is dangerous to claim that all goes through despite these weakenings in the preparation.

Hence we carry out the proposed modification of Machura, Shelah and Tsaban’s construction from [12]. The gist is: the
matrix coding can be chosen anew at each step α < d.

We enumerate Z
k×(k+1) as {Cm: m ∈ ω} such that the sequence Cm , m ∈ A′

� , is constant for each �. We also fix a
dominating family of increasing functions dα , α < d. We write ‖v‖ or ‖v0, . . . , vk‖ for max{|v0|, . . . , |vk|}.

We carry out a modified construction by induction on α < d. In step α we define ϕα,m ∈ ωω for m ∈ ω by

ϕα,m(n) = min
{‖v‖: v ∈ Z

k+1 ∧ ‖v‖ � dα(n) ∧ Cm v = �0}
(5.2)

and

ϕα(n) = max
{
ϕα,m(n): m � n

}
. (5.3)

Note that the functions ϕα,m,ϕα ∈ ω↑ω , this will be important in the definition of I in Eq. (5.14). We let Mα ≺ (Hχ ,∈) be
of cardinality |α| · ω < d and contain ϕα,m , ϕα and all functions defined in the stages < α. By the definition of d∗(P ) there
is an increasing hα such that

(∀ f ∈ Mα ∩ ωω
)

(∀�)
(∃∞n

) (
n ∈ A� ∧ f

(
hα(n)

)
< hα(n + 1)

)
. (5.4)

Now choose jα , and a matrix chooser eα for Mα , hα as above.
Define k + 1 elements gα

0 , . . . , gα
k ∈ Z

ω . For each n let v ∈ Z
k+1 be a witness for the definition of ϕα,eα(n)( jα(n + 1)),

namely

ϕα,eα(n)

(
jα(n + 1)

) = ‖v‖ � dα

(
jα(n + 1)

)
, (5.5)

and

Ceα(n)v = �0, (5.6)

and define
⎛
⎜⎝

gα
0 ( jα(n))

.

.

.
α

⎞
⎟⎠ = v, (5.7)
gk ( jα(n))
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so that

Ceα(n) ·
⎛
⎜⎝

gα
0 ( jα(n))

.

.

.

gα
k ( jα(n))

⎞
⎟⎠ = �0. (5.8)

The remaining values of the functions gα
i are defined by declaring these functions constant on each interval [ jα(n), jα(n+1)).

By Eqs. (5.5) and (5.7)
∥∥gα

0

(
jα(n)

)
, . . . , gα

k

(
jα(n)

)∥∥ = ϕα,e(n)

(
jα(n + 1)

)
(5.9)

for all n. We take G as the subgroup of Z
ω that is generated by {gα

i : i � k, α < d}. We show that G is as required in the
theorem.

Gk+1 is not Menger-bounded. Let f ∈ ωω. We take α < d such that f �∗ dα . We fix m0 such that for all m � m0,
f (m) � dα(m). Let n be such that m − 1 ∈ [ jα(n), jα(n + 1)). Then

∥∥gα
0 (m − 1), . . . , gα

k (m − 1)
∥∥ = ∥∥gα

0

(
jα(n)

)
, . . . , gα

k

(
jα(n)

)∥∥ = ϕα,eα(n)

(
jα(n + 1)

)
� dα

(
jα(n + 1)

)
� dα(m) � f (m).

Gk is Menger-bounded. We take f (n) = n2. We prove that (∀F ∈ [G]k) (∃∞n) (∀g ∈ F ) (ĝ(n) � f (n)).
Fix F = {g0, . . . , gk−1}. Then there is M ∈ ω and there are α1 < · · · < αm < d and matrices B1, . . . , BM ∈ Z

k×(k+1) such
that ⎛

⎜⎝
g0
.
.
.

gk−1

⎞
⎟⎠ = B1

⎛
⎜⎝

gα1
0
.
.
.

gα1
k

⎞
⎟⎠ + · · · + BM

⎛
⎜⎝

gαM
0
.
.
.

gαM
k

⎞
⎟⎠ .

Let g0,0 = · · · = gk−1,0 = 0 and for each m = 1, . . . , M let
⎛
⎜⎝

g0,m
.
.
.

gk−1,m

⎞
⎟⎠ = B1

⎛
⎜⎝

gα1
0
.
.
.

gα1
k

⎞
⎟⎠ + · · · + Bm

⎛
⎜⎝

gαm
0
.
.
.

gαm
k

⎞
⎟⎠ . (5.10)

We prove by induction on m = 0, . . . , M , that there is a constant cm and there are infinitely many j such that
∥∥ĝ0,m( j), . . . , ĝk−1,m( j)

∥∥ � cm · ( j + 1).

By the definition of our increasing chain of elementary submodels, then there is an infinite set of such j’s, call it Jm , that
is an element of Mαm+1. By the definition of f this is sufficient. The case m = 0 is vacuous. We show how to step up from
m − 1 to m. Assume that

Jm−1 = {
j:

∥∥ĝ0,m−1( j), . . . , ĝk−1,m−1( j)
∥∥ � cm−1 · ( j + 1)

} ∈ Mαm−1+1 ⊆ Mαm

is infinite. Hence also the function

g<cm−1(n) := min{ j: n � j ∈ Jm−1} (5.11)

is well defined and in Mαm . For each i � k and each n such that

eαm (n − 1) = m′ ∧ Bm = Cm′ , (5.12)

we get by Eq. (5.5)
∣∣gαm

i

(
jαm (n − 1)

)∣∣ � ϕαm,eαm (n−1)

(
jαm (n)

)
� ϕαm

(
jαm (n)

)
.

As ϕαm and jαm are non-decreasing, and by Eq. (5.3) we can take also the n′ < n into (as hidden in the ĝ ’s) the latter
inequality

∣∣gαm
i

(
jαm (n′ − 1)

)∣∣ � ϕαm,eαm (n′−1)

(
jαm (n′)

)
� ϕαm

(
jαm (n)

)

and get
∥∥ĝαm

0

(
jαm (n − 1)

)
, . . . , ĝαm

k

(
jαm (n − 1)

)∥∥ � ϕαm

(
jαm (n)

)
. (5.13)

By Eq. (5.1) and by our assumptions on Mαm , hαm , eαm , jαm ,

I = {
n: eαm (n − 1) = m′ ∧ (∃n′ < n′′ ∈ [

jαm (n), jαm (n + 1)
))

(
ϕαm

(
jαm (n′)

)
< hαm (n′ + 1) � jαm (n + 1) ∧ g<cm−1

(
hαm (n′′)

) = j < hαm (n′′ + 1) � jαm (n + 1)
)}

(5.14)

is infinite.
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Let n ∈ I . Then eα(n) = m′ and Cm′ = Bm and thus by Eqs. (5.6) and (5.8)

Bm ·
⎛
⎜⎝

gαm
0 ( jαm (n))

.

.

.

gαm
k ( jαm (n))

⎞
⎟⎠ = Bm ·

⎛
⎜⎝

gαm
0 ( jαm (n + 1) − 1)

.

.

.

gαm
k ( jαm (n + 1) − 1)

⎞
⎟⎠ = �0.

By Eq. (5.10) for each i < k,

gi,m �
[

jαm (n), jαm (n + 1)
) = gi,m−1 �

[
jαm (n), jαm (n + 1)

)
. (5.15)

As n ∈ I , there is j ∈ Jm−1 and there are n′ < n′′ ∈ [ jαm (n), jαm (n + 1)) such that

hαm (n′′) � j < hαm (n′′ + 1). (5.16)

From Eq. (5.13) we get
∥∥ĝαm

0

(
jαm (n) − 1

)
, . . . , ĝαm

k

(
jαm (n) − 1

)∥∥ = ∥∥ĝαm
0

(
jαm (n − 1)

)
, . . . , ĝαm

k

(
jαm (n − 1)

)∥∥ = ϕαm

(
jαm (n)

)

� ϕαm

(
jαm (n′)

)
< hαm (n′ + 1). (5.17)

We want to show that j ∈ Jm for a suitable choice of cm (not depending on j). Let p ∈ [0, j].
Case 1: p � jαm (n). As j < hαm (n′′ + 1),

[
jαm (n), j + 1

) ⊆ [
jαm (n), jαm (n + 1)

)
,

and by Eq. (5.15) and the membership j ∈ Jm−1

∣∣gi,m(p)
∣∣ = ∣∣gi,m−1(p)

∣∣ � ĝi,m−1( j) � cm−1( j + 1) (5.18)

for all i < k.
Case 2: p < jαm (n). Let C be the maximal absolute value of a coordinate of Bm . For all i < k, by the definition of gi,m ,

∣∣gi,m(p)
∣∣ �

∣∣gi,m−1(p)
∣∣ + (k + 1)C max

{∣∣gαm
i (p)

∣∣: i < k
}
. (5.19)

As p < jαm (n) � j ∈ Jm−1, |gi,m−1(p)| � ĝi,m−1( j) � cm−1 · ( j + 1). Using p < jαm (n) and Eq. (5.17) and gαm
i being constant

on [ jαm (n − 1), jαm (n)) and hαm (n′ + 1) � hαm (n′′) � j, we get from Eq. (5.17)
∣∣gαm

i (p)
∣∣ � ĝαm

i

(
jαm (n) − 1

)
�

∥∥ĝαm
1

(
jαm (n) − 1

)
, . . . , ĝαm

k

(
jαm (n) − 1

)∥∥ = ϕαm

(
jαm (n)

)
< hαm (n′ + 1) � j

for each i < k. Together with Eq. (5.18) we have now
∣∣gi,m(p)

∣∣ �
∣∣gi,m−1(p)

∣∣ + (k + 1)C · max
{∣∣gαm

i (p)
∣∣: i < k

}
� cm−1( j + 1) + (k + 1)C j �

(
cm−1 + (k + 1)C

) · ( j + 1).

So we take cm = cm−1 + (k + 1)C . Since I is infinite, also Jm is infinite and this completes the inductive proof.

6. r � d is not necessary

We collect the lower bounds and the upper bounds on d′(P ):

cov(M),b � d′(P ) � r,d.

There are models in which every lower bound is ℵ1 and every upper bound is ℵ2: On p. 384 in [4] a model of b =
cov(M) = ℵ1 and cov(N ) = d = c = ℵ2 is given: Start with a ground model V |� b, cov(M) < d = ℵ2 and then force with
B(ℵ2), adding ℵ2 random reals. Also since r � cov(N ), we have r = ℵ2 and by Theorem 1.3, d∗(P ) = d. There are two
possibilities for refining this choice by refining and modifying the choice the ground model:

First, there is model gotten by c.c.c. forcing, namely we start with two regular cardinals ν < δ and we get a model
ν = r = u =< d = δ as given in [11]. The notation in the following theorem is taken from the paper [11], and we also draw
on [13]. For more details, the reader is referred to these two references.

Theorem 6.1. In the models of [11] there are groups with Menger-bounded kth power but non-Menger-bounded (k + 1)st power.

Proof. Let rη , η < δ, be the Cohen reals and let sα , α < ν , be the Mathias reals as there. Let UP be the ultrafilter generated
by the latter. Since by [3, Proposition 19] and a modification of [13, Theorem 3.6], rη , η < δ, is �UP dominating, we know
by [14] that rη ◦ next(sα, ·), η < δ, α < ν , is �∗ dominating.

Now we imitate a construction à la [12] along a layering Mα , α < ν , such that Mα ⊆ V (δ,h(α)) for some increasing
continuous function h : ν → ν , and Mα ≺ (H(χ),∈) is neither dominating nor refining. In the step from α to α + 1, ϕη,α

has to dominate rη ◦ next(sα, ·) for all η < δ, so that Gk+1 will be dominating in the end.
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For this aim we set ϕη,α = rη ◦next(sα+1, ·). Now the analog to the functions hα , jα , and eα for the model V (η,h(α)+1)

(which contains the functions ϕη,α , η < δ) can be found in V (η,h(α + 1)) for some h(α + 1) < δ, since V (η,h(α) + 1) is
neither refining nor dominating in V (δ, ν). Then we define gη,α for ϕη,α , hα , jα , and eα for each η separately, as in the
original construction. The estimation, the Gk is Menger bounded, is conducted by induction on α. Now in one induction
step finitely many gηr ,α , r < R , for some R ∈ ω, have to be considered in the sums like (5.10). We take the maxima over
the respective R functions before forming I as in (5.14). So in the end, Mα+1 contains δ elements more than Mα , but is still
neither dominating nor refining. �

Since b � d′(P ) � d∗(P ) � r, in these models the new cardinal characteristics are pinned down as d′(P ) = d∗(P ) = ν
and thus show that the sufficient condition is not necessary. We still can add random reals and get that the groups in
the ground model are still k-Menger-bounded and not k + 1-Menger-bounded. There are new examples of subgroups of Z

ω

with bounded kth power and unbounded (k + 1)st power in the extension by the random reals, because the random reals
increase r and hence make d∗(P ) = d.

Now we look at a second model of ℵ1 = cov(M) = b < r = d = c = ℵ2: We start with a ground model V of u < g

gotten, e.g., by adding ℵ2 Miller reals [10] or Blass–Shelah reals [9] with countable support to a model of CH. In this model
there are no groups with Menger-bounded kth power and not Menger-bounded (k + 1)st power. Thereafter we add ℵ2
random reals. Then g = ℵ1 (by [5]) and r = ℵ2 and d = ℵ2. So in this model there groups with Menger-bounded kth power
and non-Menger-bounded (k + 1)st power added by forcing with random reals. We are interested whether r � d implies
(∃P ) (d′(P ) = d) and hence we ask:

Question 6.2. What is the value of d′(P ) in this type of forcing extensions?

Separating the cardinal characteristics seems to be a challenge, because there is not much elbow room. However, since
the non-existence result for u < g mentioned in the beginning of Section 3 works only from k = 2 onwards, the following is
most interesting:

Question 6.3. Does u < g imply that there is no Menger-bounded subgroup of Z
ω whose square is not Menger-bounded?

It is well possible that u < g is not enough for non-existence and that a deeper analysis of one of the forcings given in
[9,11,5] (i.e., the three main forcings for u < g) or an entirely new forcing order could answer affirmatively:

Question 6.4. Is it consistent relative to ZFC that there are no Menger-bounded subgroup of Z
ω whose square is not Menger-bounded?

Similar questions on k-domination for various k, without groups, lead also into realm of u < g versus “there are at least
k + 1 near-coherence classes”, or r � d, or even r � c, and are considered in [6,7].
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