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Abstract

We show: The procedure mentioned in the title is often impossible. It
requires at least an inner model with a measurable cardinal. The con-
sistency strength of changing b and ? from a regular k to some regular
0 < k is a measurable of Mitchell order . There is an application to
Cichoni’s diagram.

1 Introduction

In order to show the consistency of one or more cardinal characteristics having
prescribed values, e.g. b = Ny, 0 = Ny, ¢ = N3 or u < g, the known technique is
to add certain reals in a certain iteration manner. Obviously one can change
some constellations merely by collapsing cardinals. But if we do not want to
use either of these techniques, numerous questions arise:

If W C U are transitive models of ZFC with the same reals and
the same cardinals, is there a cardinal invariant of the reals that
is not, the same in W and in U?

We use Vojtds’s framework [15] in which cardinal characteristics of the con-
tinuum can be regarded as norms of corresponding relations A = (A _, A, A)
with A JA, C2 ACA x A, and the norm

||A|| = min{card(Z) : ZC A AV € A 3Tz € Z A(z,2)}.
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We concentrate on the case that A, A_ and A, are absolute relations, indeed,
in our examples they will be Borel relations. We often write a Ab instead of
A(a,b). ||+ ||'" denotes the norm as computed in W.

Section 2 deals with situations in which some cardinal invariants cannot
be changed without changing cardinals or the reals. Section 3 shows the
consistency of changing cardinal invariants without changing cardinals or
the reals relative to a measurable of high (the new cofinality) Mitchell order
and the equiconsistency result. We show the following

Theorem 1.1 If ZFC + “there is a measurable cardinal k of Mitchell order
o(k) =0, w1 < < K, 0 reqular” is consistent then the following is consistent:

There are models W C U of ZFC such that W and U have
the same cardinals and the same reals, W = MA (and hence
b=0=c), and U = “b and v are equal to § less than ¢”.

Mitchell’s work [12] gives the lower bound of the consistency strength of
such a change:

Theorem 1.2 If there is a model M of ZFC and an extension N, such that
M and N have the same cardinals, and there is a cardinal k reqular in M
that has uncountable cofinality & < k in N then there is an inner model with
a measurable cardinal k of Mitchell order o(k) = 4.

Notation: Notation not defined here is taken from [7]. For the definition of
the Mitchell order, see [11]. ¢ denotes the cardinality of the continuum. M A
is Martin’s Axiom for fewer than ¢ dense sets. For f,g € w*, we write f <* ¢
ifft InVk > n f(k) < g(k). The (un)bounding number b and the dominating
number o are defined as follows:

b = min{card(B) : Vf € w’ Jg € Bg £* f},
? = min{card(D) : Vf € w” g€ D f <" g}.
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2 Characteristics may be preserved

Changing the norm of an absolute relation over the reals without changing
the reals and the cardinals (hence: decreasing the norm) has strength of a
measurable cardinal in an inner submodel of the lower model.

Proposition 2.1 If W C U have the same cardinals and there is a relation
AV = AV = A and ||A]|" > ||A||Y > Ry, then in W there is an inner
model with a measurable cardinal.

Proof: If there is no inner model with a measurable cardinal W, then by
[4] W is covered by K. As W and U have the same cardinals, we have
KUY = KW. This fact is a folklore result and in the hard case, when there in
no inner model with a measurable cardinal in both of them, the proof involves
a coiteration argument, see also [1] for the case of set generic extensions.
Hence VZ' € U 3Z € KV (Z D 7' and card"V(Z) = card’(2) <
card”(Z') + Xy). Any set of witnesses Z' for ||A||Y can be covered by a
set in W of the same cardinality. O

Since changing an invariant in the prescribed manner violates covering
below the continuum, the hypothesis can also be changed and gives:

Proposition 2.2 If W C U have the same cardinals below ¢ and ¢ is a limit
cardinal and there is a relation AW = AV = A and ||A[||"Y > ||A||Y > Ny,
then in W there is an inner model with a measurable cardinal.

Proof: Under these premises, the Dodd Jensen core models KV and K"
agree on subsets of the reals of cardinality less than the continuum, hence on
witnesses for ||A[|Y, if this is less than the continuum. O

We fix the scenario: W C U are transitive models of ZFC. A = (A_, A, A)
is a relation such that A is 3.

We require cardinals to be the same in W and in U in order to exclude
trivial examples.

Proposition 2.3 (Blass) If A is transitive, AY D A7 and ||AY||" is reg-
ular in U, then in U the inequality ||AV||W < ||AY||Y is true.



Proof: Let Z = {z, : a < u} witness ||[AV||V = y,and Z' = {2/, : a < p'}
witness ||AY||V = /. Since AY C AW, in U there is a function h: ' — p
such that for o < p:

Z;Azh(a).

If p' were less than p, then range(h) would be bounded in p, say by a bound
B € .

Then Ya € AY Ja € i aAz, Azpq). Hence {z, : a < 8} is a witness for
|A|]" < card(B) < p. O

If we keep all the premises of the proposition except for the condition

that [|[AY||" is regular in U, with the same proof we get in U the inequality
cf([[AY][") < [JAT]]Y.

We extract a scheme from the proof of proposition 2.3 that describes the
situation of not necessarily transitive relations:

Proposition 2.4 Let Z = {2, : a < u} witness ||[AV||Y = pu, and 2’ =
{2}, : a < u'} witness ||AY||Y = /. If in U there is a function h:y' — p
such that for o < p:

{a€ AY : aAZ} C{ac AY : 3B € h(a) aAzs}

and ||A||" is reqular in U, then in U the inequality ||AY||"W < [|AY||Y is
true.

The proof is the same as that of 2.3. a

If AY = AY then ||[AY||" > ||AY||Y, and hence under the premises of
the propositions, they will be equal.

We require from now on that additionally W and U have the same reals.
Then A" = AY is true (or can be arranged by choosing suitable cofinal
subsets of the ideals) for the relations corresponding to the Cichon diagram
and many others from [14]. We consider some well-known examples from
[14]. Let I be an ideal of subsets of the real line R. The additivity, covering
number, uniformity, and cofinality of the ideal are defined by:

add(/) = min{Z : ZCTand |JZ &I},



cov(I) = min{Z : ZC I and |JZ =R},
unif(/) = min{Z : Z CRand Z ¢ I},
cof(l) = min{Z: ZCTandVBel3Ze ZBCZ}).

Superscripts U, W denote in which model the corresponding invariant
is computed. In any fixed model of ZFC we have: If I' is generated by I,
ie. Vo € I'Jy € I x C y, then add(!") = add(]) and so on. For I being
the meager or the Lebesgue null ideal, we have IUV is generated by I, if
R"Y = RY, as the ideals are generated by the set of meager F,-sets and by
the set of Gs-nullsets respectively. Also for the ideal K, of countable unions
of compact sets there are the same generating sets in W and in U if W and
U have the same reals. By abuse of notation, we often write /. It shall be
clear from the context which interpretation is meant.

Proposition 2.5 Suppose IV is generated by IV, RV =RV =R.

a) If in W, cov(I) = cof(I) and this is reqular in U, then in U, cov(l) =
cof(I) = covV(I).

b) If in W, add(I) = cof(I) and this is regqular in U, then in U, add(I) =
cof(I) = add" (I). For I = K,, the ideal of countable unions of compact
sets, this reads: If in W, o = b and these remain regular in U, then in U,
oV =Y =0V,

c) If in W, add(I) = cov(I) and this is reqular in U, then in U, unif(l) >
covV(I).

Proof: a) Let {z}, : a < p'} be in U a covering of R with elements from 1.
Let {zo : @ < p} bein W a cofinal subfamily of I. {a € R : a € 2} C {a €
R @ a € 2j,4} for some h(a) such that z, C 2, Hence h(a) = h(a) + 1is
as required in the previous proposition.

b) Let {2}, : @« < ¢/} C I bein U with U{z, : o < p/'} ¢ I. Again, let
{#2a 1 @ < p} bein W a cofinal subfamily of I. {a € I : a C 2z,} C{a€ I :
a C Zzj, } for some h(a) such that z;, C 2j,). For the additivity this yields:
U{z, : a <p'} €1 implies U{zp) @ o < u'i ¢ 1.

c) Let {z), : a < '} CRinU. Let {2z, : @ < u} be in W a cover-
ing subfamily of I and let us assume p' < p and p is (still) regular in U.
{fael:z,¢at Cla€l: 2, Z a} for some h(a) such that z;, € zj,)-

@)
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Set s = sup{h(c) : a € y'}. Since pis regularin U, s < p. Since s < add (1),
we have {2, : @ < p'} C Uacy Zia) € Uaes 2a € I(NV). O

We do not have any use for the full extent of proposition 2.4, as we only
need singletons as values of h. The regularity in U is a necessary condition
in 2.3, 2.4, and 2.5, as we will see in the next sections.

3 Changing Scales

In this section we prove theorem 1.1 and give for completeness’ sake some
hints on the proof of theorem 1.2. We start from the premise that there is
a measurable x of Mitchell order §, w; < 0 < k, ¢ a regular cardinal. The
main ingredient of the proof is taken from [6]. We use the following

Fact 3.1 Let M,N be inner models of ZFC, M C N, N = *M C M.
Let P € M be a forcing notion, such that N = P is u*-c.c., and let G be
P-generic over N. Then N|G] = A M|[G]) C MI|G].

Proof: See [7], §37 or, for a more explicit statement, [2].

Lemma 3.2 Suppose V is a model of Va < k ot < k and in 'V there is an
w-distributive forcing Py that preserves cardinals and changes the cofinality
of k into & without adding a bounded subset of k. Let P in V be a c.c.c.
forcing that forces MA+c¢ = k, Gy be P;-generic over V and G be P-generic
over V[G1]. Then V[G] and V[G1]|G] are as stated in theorem 1.1, i.e.

1) V[G] C V[G1][G] are models of ZFC,

2) they have the same reals, indeed the same w-sequences with ranges in

ViG],
3) VI[G] is a model of MA+ 2 =k,
4) V|G| and V|[G1][G] have the same cardinals,
5) in V[G1][G], 2 = b =¢.



Proof: For 2, we apply the fact 3.1 and that P has c.c.c. in V[G;], which is
proved below under 4.

Ad 4: P, preserves cardinals, so V' and V[G;]| have the same cardinals.
We show that P has c.c.c. in V[G;]. We suppose the contrary: P; adds
a new uncountable antichain A to P. In V[G,], P is still a iteration of
forcings of cardinality less than x of iteration-length x with finite supports.
Hence the A-lemma (Ch. II, theorem 1.6 in [8]) gives a finite root r for the
supports of all the conditions in an uncountable subset A’ of A. The forcings
whose preimage in the iteration is a subset of max(r)+1 are (after a suitable
injection) a subset of an ordinal below k, because (max(r) + 1)“* < k. Since
Gitik’s forcing P; does not add any bounded subset of x, there is no new
uncountable antichain in the forcings attached to a subset of max(r)+ 1. As
every old antichain is countable, among {pMNmax(r) +1) : p € A’} there
are two compatible or same ones belonging to different p’s. These yield two
compatible elements of A.

Ad 5: In V[G], M A+ ¢ = k holds and hence there is an increasing cofinal
sequence (fg : f € k) in (w*,<*). In V[G4][G] there are also x reals, but
now x has cofinality 6 and we can choose a subsequence of (fs : 8 € k) in
(w¥, <*) whose indices are cofinal in k. Since there are no additional reals,
this subsequence is cofinal in (w*, <*). O

In order to get a model V' of Va € k o' < k where a forcing P, with the
above nice yet strong properties exists, we rely on [6]:

Fact 3.3 (Gitik) If there is a measurable cardinal k of Mitchell order ¢,
wi < 0 < K, then the following is consistent with ZFC: GCH, k is inacces-
sible and there is a k*-c.c. forcing notion that does not add bounded subsets
to k and does force cf(k) = 4.

Such a forcing notion does not destroy cardinals and does not add a se-
quence of length < d: It is (< 0, k)-distributive, and therefore < d-distributive
because of the kT-c.c. 3.2 and 3.3 together prove theorem 1.1: We take
W =V[G], U = V|G][G]. 0

Now we sketch a proof of theorem 1.2: We use the core model K =
K (Upnaz) of [13]. In [12] there is the following theorem:



Theorem 3.4 (Mitchell) Suppose k is a cardinal in V', k is reqular in K,
and cf(k) =8 <k in V. Then o(k) > 1 in K, and if 6 > w, then o(k) > ¢
n K.

We relativize (in the sense of model theory) this fact: Assume we have a
model M of ZFC and an extension N with the same cardinals, and that & is
a cardinal in N, & is regular in M, whereas cf(k) = < k, § > w, in N. Then
k is regular in K™ as this is a submodel of M. Since KM = KV (folklore
as in Proposition 2.1),  in regular in K¥. Hence theorem 3.4 applied in N
yields o(k) > ¢ in KM. O

4 Application to Cichon’s diagram

Let N be the ideal of Lebesgue null subsets of the real line, and let M be
the ideal of meager subsets. The following partial order is called Cichon’s
diagram:

cov(N) unif(M) cof(M) cof(N') —— 2¢
| b — 2 |
Wy add(N) add(M) cov (M }—— unif(N)

The invariants further up or right from an entry are greater or equal than
that entry; proofs can be found in [5]. Under M A, all these invariants except
wy are equal to ¢, cf. [10]. Moreover, as add(M) = cof(M) and add(N) =
cof(N), there are C-increasing sequences of length k that are cofinal in M
or N, respectively. In V[G][G] of lemma 3.2, all invariants except w; are
equal to . Hence we have the

Theorem 4.1 If ZFC + “there is a measurable cardinal k of Mitchell order
o(k) =0, wy << K” is consistent then the following is consistent:



There are models W C U of ZFC such that W and U have the
same cardinals and the same reals, in W the cardinals in the
Cichon diagram are equal to ¢ > wy, and in U these cardinals are
equal to § < c.

5 An open question

We briefly discuss the necessary ingredients for the changing procedure in
question. Suppose W C U, W and U have the same cardinals and the same
reals, there is some relation A" = AY = A whose norm ||A|| has value
|Al| = k > Ry in W and value X; < |[|A|| = A < k in U. Then a set of
ordinals in U of cardinality A cannot be covered by a set of ordinals in W of
cardinality < A. Hence one of the premises of the following theorem of [9] is
not fulfilled:

Theorem 5.1 (Magidor) If W C U are two models of ZFC, W = GCH,
W, U agree on cofinalities, every countable set in U of ordinals can be covered
in W by a set of cardinality < A, then every set x in U can be covered by a
set in W of cardinality < max(card(z), A).

Now, regarding the models from section 3, W = V|G| and U = V[G4][G]
have the same w-seqences of ordinals, so necessarily V[G] = GCH or a cofi-
nality is changed. Both are true. In order to change a cardinal characteristic
of the reals, the smaller model does not fulfill C' H, otherwise all characteris-
tics are already N; and cannot be lowered any more. So there is the question:
Is there a changing procedure that does not change cofinalities? Magidor’s
theorem shows: Using an w-distributive component and the exchange of the
order in the product of the two forcings does now exclude starting from any
W that is gotten from a model V of GCH by a c.c.c. forcing extension.
Proposition 2.3 excludes starting with a regular ||A||".
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