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Abstract We give some restrictions for the search for a model of the club principle
with no Souslin trees. We show that ♦(2ω, [ω]ω, is almost constant on) together with
CH and “all Aronszajn trees are special” is consistent relative to ZFC. This implies
the analogous result for a double weakening of the club principle.
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1 Introduction

We show that “♣w2 (see Definition 1.4) and CH and all Aronszajn trees are special” is
consistent relative to ZFC (see Theorem 2.3). To achieve this we work with the weak
diamond for the reaping relation. The reaping relation is {( f, X) : f ∈ 2ω, X ∈
[ω]ω, (∃n ∈ ω) f � (X � n)is constant}. The weak diamond for the reaping relation is
an instance of Definition 1.1. In Theorem 2.1 we show that iterations where the NNR
forcing is used to destroy all Souslin trees do not give a negative answer to Juhász’
question as to whether the club principle (see Definition 1.2) implies the existence of
a Souslin tree unless the bookkeeping is arranged particularly (and it is open whether
this can be done).
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92 H. Mildenberger

The forcing used in the proof is the one from [23,2], where Aronszajn trees
are specialised with forcings with side conditions that are D-complete for a simple
D-completeness system. This is an application of Shelah’s theory of iterating proper
forcing without adding reals [23, Chap. 7]. Jensen [7] constructed the first model of
CH where all Aronszajn trees are special.

In [18] Mildenberger and Shelah proved for two weaker parametrised diamonds that
they are consistent together with CH and “all Aronszajn trees are special”. For readers
familiar with that work we point out the differences and the similarities: The main
technical result, that for iterations of lengths γ of the specialisation forcings many
(M, P)-generic filters can be computed in a Borel manner from arguments given by
a game played in α = otp(γ ∩ M) rounds, is modified to give a different game: The
second player imitates Miller forcing and the preservation of P-points to find infinite
sets that serve as values for a function witnessing ♦(reaping). The first player finds
a real coding the second order parameters in the completeness system such that all
other reals not eventually below it (so for example the Miller reals) are equally suitable
for coding these parameters. The transition from the game and from many guessed
countable elementary substructures with little forcing scenarios to the weak diamond
for the reaping relation in VPω2 is analogous to [18].

Now we review the definitions of the guessing principles that appear in this work.
Let A and B be sets of reals and let E ⊂ A × B. Here we work only with Borel sets
A and B and absolute E , so that there are no difficulties in the interpretation of the
notions in various ZFC models. The set A carries the topology inherited from the reals
and 2α carries the product topology.

Definition 1.1 (Definitions 4.3/4.4 of [20])

(1) A function F : 2<ω1 → A is called a Borel function if each part F � 2α, α < ω1, is
a Borel function, possibly with a real parameter that depends on α. The complexity
of the set {F � 2α : α < ω1} can be high.

(2) Let ♦(A, B, E) be the following statement: For every Borel map F : 2<ω1 → A
the statement ♦F (A, B, E) holds, i.e., there is some g : ω1 → B such that for
every f : ω1 → 2 the set

{α ∈ ω1 : F( f � α) E g(α)}

is stationary. Commonly, if E is not the equality ♦(A, B, E) is called a weak
diamond.

The original diamond, ♦ω1 , is ♦F (A, B, E) with A = B = 2<ω1 (so in this case
A and B are not Borel subsets of the real line), E being equality, in the special case
of F being the identity function. Jensen [14] showed that ♦ω1 holds in L . Devlin and
Shelah [8] showed that in the case |B| = 2 some diamond principles follow from
2ℵ0 < 2ℵ1 .

Ostaszewski [21] introduced the club principle, ♣, for a topological construction:

Definition 1.2 Let ♣ be the following statement: There is some 〈Aα : α <

ω1, α limit〉 such that for every α, Aα is cofinal in α and for every X ⊆ ω1 the

123



Finding generic filters by playing games 93

set {α ∈ ω1 : Aα ⊆ X} is stationary. Analogously, we define ♣S for a stationary
subset S of ω1 by letting α range over S.

For sets A, X , we let A ⊆∗ X denote that A � X is finite. Fuchino, Shelah and
Soukup [10] and Džamonja and Shelah [9] also consider the following two weakenings
of ♣:

Definition 1.3 Let ♣w be the following statement: There is some 〈Aα : α <

ω1, α limit〉 such that for every α, Aα is cofinal in α and for every X ⊆ ω1 the
set {α ∈ ω1 : Aα ⊆∗ X} is stationary.

Definition 1.4 Let ♣w2 be the following statement: There is some 〈Aα : α <

ω1, α limit〉 such that for every α, Aα is cofinal in α and for every X ⊆ ω1 the
set {α ∈ ω1 : Aα ⊆∗ X ∨ Aα ⊆∗ α � X} is stationary.

Finally, the following principle |•, also called the stick, is a weakening of both CH
and ♣w. The stick principle was introduced in [6].

Definition 1.5 The principle |• says: There is a set {Aα : α < ω1} such that for every
uncountable X ⊆ ω1 there is some Aα ⊆ X .

The stick is incomparable with ♣w2 . Fuchino, Shelah and Soukup [10, 4.1] show
that ♣w2 together with the negation of the stick principle is consistent. Moore, Hrušák
and Džamonja [20, Theorem 8.3] give a model of CH, so in particular of stick, in
which ♦(Rω,Rω, range( f ) �⊇ range(g)) does not hold for some (quite concrete)
Borel function F , so in particular also the weak diamond of the reaping relation and
also the double weakening of the club fail.

Our notation on trees follows [24, Chap. 9]. Only in the forcing we stick to the
older tradition that the stronger condition is the larger one.

2 Juhász’ question and weaker club principles

Jensen [14] showed that ♦ω1 implies the existence of a Souslin tree and Juhász asked
whether the weakening ♣ does so as well [19, Question 15.3]. Baumgartner [13, Sec-
tion 4] and Shelah [23, Chap. 3, Theorem 7.4] showed that ♣ is strictly weaker than
♦. Under CH, ♣ implies ♦ by [22, Theorem 3. 7.3]. A modification of this proof that
is carried out in the course of Theorem 2.1 shows that also ♣w together with the CH
implies ♦. So our result about ♣w2 is sharp for models of CH.

There is no Souslin tree iff every Aronszajn tree has an uncountable antichain;
and an uncountable antichain exists iff there is an uncountable partial specialisation.
Recall, a specialisation of an Aronszajn tree (T,<T ) is a function f : T → Q such
that for any pair x <T y ∈ T, f (x) < f (y). An uncountable partial specialisa-
tion is a function f : A → Q such that A ⊆ T is uncountable and for any pair
x <T y ∈ A, f (x) < f (y). An Aronszajn tree is called special if it has a (total)
specialisation function. In order to destroy a Souslin tree without collapsing ℵ1 one
can add an uncountable partial specialisation or one can add a branch through the tree.

The following metatheorem shows that forcing “♣w together with every Aronszajn
tree is special” in a countable support iteration of proper iterands starting with a ground
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94 H. Mildenberger

model of the CH and such that the iteration has the ℵ2-c.c. and length ω2 and that does
not add reals together with the antichains destroying a Souslin tree in the intermediate
models cannot be achieved at all. We write Vβ for VPβ . A Souslin tree T is called
Souslin with respect to a diamond, if there is a diamond sequence 〈Aδ : δ ∈ S〉, S
stationary, such that for all δ ∈ S if Aδ is a maximal antichain in Tδ , then Aδ is maximal
in the whole tree.

Theorem 2.1 Metatheorem. Suppose that 〈Pβ, Q
˜ α

: α < ω2, β ≤ ω2〉 is a count-
able support iteration of proper iterands that has the ℵ2-c.c. and that CH holds in Vβ
for all β < ω2. Suppose in addition that ♣w holds in Vω2 . Then for every α < ω2, if
Pα adds an antichain to a Souslin tree that is Souslin with respect to a diamond in Vγ
in all Vγ , γ < α, then a real is added by Qγ if α = γ + 1 or, if α is a limit, with Qγ

for cofinally many γ in α.

Proof Suppose that 〈Aα : α < ω1, lim(α)〉 is a ♣w sequence. Then by [4, Theo-
rem 4.2] there is some β < ω2 such that the sequence is in Vβ . Since Vβ |� CH, by a
strengthening of [23, Theorem I.7.3] from ♣ to ♣w,VPβ |� ♦.

For completeness’ sake, we prove the strengthening: If CH and ♣w,S holds then
♦S holds.

Suppose that 〈Aα : α ∈ S〉 is a witness that ♣w,S holds. We replace each Aα by
a cofinal subset of order type ω and we call the outcome Aα again and we still have
♦w,S sequence. Using CH, let 〈Bi : i < ω1〉 be a list in which every bounded subset
of ω1 appears ℵ1 times and such that sup Bi ≤ i .

Now we define a ♦−
S -sequence (see [15, Chap. 2, Theorem 7.14]) 〈Dα : α ∈ S〉

as follows: For α ∈ S, we set Dα = {Dα,n : n ∈ ω}, where Aα,n is Aα without
the first n elements and Dα,n = ⋃{Bi : i ∈ Aα,n}. We show that 〈Dα : α ∈ S〉
is a ♦−

S -sequence. Let X be a subset of ω1. If X is bounded, let X ′ be the set of i
such that Bi = X . The set X ′ is unbounded in ω1 and hence there are stationarily
many points α ∈ S such that Aα ⊆∗ X ′. This implies that X ∈ Dα . Now suppose
that X is unbounded and we define by induction a function j : ω1 → ω1 as follows:
j (α) is the minimal i ≥ j (β), β < α, such that Bi = X ∩ sup{ j (β) : β < α}.
Since j is strictly increasing for all α, j (α) ≥ α. Let X ′ be the range of j . Let C
be the club set of countable ordinals that are closed under j . By ♦w,S there is a
δ ∈ S ∩ C such that Aδ ⊆∗ X ′. We show that X ∩ δ ∈ Dδ . Let Aδ,n ⊆ X ′. As
for each i ∈ Aδ,n, Bi = X ∩ sup{ j (β) : β < α} for some α < δ, we have that
Dδ,n = ⋃{Bi : i ∈ Aδ,n} ⊆ X ∩ δ. Now we show that for every β < δ there are
α ≥ β and i ∈ Aδ,n such that X ∩ α = Bi . As δ ∈ C, j (β) < δ, and Aδ,n is cofinal in
δ. So there is γ ∈ Aδ,n, γ ≥ j (β). But Aδ,n ⊆ X ′ hence γ = j (α) for some α ≥ β.
B j (α) = X ∩ sup{β ′ : β ′ < α} and the latter sup is ≥ β. Since j (α) ∈ Aδ,n , we have
Dδ,n ⊇ B j (α) ⊇ X ∩β for all β < δ, and hence Dδ,n = X ∩ δ. This finishes the proof
of ♦−

S .
Hence by Kunen’s result, for every β ≤ δ < ω2, there is a ♦-sequence Ā for Vδ

and a Souslin tree Tδ in Vδ that is in Vδ Souslin with respect to Ā. We show that some
Tδ is Souslin also in Vω2 unless the condition of the theorem is fulfilled.

Suppose for a contradiction that in Vω2 the tree Tδ (on ω1) has an uncountable
antichain and call it A′, and suppose that δ < α ≤ ω2 is minimal such that A′ ∈ Vα .
By the ℵ2-c.c., α < ω2.
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Finding generic filters by playing games 95

We assume that there are no new reals in Vα\Vδ . Then Ā is still a diamond sequence
in Vα . In Vδ and in Vα the following holds: if Aε is a maximal antichain in T ∩ ε then
it is maximal in T , and for every maximal antichain A in T there are stationarily many
ε that Aε = A ∩ ε and that Aε is a maximal antichain in T<ε. Hence T is Souslin in
Vα as well. Contradiction. ��

A related question is

Question 2.2 Is “♣ and every Aronszajn is special” consistent relative to ZFC?

It is known that this question differs from Juhász’ question: There are models with-
out Souslin trees where this is not established via the specialisation of (uncountable
parts of) all Aronszajn trees; see e.g., Hirschorn’s work [11] on RSH, the Souslin
Hypothesis after adding random reals, and CH. Many models without Souslin trees
where this is not established via the specialisation of all Aronszajn trees are given in
[22, Chap. IX].

Now we prove a negative answer to a strengthening of Juhász’ question:

Theorem 2.3 “♣w2 and CH and every Aronszajn is special” is consistent relative to
ZFC.

We reduce this to a weak diamond and to showing that “♦(reaping) and CH and
every Aronszajn is special” is consistent relative to ZFC.

Lemma 2.4 ♦(Reaping) implies ♣w2 .

Proof For each limit ordinal α < ω1 let hα : ω → α be a increasing injection such
that range(hα) is cofinal in α. We take the Borel function F : 2<ω1 → 2ω that is given
by

F( f )(n) = f (hα(n)) for f ∈ 2α.

We take g : ω1 → [ω]ω witnessing ♦F (reaping). Now we define Aα = h
′′
αg(α) ⊆ α.

We show that 〈Aα : α < ω1〉 witnesses ♣w2 .
Let X ⊆ ω1 be given. We apply ♦(reaping) to the characteristic function of

X, χX : ω1 → 2. Then

{α : F(χX � α) is almost constant on g(α)}

is stationary in ω1. Then we have

F(χX � α) is almost constant on g(α)

iff g(α) ⊆∗ F(χX � α) or g(α) ⊆∗ ω � F(χX � α)
iff g(α) ⊆∗ {n : χX (hα(n)) = 1} or g(α) ⊆∗ {n : χX (hα(n)) = 0}
iff (∃� ∈ {0, 1})(Aα = h

′′
αg(α) ⊆∗ h

′′
α{n : χX (hα(n))= �}= {k ∈ α : χX (k)= �}),

iff Aα ⊆∗ X or Aα ⊆∗ α � X.

��
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96 H. Mildenberger

Fig. 1 Only the framed weak diamonds imply the existence of a Souslin tree. The arrows indicate impli-
cations

3 The weak diamond for the reaping relation and CH

Jensen [14] showed that ♦ω1 implies the existence of a Souslin tree. Hrušák [12] intro-
duced♦d, a strengthening of d = ℵ1, such that♦d implies that a = ℵ1. Moore, Hrušák
and Džamonja [20] introduce and investigate numerous versions of weak diamonds
that come from the relations in Cichoń’s diagramme. Their weak diamond for the
dominating relation is a slight strengthening of ♦d. Let Unif(M) denote the relation
(Fσ meager sets, ωω, ��), and let Unif(N ) denote the relation (Gδ null sets, ωω, ��).
They show that♦(Unif(M)) implies the existence of a Souslin tree, and from work by
Hirschorn [11] they derive that ♦(Unif(N )) does not imply the existence of a Souslin
tree. Another model of ♦(Unif(N )), with larger continuum and no Souslin trees is
given by Laver [16]. Since the Borel Galois-Tukey connections (see Vojtáš [25]) in
the Cichoń diagramme can be translated into implications of the corresponding weak
diamonds [20, Proposition 4.9], there is a Cichoń’s diagramme of weak diamonds. So
all its entries above ♦(Unif(M)) imply the existence of a Souslin tree, see Fig. 1. Also
♦(ωω, ωω,≤∗) together with “all Aronszajn trees are special” is consistent relative
to ZFC according to [17]. In this model, the continuum is ℵ2. In [18] it is shown that
♦(Cov(N )) together with CH and all Aronszajn trees are special is consistent.

Theorem 2.3 will follow from Lemma 2.4 and the following:

Theorem 3.1 ♦(Reaping) together with CH and with “all Aronszajn trees are spe-
cial” is consistent relative to ZFC.

Remark As indicated in the diagramme, Theorem 3.1 extends the analogous results
on ♦(Cov(M)) [20] and on ♦(Cov(N )) [18]. It does not extend, though, the inter-
mediate results on a diamond for covering functions from ω to ω by small slaloms
[18, Theorem 3.9].

Proof The proof of Theorem 3.1 takes the rest of the paper. One of the two main steps
is Theorem 4.4, which is a strengthening of [18, Theorem 3.4]. We replace the one-
iteration-step coding [18, Lemma 3.3] by some weaker codes. This will be Lemma 4.3.
In order to explain the coding of (M, P, p) we need to recall a part of Shelah’s theory
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Finding generic filters by playing games 97

of simple countable completeness systems for our particular notion of forcing. We do
this in the rest of this section. In addition, later in the proof, in Lemma 5.1, the Laver
game about the narrow slaloms [18, Lemma 3.10] will be replaced by a game with
Miller reals. ��

We use the forcings “specialising an Aronszajn tree without adding reals” from
[2] and [23, Chap. V, Section 6]. Let T = (ω1,<T) be an Aronszajn tree. Now we
consider partial specialisations whose domain is the union of countably many of its
levels, so that the indices of the levels form a closed set C . We call such a pair ( f,C)
an approximation. For α < ω1 let Tα denote the α-th level of T. For x ∈ Tα and
β < α we let x�β be the y ∈ Tβ such that y <T x . For making the notation easier,
we consider only Aronszajn trees T whose α-th level Tα = [ωα,ω(α + 1)). This is
no loss of generality since specialising all these Aronszajn trees suffices.

Definition 3.2 (A modification of [2, Definition 4.1]).

(1) An approximation is a pair ( f,C) such that there is a countable ordinal α and
C ⊆ α + 1, C is closed and α ∈ C, f : ⋃

i∈C Ti → Q is a partial specialisation
function. The ordinal α is called last( f ). We say “( f2,C2) extends ( f1,C1)” and
write ( f1,C1) ≤ ( f2,C2) iff f1 ⊆ f2 and C2 is an end-extension of C1, i.e.,
C1 ⊆ C2 and (C2 � C1) ∩ (⋃ C1) = ∅.

(2) We say H is a requirement of height γ < ω1 iff for some n = n(H) < ω, H is a
countable set of functions of the form h : dom(h)→ Q with dom(h) ∈ [Tγ ]n .

(3) We say that a finite function h : Tα → Q bounds an approximation f with
last( f ) = α iff ∀x ∈ dom(h), f (x) < h(x). More generally, if β ≥ α = last( f ),
then h : Tβ → Q bounds f iff ∀x ∈ dom(h)( f (x�α) < h(x)).

(4) An approximation f with last( f ) = α is said to fulfil the requirement H of height
β ≥ α iff for every t ∈ [Tα]<ω there is some h ∈ H which bounds f and such
that {x�α : x ∈ dom(h)} is disjoint from t .

Definition 3.3 H ⊆ Q
[Tγ ]n is called dispersed iff for each t ∈ [Tγ ]<ω, there is some

h ∈ H such that t ∩ dom(h) = ∅.

Definition 3.4 (See [2, Definition 4.1 (4)].) 
 is a T-promise iff dom(
) is club in ω1
and 
 = 〈
(γ ) : γ ∈ dom(
)〉 has the following properties:

(a) For each γ ∈ dom(
), 
(γ ) is a countable set of requirements of height γ .
(b) (∀γ ∈ dom(
))(∀H ∈ 
(γ ))H is dispersed.
(c) For h : Tα1 → Q and α0 < α1 we let dom(h�α0) = {y�α0 : y ∈ dom(h)} and

h�α0(x) = min{h(y) : y�α0 = x, y ∈ dom(h)}. We let H�α0 = {h�α0 : h ∈
H}. We require: (∀α0 < α1 ∈ dom(
))(
(α0) ⊇ {H�α0 : H ∈ 
(α1)}).

Condition (c) implies that for all α0, {H�α0 : (∃α1 > α0)(H ∈ 
(α1))}) is count-
able. For α < γ , we write 
(γ )�α = {H�α : H ∈ 
(γ )}.
Definition 3.5 ([2, Definition 4.1 (5)]) We say that an approximation ( f,C) fulfils the
promise 
 iff last( f ) ∈ dom(
) and f fulfils each requirement H in 
(last( f )).

Definition 3.6 ([2, 4.2]) QT is the set of ( f,C, 
) such that ( f,C) is an approx-
imation, and 
 is a promise and ( f,C) fulfils 
. The partial order is defined as
( f0,C0, 
0) ≤ ( f1,C1, 
1) iff
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98 H. Mildenberger

(1) f1 extends f0,
(2) C1 is an end-extension of C0 and C1 � C0 ⊆ dom(
0), and
(3) (∀γ ∈ dom(
0 � last( f1))(γ ∈ dom(
1)and
0(γ ) ⊆ 
1(γ )).

If p = ( f,C, 
), we write f = f p , C = C p and 
 = 
 p, and we write last(p) =
last( f p) = max(C p).

In the following lemmaχ > 2ℵ1 is sufficiently large. The following lemma provides
an important step for the Borel computations in the next section.

Lemma 3.7 ([2, 4.3], [23, Fact 5 6.7]) Let T be an Aronszajn tree. Let M ≺ (H(χ),∈)
be a countable elementary substructure with a sufficiently large regular χ, QT ∈
M, p ∈ QT ∩ M, µ = ω1 ∩ M and h : Tµ → Q be a finite function which bounds
f p. Let D ∈ M, D ⊆ QT be dense open. Then there is an q ≥ p, q ∈ D ∩ M, such
that h bounds q.

Definition 3.8 We take the iterands QT from Definition 3.6. Now we assume V |�
CH + ♦ω1 + 2ℵ1 = ℵ2 and let Pω2 = 〈Pα, Q

˜ β
: α ≤ ω2, β < ω2〉 be a count-

able support iteration with Q
˜ α

= QTα˜
being as above for some Aronszajn tree Tα ∈

V[Gα],GαPα-generic over V, such that �Pα “T˜ α is an Aronszajn tree and for γ < ω1
its γ -th level is [ωγ,ωγ + ω)”. The book-keeping shall be arranged so that every
Pω2 -name for an Aronszajn tree is used in some iterand.

Every Aronszajn tree in VPω2 has a Pα-name for some α < ω2 since by [23, Chap.
VIII, Section 2], each QT has the ℵ2-p.i.c. (proper isomorphism condition), see [23,
Chap. VIII, Definition 2.2], and hence by [23, Chap. VIII, Lemma 2.4], Pω2 has the
ℵ2-c.c.

Since Pω2 has theℵ2-c.c., by a lemma similar to the one of [4, 5.10], now for subsets
of ω1 instead of reals, every subset of ω1 in a countable support iteration of proper
forcings with the ℵ2-c.c. at each initial segment has a name at some stage of cofinality
ω1. So we can carry out the desired book-keeping.

Definition 3.9 We call P α-proper if the following holds: Let Mi , i < α, be countable
elementary submodels of (H(χ),∈). Let P ∈ M0 and let 〈Mi : i < α〉 be an increas-
ing sequence such that 〈M j : j ≤ i〉 ∈ Mi+1 and for limit ordinals j,M j = ⋃

i< j Mi .
Then for every p ∈ P ∩ M0 there is some q ≥ p that is (Mi , P)-generic for all i < α.
Such a sequence 〈Mi : i < α〉 is called a tower of models and α is the height or the
length of the tower.

Lemma 3.10 ([18, Lemma 2.29]) QT is α-proper for all α < ω1.

Definition 3.11 ([23, V, 5.5])

(1) We call D a completeness system if for some χ,D is a function defined on the set
of triples 〈M, P, p〉, p ∈ M ∩ P, P ∈ M,M ≺ (H(χ),∈),M countable, such
that D(M, P, p) is a family of non-empty subsets of

Gen(M, P, p) = {G : G ⊆ M ∩ P,G is directed and p ∈ G

and G ∩ I �= ∅
for every dense subset I of P which belongs toM}.
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Finding generic filters by playing games 99

(2) We call D a λ-completeness system if each family D(M, P, p) has the property
that the intersection of any i elements is non-empty for i < 1+ λ (so for λ ≥ ℵ0,
D(M, P, p) generates a filter).ℵ1-completeness systems are also called countably
closed completeness systems.

(3) We say D is onχ if M ≺ (H(χ),∈). We do not always distinguish strictly between
D and its definition.

Definition 3.12 A condition p is completely (M, P)-generic if G = {q ∈ P ∩ M :
q ≤ p} is an (M, P)-generic filter. G is called bounded.

Definition 3.13 Suppose that D is a completeness system on χ . We say P is D-com-
plete, if for every countable M ≺ (H(χ),∈) with P ∈ M,D ∈ M , p ∈ P ∩ M , the
following set contains as a subset a member of D(M, P, p):

Gen+(M, P, p) = {G ∈ Gen(M, P, p) : there is an upper bound for G inP}.

Definition 3.14 ([23, V, 5.5])

(1) A completeness system D is called simple if there is a first order formula ψ such
that

D(M, P, p) = {Ax : x is a finitary relation onM, i.e.,x ⊆ Mk for some k ∈ ω},

where

Ax = {G ∈ Gen(M, P, p) : (M ∪ P(M),∈, p,M, P) |� ψ(x,G)}. (3.1)

(2) A completeness system D is called almost simple over V0 (V0 a class, usually a
subuniverse) if there is a first order formula ψ such that

D(M, P, p) = {Ax,z : x is a finitary relation on M, i.e.,

x ⊆ Mk for some k ∈ ω, z ∈ V0},

where

Ax,z = {G ∈ Gen(M, P, p) : (V0 ∪ M ∪ P(M),
∈V0 ,∈M∪P∪P(M), p,M,V0, P)

|� ψ(x, z,G)},

where ∈A= {(y, y′) ∈ A × A : y ∈ y′}.
(3) If in (2) we omit z, we call D simple over V0.

We will use a completeness system D that is simple over V0. The technique
of the following lemma comes from [2]. Actually a sketch of the elements of the
ℵ1-completeness system is also given in the end of the proof of [23, Chap. V, The-
orem 6.1] on page 236. Let P = QT. We conceive x = (x1, β̄) as one relation on
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M . x1 ⊆ T<µ × ω describes the branches of T<µ that have continuations in Tµ. We
let (y,m) ∈ x1 iff y is an elements of (the range of) the m-th such branch (in an
enumeration in V0). Now we give a first order formula ψ(x,G) that is inserted into
Ax in Eq. (3.1) and that describes (M, P)-generic conditions above p in the structure
(M, P,<P , p, x1, β̄). We let pri be the projection onto the i-th coordinate.

Lemma 3.15 ([18, Lemma 2.15]) QT is D-complete for the simple ℵ1-completeness
system D given by ψ(x,G) = ψ0(x) ∧ ψ1(x,G), with

ψ0(x) ≡ x = (x1, β̄) ∧ β̄ = 〈βn : n ∈ ω〉 increasing

∧M ∩ ω1 =
⋃

{βn : n < ω}

and

ψ1(x,G) ≡ (∀ε > 0)(∃m < ω)(∀n1 < n2 ∈ [m, ω))(∀y1, y2 ∈ pr1(x1))
(

(y1 ∈ Tβn1
∧ y2 ∈ Tβn2

∧ y1<T y2 → f
˜
[G](y2)< f

˜
[G](y1)+ ε

2n2

)

∧“G is a filter”

∧p ∈ G ∧ ∀D ∈ M((D ⊆ P ∧ D dense in P)→ D ∩ G �= ∅).
Here M, P, x and G appear in the formulas as (names for) predicates and p is a
constant.

Proof Our proof is a slight modification of the proof given in [18, Lemma 2.15]. ��
First we proof the following claim:

Claim 3.16 Let µ = M ∩ ω1 = sup〈βn : n < ω〉 and let the βn be increasing. If

(M ∪ P(M),∈M∪P(M), p,M, QT) |� ψ0(x),

then there is G ⊆ QT,G ∈ G(M, QT, p) ∩ Ax .

Proof Let {In : n ∈ ω} be an enumeration of all open dense subsets of QT that are in
M . Let {tk : k ∈ ω} enumerate Tµ: Now we choose by induction on n < ω, pn such
that

(1) p0 = p,
(2) pn+1 ≥ pn ∈ M ,
(3) last(pn+1) ≥ βn+1,
(4) pn+1 ∈ In ,
(5) (∀t ∈ {tk : k ≤ n})(∀y <T t)

(
y ∈ Tβn+1 → f pn+1(y) < f pn (y�βn)+ 1

2n+1+n

)
.

Then G = {r : (∃n ∈ ω)(r ≤ pn)} ∈ Gen(M, QT, p) ∩ Ax .
Why is this choice possible? For Properties (4) and (5) we use Lemma 3.7 for h

with

dom(h) = {tk�βn+1 : k ≤ n},
h(y) = f pn (y�βn)+ 1

2n+1+n
,

123



Finding generic filters by playing games 101

which is a finite function that bounds pn and we find some pn+1 of length βn+1. ��
Claim 3.17 If (M ∪ P(M),∈, p,M, QT) |� ψ(x,G) for some x, then G has an
upper bound in QT.

Proof Again let {In : n ∈ ω} be an enumeration of all open dense subsets of QT that
are in M . Let x be as in ψ(x,G). Let G ⊇ {qn : n ∈ ω}, qn ∈ M ∩ In, last(qn) =
βn such that the βn and the qn are increasing. We set µ = M ∩ ω1 = ⋃

βn . We
let f q � T<µ = ⋃

n∈ω f qn , and let f q � Tµ a slightly larger rational variant of⋃
f qn ∪ {(z, sup{ f qn (z�βn) : n ∈ ω}) : z ∈ Tµ}. We set Cq = ⋃

n∈ω Cqn ∪
{µ}, which is closed since for each n,Cqn+1 is an end extension of Cqn , dom(
q) =
(
⋃

n∈ω dom 
qn ∩ [µ,ω1)) ∪ {µ}, and for µ′ > µ,
q(µ′) = ⋃
n∈ω 
qn (µ′) and


q(µ) = ⋃
µ′≥µ

⋃
n∈ω 
qn (µ′)�µ.

We claim that q is an upper bound of G: First we check that q ∈ QT. Note that if
ν dominates all hβ̄,z, z ∈ Tµ, then for every z ∈ Tµ the limit f q(z) exists, because
if hz,β̄ ≤∗ ν, then for almost all n, z�βn = ωβn + hz,β̄ (n) and hz,β̄ (n) ≤ ν(n). So
we have that ( f q ,Cq) is an approximation. Now let H ∈ 
q(µ) be a T-promise. For
someµ′ ≥ µ, k ∈ ω, H ∈ 
qk (µ′)�µ. Then, since qk fulfils the promise, also q fulfils
the promise. ��

Proof of Lemma 3.15 continued:

We showed that Ax ⊆ G+(N , QT, p). So we have that QT is D-complete. It remains
to show that D is countably closed, i.e., that given x� with ψ(x�,G), � < ω, the inter-
section

⋂
�∈ω Ax� is not empty. But this is now easy: Let x� = (x�1, β̄

�). x�1, coding
the cofinal branches in T<µ, are defined from T and p and do depend on �.

There is only some little twist because the β̄� = 〈β�u : u < ω〉 are not the same. We
choose β = 〈βm : m < ω〉 such that β0 = 0, (∀� ≤ m)(∃u < ω)(β�u ∈ [βm, βm+1)).
Then we let x1 = x0

1 and x = (x1, β̄). Then Ax ⊆ Ax� , � < ω. ��
Now we can cite Theorem V.7.1 (2) of [23] for ℵ1-complete systems. A very clear

proof, even in a more general context when “almost simple over V0” is replaced by
“in V0”, is given in [1, Theorem 5.17].

Theorem 3.18 Let Pγ = 〈Pj , Q
˜ i : j ≤ γ, i < γ 〉 be a countable support iteration.

If each Qi˜
is β-proper for every β < ω1 and Di -complete for some almost simple

ℵ1-completeness system Di over V0 (not over the current stage of the iteration), then
Pγ does not add reals.

So we know that Pω2 from Definition 3.10 specialises all Aronszajn trees and does
not add reals. The remaining task is to obtain the weak diamond ♦(reaping) in VPω2 .

4 Coding by unbounded functions

Now, we will be given only (M, P,<P , p, β̄) and partial information about x1. We
want that this partial information nevertheless “codes” enough of the structure such
that from this partial information (then called η and ν, appearing in innings of a game)
(M, P)-generic filters can be computed.
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The trick is to find a real ν coding x1 (after a transitive collapse) and code in such
a way that every η �≤∗ ν codes as well. Coding means we want to redo Lemma 3.15
now with ν taking the role of x1. The parameter β̄ can stand as it is, since it depends
only on the transitive collapse of M and not on Totp(M∩ω1).

We translate the task of x1.

Definition 4.1 Let T be an Aronszajn tree with levels Tα . Let µ be a limit ordinal in
ω1. Given β̄ converging to µ, we can write cofinally many nodes of a branch b of T<µ
into a function hb,β̄ : ω→ ω, such that for all n,

b ∩ Tβn = {ωβn + hb,β̄ (n)}

and we can describe each node t = ωµ+ k ∈ Tµ, by ht,β̄ : ω → ω, such that for all
n,

t�βn = ωβn + ht,β̄ (n).

We recall that T<µ ⊆ M for µ = otp(ω1 ∩ M) and Tµ ∩ M = ∅. The point is:
for finding a generic condition, the partial specialisations given in the first component
of the approximating conditions in the generic must not diverge along any branch of
T<µ that has a continuation in Tµ. In [18], an (M, P)-generic filter and a condition
that is stronger than all filter elements were computed from a function η : ω→ ω that
dominates all the functions in M , without the knowledge of Tµ.

Now we use that η must dominate just the countably many (codes of) branches of
T that have continuations in Tµ. Later we replace the dominating function η by an
unbounded function. We let<∗

χ be a well-ordering of H(χ), and we we let e : ω×ω→
ω be a bijective recursive function.

Lemma 4.2 Let p ∈ QT ∩ M. Let µ = M ∩ω1 = sup〈βn : n < ω〉, βn+1 > βn. Let
c : ω→ M be a bijection with c(0) = QT, c(1) = p, c(2n + 2) = βn, and let

U = U (M, QT, p)

= {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2)+ 1 : c(n1) <
∗
χ c(n2)}.

We let η, ν stand for functions from ω to ω, and we let the functions ht,β̄ for t ∈ Tµ
be defined as in Definition4.1.

There is a Borel function B1 : ωω × P(ω)→ P(ω), such that if

(∀t ∈ Tµ)(ht,β̄ ≤∗ η), (4.1)

for

G = {c(n) : n ∈ B1(η,U )}

the following holds: G is (M, QT)-generic and p ∈ G and there is an upper bound r
of G.
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Remark r is an upper bound of G iff we have over V for every QT-generic filter GV

over V with r ∈ GV and name GV

˜ that

r �QT GV

˜ ∩ M = {c(n) : n ∈ B1(η,U )}.

Proof We verify that each step in the proof of Lemma 3.15 is Borel-computable from
(η,U ). Let M ≺ (H(χ),∈,<∗

χ ) be countable. Then we take an <∗
χ -increasing enu-

meration 〈In : n ∈ ω〉 of all dense subsets of QT that are in M .
Now, we compute from η and U by induction on n < ω, pn such that

(1) p0 = p, last(p) = β0
(2) pn+1 is the <∗

χ -least element of M such that
(2a) pn+1 ≥ pn ,
(2b) last(pn+1) ≥ βn+1,
(2c) pn+1 ∈ In ,
(2d) (∀t ∈ Tβn+1)

(
ht,β̄ (n + 1) ≤ η(n + 1) → f pn+1(t) < f pn (t�βn) +

1
2n+1+n

)
.

Note that this is like in Lemma 3.15 now with η instead of x1 and going along the well-
order<∗

χ instead of choosing arbitrary conditions. The existence of pn+1 is guaranteed
by Lemma 3.7 applied to the initial segment y � (βn+1 + 1) with y(βn+1) ≤ η(n + 1)
and with the following bound h:

dom(h) = {x ∈ Tβn+1 : hx,β̄ (n + 1) ≤ η(n + 1)},
h(x) = f pn (x�βn)+ 1

2n+1+n
.

If Eq. (4.1) holds, then η is sufficiently large to take care of all branches of T<µ
that lead to points x ∈ Tµ. Set B1(η,U ) = {c−1(q) ∈ N ∩ QT : (∃n)q ≤ pn}. Then
c
′′
B1(η,U ) ∈ Gen+(M, QT, p) ∩ Ax and there is an upper bound of c

′′
B1(η,U ) as

in Lemma 3.15.
So we have to guarantee only that for every x ∈ Tµ, lim f pn (x�βn) ∈ R and this

is done by Eq. (4.1) together with condition (2d). ��
Now we show an important technical fact: If ν fulfils Eq. (4.1) in the place of η,

then also every η �≤∗ ν codes so much information that an (M, P)-generic filter can
be computed from η. Note that this replacing “dominating” by “being unbounded”
uses the knowledge that there are only countably many branches that are continued on
the next level of the Aronszajn tree. Since Tµ has only countably many nodes t , there
is ν dominating all the ht,β̄ , t ∈ Tµ.

Lemma 4.3 Let p ∈ QT∩M. Letµ = otp(M∩ω1), 〈βn : n < ω〉 be strictly increas-
ing and cofinal in M ∩ ω1. Let c : ω → M be a bijection with c(0) = QT, c(1) =
p, c(2n + 2) = βn, and let

U = U (M, QT, p)

= {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2)+ 1 : c(n1) <
∗
χ c(n2)}.
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We let η, ν stand for functions from ω to ω and we let the functions hy,β̄ be defined as
in Definition4.1.

There is a Borel function B1 : ωω × P(ω)→ P(ω), such that if

(∀t ∈ Tµ)(ht,β̄ ≤∗ ν), (4.2)

and

η �≤∗ ν (4.3)

then for

G = {c(n) : n ∈ B1(η,U )}

the following holds: G is (M, QT)-generic and p ∈ G and there is an upper bound r
of G.

Proof The idea is: on each level Tβn there is all information about all earlier levels. If
η sticks out infinitely often over the breadth of Tβn in the sense of Eq. (4.2), then we
can redo the inductive construction of the second part of the proof of Lemma 4.2.

Again we verify that G is Borel-computable from (η,U ). This time there will be
some vain trials and some bootstrapping through all the sequences. By Lemma 4.2 we
know that the given function ν is large enough for computing a generic. Now η �≤∗ ν
can be used as an input for a modified computation. The reasoning is as follows: We
always can assume that the hx,β̄ coding x ∈ Tµ are increasing. Assume η �≤∗ ν and

both in ω↑ω. Then let {bn : n ∈ ω} enumerate the arguments so that η(bn) > ν(bn).
Then η′ with η′(k) = η(next(k, {bn : n ∈ ω})) eventually dominates ν. We use this
fact to strengthen a guess of hx,β̄ as in (2d) retroactively.

Let M ≺ (H(χ),∈,<∗
χ ) be countable. Then we take an enumeration 〈In : n ∈ ω〉

of all dense subsets of QT that are in M , ordered according to <∗
χ .

Now, we compute from η �≤∗ ν and U by induction on n < ω, pn such that

(1) p0 = p, last(p) = β0
(2) pn+1 is the <∗

χ -least element of M such that
(2a) pn+1 ≥ pn ,
(2b) last(pn+1) ≥ βn+1,
(2c) pn+1 ∈ In ,

(2d’) (∀x ∈ Tβn+1)(hx,β̄ (n + 1) ≤ η(n + 1) → (∀i ≤ n + 1)( f pi+1(x) <

f pi (x�βi )+ 1
2i+1+i )).

If we read (2d’) only for i = n then we are back to the former lemma, and the exis-
tence of pn+1 follows from Lemma 3.7 for the initial segment y � (βn+1 + 1) with
y(βn+1) ≤ η(n + 1) and with the following bound h:

dom(h) = {x ∈ Tβn+1 : hx,β̄ (n + 1) ≤ η(n + 1)},
h(x) = f pn (x�βn)+ 1

2n+1+n
.
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However, now the choice of pn+1 might fail in the other requirements in item (2d’).
Then we revise pn and search for (pn, pn+1) simultaneously. If this fails, then revise
(pn−1, pn, pn+1), and so on. If η �≤∗ ν with witness {bn : n ∈ ω}, and ν ≥∗ hx,β̄ for
all x ∈ Tµ, then by Lemma 4.2 we know that there is some sequence (pn : n ∈ ω) as
desired: Namely a sequence chosen in a recursion with η′ = (k  → (η(next(k, {bn :
n ∈ ω})))) in (2d’) instead of η.

If Equations (4.2) and (4.3) hold, then η is sufficiently large to take care of all
branches of T<µ that lead to points x ∈ Tµ. Each pi needs to be revised only finitely
many times: pn is revised at most bn times. Set B1(η,U ) = {c−1(q) ∈ M ∩ QT :
(∃n)q ≤ pn}. Then c

′′
B1(η,U ) ∈ Gen+(M, QT, p)∩Ax , and there is an upper bound

of c
′′
B1(η,U ), namely just the union of the pn . ��

We take the lemma for the iteration step and we define a modified game for which we
have a modification of [18, Theorem 3.4]. The following theorem works for arbitrary
iteration length.

Theorem 4.4 Let Pω2 = 〈Pα, Q
˜ β

: α ≤ ω2, β < ω2〉 be a countable support itera-
tion of iterands of the form QT. Suppose that χ is sufficiently large and regular, that
M ≺ (H(χ),∈,<∗

χ ) is a countable elementary model, and that

(a) Pγ ∈ M,
(b) p ∈ Pγ ∩ M, γ ≤ ω2,
(c) α = otp(M ∩ γ ).
Let β̄ be cofinal in M ∩ ω1. Let c : ω → M be a bijection with c(0) = Pγ , c(1) =
p, c(2n + 2) = βn, and let

U (M, Pγ , p) = {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2)+ 1 : c(n1) <
∗
χ c(n2)}.

Then there is a Borel function B = Bα : (ωω)α × P(ω) → P(ω), such that in the
following game �(M,Pγ ,p) the generic player has a winning strategy σ , which depends
only on the isomorphism type of (M,∈,<∗

χ , Pγ , p, β̄):

(α) a play lasts α moves,
(β) in the ε-th move the generic player chooses some real νε and the anti-generic

player chooses some ηε �≤∗ νε, ηε ∈ ωω,
(γ ) in the end the generic player wins iff the following is true:

Gγ = 7{c(n) : n ∈Bα(〈ηε : ε < α〉,U (M, Pγ , p))} is (M, Pγ )− generic and

p ∈ Gγ and

(∃q ∈ Pγ )(p ≤ q and q bounds Gγ ).

Proof The proof of how to perform the iteration is literally the proof of [18, Theorem
3.4]. However, for the single iterands we now we use the new Lemma 4.3. For complete-
ness’ sake, we repeat the proof of how to organise the iteration. We follow Abraham’s
exposition in [1, Theorem 5.17]. This theorem works inductively: For Qα in VPα to
be D–complete with respect to a system that lies in V we need that Pα does not add
new countable sets of ordinals. So every countable transitive set in VPα is in V.
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To prove the theorem we shall first define for every countable M ≺ (H(χ),∈,<∗
χ )

with Pγ ∈ M, p ∈ Pγ ∩ M , with α = otp(M ∩ γ ), an (M, Pγ )-generic filter Gγ =
c
′′
Bα(〈ηi : i < α〉,U ); and then we shall prove that Gγ is bounded in Pγ by a

completely (M, Pγ )-generic condition. The bounding condition is not computed in a
Borel manner. Its existence is sufficient, and its existence is proved along the iteration.

��
Remark The bounding condition also appears in an argument about the truth in forcing
extensions at the very end of Lemma 5.2.

The definition of Gγ is by induction and we shall define for every γ0 < γ and
Gγ0 that is (M, Pγ0)-generic and every p ∈ Pγ ∩ M with p � γ0 ∈ G0 a filter
Gγ that extends Gγ0 and contains p. Once the induction is performed, we shall set
γ0 = 0,G0 = {0P0}. There will be two main cases in this definition: γ successor and
γ limit, and likewise there will be two cases in the proofs that Gγ is bounded. We start
with the preparations for the successor case. When looking at complexity, we regard
G0 as a parameter.

Two step iteration
Let P be a poset and let Q

˜
∈ VP be a name forced by 0P to be a poset. Let χ be

sufficiently large and regular (as said, χ = (2ℵ2)+ is always sufficiently large) and
M0 ≺ (H(χ),∈,<∗

χ ) be a countable elementary submodel such that P, Q
˜

∈ M0.
Henceforth we write just H(χ) instead of (H(χ),∈,<∗

χ ). We want to find a crite-
rion for when a condition (q0, q1) ∈ P ∗ Q

˜
is completely (M0, P ∗ Q

˜
)-generic. Let

π : M0 → N0 be a transitive collapsing map. Suppose that q0 ∈ P is completely
generic over (M0, P) and let G0 ⊆ P ∩ M0 be the (M0, P)-generic filter induced by
q0. Then G0 = π ′′G0 is an (N0, π(P))-generic filter and we can form the transitive
extension N∗

0 = N0[G0]. π(Q˜
) is a name in N0, and its interpretation Q∗

0 = π(Q
˜
)[G0]

is a poset in N∗
0 .

Let G˜ ∈ VP be the canonical name of the P-generic filter over V. If F is a (V, P)
generic filter containing q0 then M0[F] ≺ H(χ)[F] can be formed and the collapsing
map π on M0 can be extended to collapse M0[F] onto N∗

0 . Let π˜ be the name of
the extended collapse. Then q0 �P π˜ : M0[G˜ ] → N∗

0 . We phrase now the desired
criterion and we shall use the direction from right to left later.

Lemma 4.5 Using the above notation, (q0, q1) is completely generic over (M0, P ∗
Q
˜
), iff

(1) q0 is completely (M0, P)-generic, and
(2) for some G1 ⊆ Q∗

0 that is (N∗
0 , Q∗

0)-generic q0 � “π˜
−1′′G1is bounded by q1”.

In this case the filter induced by (q0, q1) over M0 ∩ P ∗ Q
˜

is π−1′′G0 ∗ G1.

Given a countable M0 ≺ H(χ) such that the two step iteration P ∗ Q
˜

is in M0, our
aim is to extent each (M0, P)-generic filter G0 to an (M0, P ∗ Q

˜
)-generic filter. This

definition depends not only on M0 but also on another countable elementary submodel
M1 ≺ H(χ) such that M0 ∈ M1 and G0 ∈ M1. In addition we fix a p0 ∈ P ∗ Q

˜
which

we want to include in the extended filter. All of this leads us to a five place function
E(M0,M1, P ∗ Q

˜
,G0, p0) that we define now.
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Definition 4.6 Let P be a poset that adds no new countable sets of ordinals and
suppose that Q

˜
,D˜ ∈ VP are such that

�P D˜ ∈ Vis an ℵ1-completeness system and

Q
˜

is D-complete with respect to D˜ .

Let χ be sufficiently large and M0 ≺ M1 ≺ (H(χ),∈,<∗
χ ) be countable elementary

submodels with M0 ∈ M1 and P, Q
˜
,D˜ ∈ M0. Let G0 ⊆ M0 ∩ P be (M0, P)-generic

and suppose that G0 ∈ M1. Let p0 ∈ P ∗ Q
˜
∩ M0 be given p0 = (a, b˜ ) with a ∈ G0.

Then we define

G = E(M0,M1, P ∗ Q
˜
,G0, p0),

an (M0, P ∗ Q
˜
)-generic filter containing p0 (dominating G0) by the following proce-

dure:
Let π : M1 → N1 with π(M0) = N0 be the transitive collapse and G0 = π ′′G0.

Form N∗
0 = N0[G0]. Observe that N∗

0 ∈ N1. Let Q∗
0 = π(Q

˜
)[G0], and let D0 =

π(D˜ )[G0]. Then D0 ∈ N0, because it is forced to be in the ground model. So D0 =
π(D)where D ∈ M0 is a countably closed completeness system. Thus D0(N∗

0 , Q∗
0, b∗)

is defined in N1, where b∗ = π(b˜ )[G0] is a condition in Q∗
0. Since N1∩D0(N∗

0 , Q∗
0, b∗)

is countable,

there is some G1 ∈
⋂
(N1 ∩ D0(N

∗
0 , Q∗

0, b∗)). (4.4)

G1 is (N∗
0 , Q∗

0)-generic and b∗ ∈ G1. Form G0 ∗ G1 = G, an (N0, π(P ∗ Q
˜
))-generic

filter. Then π(p0) ∈ G. Finally we define

G = E(M0,M1, P ∗ Q
˜
,G0, p0) = π−1′′G. (4.5)

Now observe that if for some ν with Eq. (4.2) for (N∗
0 , Q∗

0, b∗) instead of
(M, QT, p), the real η fulfils Eq. (4.3), then the existence of Eq. (4.4) is given by

π−1′′G1 = c
′′
B1(η,U (M0[G0], Q0˜

[G0], b˜ [G0]))

and hence is Borel computable from η and the code U of the intermediate model
(N∗

0 , Q∗
0, b∗).

In fact, we want to define a formula ψ so that

H(χ) |� ψ(M0,M1, P ∗ Q
˜
,G0, p0)

iff Eq. (4.5) holds. That is, we want to define E in H(χ). We cannot take the above
definition verbally, because it relies on the assumption that M0 and M1 are elementary
substructures of H(χ), something which is not expressible in H(χ). Whenever the
definition above relies on some fact that happens not to hold we let G have an arbitrary
value. For example if N∗

0 is not in N1 or if N1 ∩D0(N∗
0 , Q∗

0, b∗) is empty, then we let
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G be some arbitrary fixed N0-generic filter. The Borel computation does not invoke
N1, since π−1′′G1 = c

′′
B1(η,U (M0[G0], Q0˜

[G0], b˜ [G0])). Here, G0 is a parameter
and will be set {0P0} later, so that in the end (that means in Lemma 3.11) only the
possible isomorphism types of (M0,∈� M0,<

∗
χ � M0, Pγ , p, β̄) need to be guessed

stationarily often alongside with names for the F and f from the statement of the
weak diamond.

The following lemma shows the second part of the argument: We want to show the
G given in Eq. (4.5) is bounded. The lemma analyses the iteration of two posets when
the second is D-complete.

Lemma 4.7 The One Step Extension Lemma. Let P be poset and suppose that Q
˜
,D˜ ∈

VP are such that

�P D˜ ∈ Vis an ℵ1-completeness system and

Q
˜

is D-complete with respect to D˜ .

Let χ be sufficiently large and M0 ≺ M1 ≺ Hχ be countable elementary submodels
with M0 ∈ M1 and P, Q

˜
,D˜ ∈ M0. Suppose that q0 ∈ P is (M1, P)-generic as well

as completely (M0, P)-generic, and let G0 ⊆ M0 ∩ P be the M0 filter over M0 ∩ P
induced by q0. Let p0 ∈ P ∗ Q

˜
, p0 ∈ M0 be given, so that p0 = (a, b˜ ) and a ∈ G0.

Then there is q1 ∈ VP such that (q0, q1) is completely generic over (M0, P ∗ Q
˜
)

and p0 ≤ (q0, q1), in fact (q0, q1) bounds G = E(M0,M1, P ∗ Q
˜
,G0, p0) = G0 ∗

c
′′
B1(η,U (N∗

0 , Q∗
0, π(b˜ ))).

Proof This is literally [1, The Gambit Lemma]. For completeness’ sake we repeat
Abraham’s proof here. Notice that G0 ∈ M1 by the following argument: Let R be the
collection of all conditions r ∈ P that are completely generic over M0. Then R ∈ M1
and q0 ∈ R ∩ M1. Since q0 is (M1, P)-generic, it follows that it is compatible with
some r ∈ R ∩ M1. But any two compatible conditions in R induce the same filter, and
hence G0 is the filter induced by r .

Let π : M1 → N1, π(M0) = N0, be the transitive collapse and G0 = π ′′G0. We
recall the definition of E(M0,M1, P ∗ Q

˜
,G0, p0). Form N∗

0 = N0[G0] and let Q∗
0 =

π(Q
˜
)[G0], and let D0 = π(D˜ )[G0]. Then D0 ∈ N0 because it is forced to be in the

ground model. So D0 = π(D)where D ∈ M0 is a countably closed completeness sys-
tem. Thus D0(N∗

0 , Q∗
0, b∗) is defined in N1, where b∗ = π(b˜ )[G0] is a condition in Q∗

0.
Since N1∩D0(N∗

0 , Q∗
0, b∗) is countable, there is some G1 ∈ ⋂

(N1∩D0(N∗
0 , Q∗

0, b∗)).
G1 is (N∗

0 , Q∗
0)-generic and b∗ ∈ G1. Form G0 ∗ G1 = G, an (N0, π(P ∗ Q

˜
))-generic

filter. Then π(p0) ∈ G. We defined G = E(M0,M1, P ∗ Q
˜
,G0, p0) as π−1′′G.

Let G˜ ∈ VP be the canonical name of the generic filter over P . Then q0 forces that
π can be extended to a collapse π˜ which is onto N∗

0 , that is

q0 �P π˜ : M0[G˜ ] → N∗
0 .

The conclusion of our lemma follows if we show that

q0 �P π˜
−1′′G1is bounded inQ

˜
. (4.6)
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In this case, if we define q1 ∈ VP so that q0 �P q1 boundsπ˜
−1′′G1, then the

previous lemma implies that the (M0, P ∗ Q
˜
)-generic filter induced by (q0, q1) is

π−1′′G0 ∗ G1.
So let F be (V, P)-generic with q0 ∈ F . π˜ [F] collapses M0[F] onto N∗

0 and there
is a set X ∈ D0(N∗

0 , Q∗
0, b∗), so that if H ∈ X is any filter then π−1′′H is bounded in

Q
˜
[F]. As N1[F] ≺ Hχ [F], we can have X ∈ N1[F]. But since D0 is in the ground

model, X ∈ N1. Thus G1 ∈ X , where G1 is the filter defined above. This proves
Eq. (4.6). ��

The iteration theorem
Let Pγ be a countable support iteration of length γ obtained by choosing iter-

ands Qα ∈ VPα as in the theorem. That is, each Qα is D-complete in VPα for some
ℵ1-completeness system taken from V. Let χ be a sufficiently large regular cardi-
nal. To prove the theorem we first describe a machinery for obtaining generic filters
over countable submodels of H(χ). We define a function E that takes five arguments,
E(M0, M̄ � [1, α), Pγ ,G0, p0) of the following types.

(1) M0 ≺ Hχ is countable, Pγ ∈ M0, so γ ∈ M0. Moreover, p0 ∈ M0 ∩ Pγ .
(2) For some γ0 ∈ M0 ∩ γ,G0 is an (M0, Pγ0)-generic filter and such that p0 � γ0 ∈

G0. We assume that G0 ∈ M1.
(3) The order type of M0 ∩ [γ0, γ ) is α.
(4) M̄ = 〈Mξ : 0 ≤ ξ ≤ α〉 is an α + 1-tower of countable elementary submodels

of H(χ) and M0 = M . Note that only M0 = M appears in the statement of the
theorem. The rest 〈Mξ : 1 ≤ ξ ≤ α〉 of the tower is a technical means for the
proof.

The value returned, Gγ = E(M0, M̄ � [1, α), Pγ ,G0, p0) is an (M0, Pγ )-generic
filter that extends G0 and contains p0. Formally, in saying that Gγ extends G0, we
mean that the restriction projection takes Gγ onto G0. The definition of E(M0, M̄ �
[1, α), Pγ ,G0, p0) is by induction on α < ω1.

Assume that α = α′ +1 is a successor ordinal. Then γ = γ ′ +1 is also a successor.
Assume first that γ0 = γ ′. Then α = 1 and we have only two structures: M0 and
M1. Since Pγ is isomorphic to Pγ0 ∗ Qγ0 we can define Gγ by Eq. (4.5). So, if for
some ν with Eq. (4.2) η fulfils Eq. (4.3) for (M0[G0], Q0˜

[G0], b˜ [G0]) in the role of
of (M, QT, p), then

Gγ =E(M0,M1, Pγ0 ∗ Qγ0 ,G0, p0)=G0 ∗ c
′′
B1(η0,U (M0[G0], Q0˜

[G0], b˜ [G0])).

Assume next that γ0 < γ ′. Then by induction hypothesis, if all ηi , i < α′, are
sufficiently large, then

Gγ ′ = E(M0, 〈Mξ : 1 ≤ ξ ≤ α′〉, Pγ ′ ,G0, p0 � γ ′)
= G0 ∗ c

′′
Bα′(〈ηi : 0 ≤ i < α′〉,U (M0[G0], P[γ0,γ ′)˜

[G0],
p0 � [γ0, γ

′)
˜

[G0)]) (4.7)

is defined and is an (M0, Pγ ′)-generic filter that extends G0 and contains p0 � γ ′.
Moreover by elementarity, Gγ ′ ∈ Mα . When we finish this definition it will be
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evident that it continues for every α < ω1 since Mα ≺ H(χ) and the parameters
are all in Mα . This brings us to the previous case and we choose ηα′ such that it fulfils
Eq. (4.3) for some ν with (4.2) in which (M, QT, p) is replaced by

(M0[Gγ ′ ], Qγ

˜
[Gγ ′ ], p0(γ

′)
˜

[Gγ ′ ]).

Now from Eq. (4.7) we define temporarily

U ′ = U (M0[G0], P[γ0,γ ′)
˜

[G0], p0 � [γ0, γ
′)

˜
[G0)]). (4.8)

Then

Gγ = E(M0,Mα, Pγ ′ ∗ Qγ ′ ,Gγ ′ , p0)

= G0 ∗ c
′′
B1(ηα′ ,U (M0[G0 ∗ c

′′
Bα′(〈ηi : i < α′〉,U ′)],

Qγ

˜
[G0 ∗ c

′′
Bα′(〈ηi : i < α′〉,U ′)],

p0(γ
′)

˜
[G0 ∗ c

′′
Bα′(〈ηi : i < α′〉,U ′)]))

=: G0 ∗ c
′′
Bα(〈ηi : i < α〉,U (M0[G0], P[γ0,γ )

˜
[G0], p0

˜
[G0])) (4.9)

and the middle U ′ is defined above in Eq. (4.8). This justifies that the Borel functions
given by induction hypothesis can be composed to one Borel function of the required
arguments.

Now it is also clear how to define the strategy σ(〈νi , ηi : i < α′〉): The
generic player plays να′ so that it fulfils Eq. (4.2), where (M, QT, p) is replaced by
(M0[Gγ ′ ], Qγ

˜
[Gγ ′ ], p0(γ

′)
˜

[Gγ ′ ]) with Gγ ′ as in Eq. (4.7).
Now assume that α is a limit ordinal and let 〈αn : n ∈ ω〉 be an increasing cofinal

sequence with α0 = 0. Let γn ∈ M0 be such that αn = otp(M0 ∩ [γ0, γn)). Let
〈In : n ∈ ω〉 be an enumeration of all dense subsets of Pγ that are in M0 in such a
way that In is the <∗

χ -least dense subset of Pγ that is not among {Im : m < n}.
We define

Gγ = E(M0, M̄ � [1, α), Pγ ,G0, p0)

= G0 ∗ c
′′
Bα(〈ηi : i < α〉,U (M0[G0], P[γ0,γ )

˜
[G0], p0 � [γ0, γ )

˜
[G0]))

as follows. We define by induction on n ∈ ω a condition pn ∈ Pγ ∩ M0 and an
(M0, Pγn )-generic filter Gn ∈ Mαn+1 such that

(1) G0 and p0 are given. pn � γn ∈ Gn .
(2) pn ≤ pn+1 and pn+1 ∈ In .

Suppose that Gn and pn are defined. First we can find pn+1 ∈ In ∩ M0 such that
pn+1 � γn ∈ Gn (for an existence proof see [1, Lemma 1.2]) and we take the<∗

χ -least
in M0 so that it is Borel computed. Now define

Gn+1 = E(M0, 〈Mξ : αn + 1 ≤ ξ ≤ αn+1〉, Pγn+1 ,Gn, pn+1 � γn+1)

= G0 ∗ c
′′
Bαn+1−αn (〈ηi : i ∈ [αn, αn+1)〉,U∗)
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Here we have

U∗ = U (M0[G0 ∗ c
′′
Bαn (〈ηi : i < αn〉,U ′′)],

P[γn ,γn+1)

˜
[G0 ∗ c

′′
Bαn (〈ηi : i < αn〉,U ′′)],

pn+1 � [γn, γn+1)
˜

[G0 ∗ c
′′
Bαn (〈ηi : i < αn〉,U ′′)]) and

U ′′ = U (M0[G0], P[γ0,γn)

˜
[G0], pn+1 � [γ0, γn)

˜
[G0]).

Finally let

Gγ = the generic filter generated in M0 by {pn : n ∈ ω}.

From the above induction on n < ω and from the induction hypothesis it is clear that
there is a Borel function Bα such that

Gγ = G0 ∗ c
′′
Bα(〈ηi : i < α〉,U (M0[G0], P[γ0,γ )

˜
[G0], p0 � [γ0, γ )

˜
[G0])).(4.10)

This ends the definition of E(M0, M̄ � [1, α), Pγ ,G0, p0) and of Bα .
The strategy σ for the generic player is defined by the prescription, that in the limit

game of length α he plays according to the strategies for the initial segments of the
game. (This justifies that σα is just named σ , for all lengths α.) This is a winning
strategy, as the Borel function was just derived. It gives a generic filter. We still have
to show that the given generic filter is bounded.

Now the missing part is to show that “all the generic filters are bounded” is pre-
served in the limit steps of the iteration. Again there is nothing new to our work and
we repeat Abraham’s proof to [1, The Extension Lemma].

Lemma 4.8 Let 〈Pα, Q
˜ β

: β < γ, α ≤ γ 〉 be a countable support iteration of
forcing posets such that each iterand Qα satisfies the following in VPα :

(1) Qα is δ-proper for every countable δ.
(2) Qα is D-complete with respect to some countably closed completeness system in

the ground model that has the property that all η ≥∗ ν serve as parameters.

Suppose that M0 ≺ H(χ ) is countable, Pγ ∈ M0 and p0 ∈ Pγ ∩ M0. For any
γ0 ∈ γ ∩ M0 with α = otp(M0 ∩ [γ0, γ )) and M̄ = 〈Mξ : ξ ≤ α〉 is a tower
of countable elementary substructures starting with the given M0, then the following
holds:

For every q0 ∈ Pγ0 that is completely (M0, Pγ0)-generic as well as (M̄, Pγ0)-
generic, if p0 � γ0 < q0, then there is some q ∈ Pγ such that q0 = q � γ0 and
p0 < q and q is completely (M0, Pγ )-generic. In fact, the filter induced by q is
E(M0, 〈Mξ : 1 ≤ ξ ≤ α〉, Pγ ,G0, p0) where G0 ⊆ Pγ0 ∩ M0 is the filter induced
by q0.

Proof Let G0 ⊆ Pγ0 ∩ M0 be the M0-generic filter induced by q0. Observe that
G0 ∈ M1 follows from the assumption that q0 is also M1-generic. We shall prove
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by induction on α = otp(M0 ∩ [γ0, γ )) that q can be found that bounds Gγ =
E(M0, 〈Mξ : 1 ≤ ξ ≤ α〉, Pγ ,G0, p0).

Suppose first that α = α′ + 1 and consequently γ = γ ′ + 1 are successor ordinals.
Define in Mα , X ⊆ Pγ0 as maximal antichain of conditions r so that

(1) r bounds G0,
(2) r in 〈Mξ : 1 ≤ ξ ≤ α′〉-generic.

Then X ∈ Mα is predense above q0. By our inductive assumption, every r0 ∈ X has
a prolongation r1 ∈ Pγ ′ that bounds Gγ ′ = E(M0, 〈Mξ : 1 ≤ ξ ≤ α′〉,G0, p0 � γ ′).
Since all the parameters are in Mα , we get that Gγ ′ ∈ Mα . Since Mα ≺ H(χ) we can
choose r1 ∈ Mα whenever r0 ∈ X ∩ Mα . This defines a name r˜ 1 ∈ VPγ0 , forced by q0
to be in Mα∩Pγ ′ . Namely, if G is any (V, Pγ0)-generic filter containing q0, then X∩G
contain a unique condition r0, and we let r˜ 1[G] = r1. By the Properness Extension
Lemma [1, Lemma 2.8] we can find q1 ∈ Pγ ′ , q1 � γ0 = q0, q1 is (Mα, Pγ ′)-generic,
and q1 �Pγ ′ “r˜ 1 is in the generic filter Gγ ′

˜
”. It follows that q1 bounds Gγ ′ . We find

q2 ∈ Pγ , such that q2 � γ ′ = q1 and q2 bounds Gγ . In order to define q2(γ ) we use
the Two Step Lemma and Eq. (4.6).

Now assume that α is a limit ordinal. We follow the definition of Gγ see Eq. (4.10).
Recall that we had an ω-sequence 〈αn : n ∈ ω〉 cofinal in α and we defined γn cofinal
in γ as the resulting sequence αn = otp(M0 ∩ [γ0, γn)). We defined by induction
pn ∈ Pγ ∩ M0 and filters Gn ⊆ Pγn ,Gn ∈ Mαn+1 and defined Gγ as the filter gener-
ated by the pn’s. We shall define now qn ∈ Pγn by induction on n so that the following
hold

(1) qn bounds Gn ,
(2) pn � γn ≤ qn ,
(3) qn = qn+1 � γn ,
(4) qn is 〈Mξ : αn + 1 ≤ ξ ≤ α〉-generic over Pγn .

Thus qn gains in length and looses in status as an Mξ -generic condition for 0 < ξ ≤ αn .
But qn is completely (M0, Pγn )-generic for all n. Finally q = ⋃

qn is not Mξ -generic
for any ξ > 0. However, q is completely (M0, Pγ )-generic.

Suppose that qn is defined. Let X be in Mαn+1+1 be a maximal antichain in Pγn

of conditions r that induce Gn and are 〈Mξ : αn + 1 ≤ ξ ≤ αn+1〉-generic over
Pγn . Observer that X is predense above qn . For each r0 ∈ X , define by the induction
assumption r1 ∈ Pγn+1 such that r1 bounds Gn+1, pn+1 � γn+1 < r1 and r1 � γn = r0.
If r0 ∈ X ∩ Mαn+1+1, then r1 is taken from Mαn+1+1. Now view {r1 : r0 ∈ X} as a
name r˜ for a condition forced by qn to lie in Mαn+1+1. By the α-Extension Lemma [1,
Lemma 5.6], define qn+1 that satisfies items 2 to 4 from the above list and such that
qn+1 �Pγn+1

r˜ ∈ Gn+1˜
. Then qn+1 bounds Gn+1 and is a required. ��

End of proof of Theorem 4.4: Now that the induction is performed,we set γ0 =
0,G0 = {0P0}, p0 = p ∈ Pγ from the statement of Theorem 4.4. Then N∗

0 = N0 =
π(M0), π(P[γ0,γ )˜

)[G0] = π(Pγ ) and π(p0)[γ0,γ )˜
)[G0] = π(p) and the Bα’s second

argument is just the isomorphism type of (M0,∈,<∗
χ , Pγ , p, β̄) ��.
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5 Working with miller reals

In this section we show that the antigeneric player in the game �(M, Pγ , p) can influ-
ence the outcome of another game. This second game aims at providing a function g
witnessing ♦(reaping). In the end g(δ) will be CB′ from the next lemma for a suitably
chosen Borel function B′.

In [18, Lemma 2.11] we worked with the Laver property and coverings by small
slaloms. Now we work with Miller reals for analysing the second game. We recall
Miller forcing: The conditions are of the form p = (t, T ) with t ∈ ω<ω (called the
trunk of p, tr(p)) and T ⊆ ω<ω being a superperfect tree, i.e., a non-empty subset T
of ω<ω that is closed under initial segments and that contains for every s ∈ T a t ∈ T
such that t � |s| = s whose set of immediate successors

succ(t, p) := {n ∈ ω : tˆ〈n〉 ∈ T }

is infinite. The latter is called “t is infinitely splitting”.

Lemma 5.1 Suppose that

(α) γ < ω1, and
(β) B′ is a Borel function from (ωω)γ to 2ω.

Then we can find some C = CB′ ∈ [ω]ω such that in the following game �(γ,B′)
between two players, IN and OUT, the player IN has a winning strategy, the play lasts
γ moves and in the ε-th move OUT chooses νε ∈ ωω and then IN chooses ηε �≤∗ νε.
In the end IN wins iff B′(〈ηε : ε < γ 〉) is almost constant on C.

Proof Assume that P∗
γ = 〈P∗

ξ , Q
˜
∗
ζ : ξ ≤ γ, ζ < γ 〉 is a c.s. iteration of Miller

forcing and assume that p ∈ P∗
γ and 〈ρ

˜ ξ
: ξ < γ 〉 is a sequence of names for the

P∗
ξ -generics. By CH, there is a P-point U in the ground model and by [5], Miller

forcing preserves P-points. Moreover, the P-point preservation property is preserved
in countable support iterations [4, Sect.4] or [3]. Hence we have

�P∗
γ

B′(〈ρε˜
: ε < γ 〉) is almost constant on a set in U.

Given M∗ ≺ H(χ) such that B′ ∈ M∗ and a P-point U ∈ M∗ with pseudo-intersec-
tion CB′ ⊆∗ x for x ∈ U ∩ M∗,

�P∗
γ

B′(〈ρε˜
: ε < γ 〉) is almost constant on CB′ .

Now we show that player IN can play for CB′ in a way that he imitates the Miller-
generic reals over the countable elementary submodel M∗, so that actually everything
is in the ground model.

Let M∗ ≺ (H(χ),∈) be countable such B′, P∗
γ , p∗ ∈ M∗. (So M∗ is not the M

from the next proof, but rather contains a non-trivial part of the power-set of that latter
M .) Now we prove by induction on j ≤ γ for all i < j
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⊗i, j Assume that P∗
j ∈ M∗ and Gi ⊆ P∗

i ∩ M∗ generic over M∗, and p∗ is so
that p∗ ∈ P∗

j ∩ M∗ and p∗ � i ∈ Gi . Then in the following game �
∗
(i, j,Gi ,p∗)

player II has a winning strategy σ(i, j,Gi ,p∗). There are j − i moves indexed by
ε ∈ [i, j), and in the ε-th move (pε, νε, ηε) are chosen such that player I chooses
pε ∈ Pε/Gi , pε ≥ p∗ � ε, and νε ∈ ωω and player II chooses ηε �≤∗ νε.
First case: there is a (P∗

ε ,M∗)-generic Gε ⊆ P∗
ε ∩ M∗, such that p∗(ε) ∈ Gε

and Gε ⊃ Gi and (∀ξ ∈ [i, ε)ρξ
˜
[Gε] = ηξ and M∗[Gε ∩ P∗

ξ ] |� pξ ≥ p∗(ξ).
In this case player I chooses pε ∈ Gε forcing this and so that M∗[Gε] |�
p∗(ε) ≤P∗

ε
pε. Then player I chooses νε dominating M∗[Gε] and the second

player chooses ηε �≤∗ νε.
Second case: There is no such Gε. Then player I won the play.

We prove by induction on j that player II wins the game �
∗
(i, j,Gi ,p∗): Case 1: j = 0.

Nothing to do. Case 2: j = j∗ + 1. For ε ∈ [i, j) we use the strategy for �
∗
(i, j,Gi ,p∗),

and for ε = j we make the following move: just say that we should find a generic G j∗

of Q∗M∗[G j∗ ]
j∗ to which p∗( j∗) belongs and such that ρ

˜ j∗ [G j∗ ] �≤∗ ν j∗ .

First take q ≥ p∗( j∗) such that q is (M∗[G j∗ ], Q∗M∗[G j∗ ]
j∗ )-generic. q∈V is a Miller

condition. Now we take a stronger condition q ′ by letting tr(q)= tr(q ′) and for every
splitting node s ∈ q ′ of length n, succ(q ′, s)={k ∈ succ(q, s) : k ≥ ν j∗(n)}. Now let

G j∗ = {r ∈ M∗[G j∗ ] : q ′ ≥ r}.

Since q ′ is a (M∗[G j∗ ], Q∗M∗[G j∗ ]
j∗ )-generic condition, G j∗ is a (M∗[G j∗ ], Q∗M∗[G j∗ ]

j∗ )-

generic filter. The generic real is ρ
˜ j∗ [G j∗ ] = ⋃{s : (s, T ) ∈ G j∗}. Then

q ′ � ρ
˜ j∗ �≤∗ ν j∗ .

Now player II takes η j∗ = ρ
˜ j∗ [G j∗ ]. We set G j = G j∗ ∗ G j∗ . Case 3: j is a limit.

From the proof of the preservation of properness (see, e.g., [23, Chap. II, Theorem 3.2,
Chap. II., Section 3.3, or Chap. XII, Theorem 1.8]) we get that existence of pε, so
player I can never win the game on the ground of the second case.

The winning condition for player II is preserved in the limit steps, since it is a
requirement on all formerly chosen ηε.

Now we show that ⊗i, j suffices. We use i = 0, j = γ,B′ ∈ M∗. Take
P∗
γ ∈ M∗, p∗ ∈ P∗

γ ∩ M∗. Let σ(0, γ, {∅}, p∗) be a winning strategy for player
II in the game �

∗
(0,γ,{∅},p∗). During the play of �(γ,B′) let νε be chosen in stage ε < γ .

The player IN simulates on the side a play of �
∗
(0,γ,{∅},p∗): As a move of I he assumes

the νε chosen by OUT in the play of �(γ,B′) and pε, pε � δ = pδ for δ < ε, the pδ
gotten from earlier simulations. Then player IN uses σ(0, γ, {∅}, p∗) for player II,
applied to (pε, νε), to compute an ηε, which he presents in this move in �(γ,B′). So
pε forces that there is a Miller generic ρε˜

[Gε] =: ηε over M∗[Gε] and that ηε �≤∗ νε.
The requirement ηε �≤∗ νε is fulfilled.

Suppose that a run of the game has been played. Let CB′ be a pseudo-intersec-
tion of U ∩ M∗ for an ultrafilter U ∈ M∗. So we have 〈νε, ηε : ε < γ 〉 and
there is p = ⋃

ε<γ pε ≥ p∗, and for ε < γ there is the name for the Q∗
ε -generic

real, namely ρε˜
∈ M∗, such that for all ε < γ, p �P∗

γ
ρε˜

= η̌ε. So as p �P∗
γ

123



Finding generic filters by playing games 115

“B′(〈ρ
˜ ε

: ε < γ 〉)is almost constant on CB′”, we have

B′(〈ηε : ε < γ 〉)is almost constant on CB′ . ��

The following final lemma is analogous to [18, Lemma 3.11], just for another Borel
relation. We include it for completeness’ sake.

Lemma 5.2 Assume that V |� ♦S for some stationary set S. Then

�Pω2
♦S(reaping).

Proof Let G be Pω-generic over V. We use the ♦S-sequence 〈Aδ : δ ∈ S〉 in the fol-
lowing manner: By easy coding we have 〈(N δ, β̄δ, f

˜
δ, F˜

δ,C˜
δ, Pδω2

, pδ,<δ) : δ ∈ S〉
such that

(a) N δ is a transitive collapse of a countable M ≺ H(χ,∈,<∗
χ ),<

δ is a well-ordering
of N δ,U δ codes the isomorphism type of (N δ, Pδω2

, pδ, β̄δ).

(b) N δ |� Pδω2
= 〈Pδα , Q

˜
δ
β : α ≤ ωN δ

2 , β < ωN δ

2 〉 is as in Definition 3.5.

(c) N δ |� (pδ ∈ Pδω2
, f
˜
δ is a Pδω2

-name of a member of ω1 2F˜
δ : 2<ω1 → 2ω is Borel).

(d) If p ∈ Pω2 ,

p �Pω2
f
˜
∈ 2ω1 ∧ F˜ : 2<ω1 → 2ωis Borel,C˜ ⊆ ω1is club,

and p, Pω2 , F˜ , f
˜
,C˜ ∈ H(χ), then

S(p, F˜ , f
˜
) := {δ ∈ S : there is a countableM ≺ (H(χ),∈,<∗

χ )

such that f
˜
, F˜ ,C˜ , Pω2 , p ∈ M

and there is an isomorphism hδ from N δ onto M

mappingPδω2
toPω2 , f

˜
δto f

˜
,

F˜
δto F˜ ,C˜ to C˜

δ, pδ to p,<δ to <∗
χ � M}

is a stationary subset of ω1.
(e) Choose 〈Bγ (δ) : δ ∈ S〉 such that γ (δ) = otp(N δ ∩ ω2) and

Bγ (δ) : (ωω)γ (δ) × P(ω)→ Gen+(Pδω2
)

= {G ⊆ Pδω2
∩ N δ : G is Pδω2

− generic overN δand bounded}

be as in Theorem 4.4 with U δ = U (N δ, Pδω2
, pδ, β̄δ).

We do not require uniformity, 〈νε, ηε : ε < γ (δ)〉 is indeed 〈νδε , ηδε : ε < γ (δ)〉
since we have the dependence on the δ in the definition of Bγ (δ). We assume that
N δ ∩ ω1 = δ. Since this holds on a club set of δ ∈ ω1, this is no restriction.
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Now assume the p ∈ G and F˜ , f
˜
,C˜ are as in (d).

We define a function B′
δ,Uδ

with domain (ωω)γ (δ).

B′
δ,U δ (〈ηε : ε < γ (δ)〉) =

⎧
⎨

⎩

F˜
δ( f
˜
δ � δ)[Bγ (δ)

(〈ηε : ε < γ (δ)〉,U δ)], if the argument is good;
〈0, 0, . . . , 〉 ∈ 2ω, otherwise.

Here, we call 〈ηε : ε < γ (δ)〉 a good argument if there is a play 〈νε, ηε : ε < γ (δ)〉
in the game �(N δ,Pδ,pδ) from Theorem 4.4 in which the generic player plays νε accord-
ing his winning strategy and the antigeneric player plays ηε according to the rules.
Goodness is a Borel predicate because the νε are irrelevant, just check whether the
ηε are large enough in the sense of Lemma 4.3 in the respective iteration step. So
B′
δ,U δ (〈ηε : ε < γ (δ)〉 is a Borel function. Now we choose a “very good” argument

〈ηδε : ε < γ (δ)〉 that player IN plays with his strategy in the game �(γ (δ),B′
δ,Uδ )

from

Lemma 5.1 applied to B′
δ,Uδ

, answering to a good argument 〈νδε : ε < γ (δ)〉 played
by player OUT.

For verifying that the guessing function g that we are going to derive guesses right
at stationarily many points in S(p, f

˜
, F˜ ), it suffices to note that by density arguments

and by the closedness of the club set C that qδ = ⋃
Bγ (δ)(〈ηε : ε < γ (δ)〉) forces

that δ ∈ C˜
δ .

So we consider for every δ ∈ S a very good argument 〈ηδε : ε < γ (δ)〉. We assume
that G is Pω2 -generic over V and that p ∈ G. Then we also have by the rules of the
game �(N δ,Pδ,pδ) that

Bγ (δ)(〈ηδε : ε < γ (δ)〉,U δ)has an upper bound qδ.

Lemma 5.1 gives an infinite set CB′
δ,Uδ

, such that for δ ∈ S, and we have

B′
δ,Uδ (〈ηδε : ε < γ (δ)〉)is almost constant on CB′

δ,Uδ
. (5.1)

Note that CB′
δ,Uδ

does not depend on 〈ηδε : ε < γ (δ)〉. So (5.1) also holds for 〈ηδε :
ε < γ (δ)〉 that are the answers of player IN in the game from Lemma 5.1 to any good
sequence 〈νδε : ε < γ (δ)〉 given by the generic player that is so fast growing νδε that
Bγ (δ)(〈νδε : ε < γ (δ)〉,U δ) computes a bounded generic filter over M like c

′′
Bγ (δ)

in Theorem 4.4. This is important, since the isomorphism hδ does not preserve the
knowledge (that is which branches are continued and what are the values of the prom-
ises in these continuations) about the trees’ level δ for the Aronszajn trees involved in
P ∩ M .

We set

CB′
δ,Uδ

=: g(δ).
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Since ω ⊆ M and ω ⊆ N δ we have that hδ
(

CB′
δ,Uδ

)
= CB′

δ,Uδ
. We show that g is a

diamond function.
Since Pω2 is proper, S(p, f

˜
, F˜ ) is also stationary in V[G]. Now we take a very good

sequence 〈ηδε : ε < γ (δ)〉 that is suitable so that Bδ,Uδ (〈ηδε : ε < γ (δ)〉) computes
a bounded (M, P)-generic filter for M that witnesses that δ ∈ S. So now we take the
game �(M,P,p) for the choice of the 〈νδη : η < γδ〉 and then again we take the winning
strategy in the game �(γ (δ),B′

δ,Uδ
), which is unchanged by the collapse, for choosing

〈ηδε : ε < γδ〉. We take q to be a bound of Bγ (δ)(〈ηδε : ε < γ (δ)〉,U δ). Now we have
that q ≥ p and

q � “Bγ (δ)(〈ηδε : ε < γ (δ)〉,U δ) is (M, P)-generic and bounded by q”.

Now for δ ∈ S(p, f
˜
, F˜ ) we have by the isomorphism property of hδ and by (5.1),

q � hδ ′′F˜
δ( f
˜
δ � δ) = F˜ ( f

˜
� δ) ∧ F˜ ( f

˜
� δ) ∈ g(δ) ∧ δ ∈ C˜ .

So we have that p forces that {α ∈ S : F( f � δ)is almost constant ong(δ)} contains
a stationary subset of S(p, f

˜
, F˜ ). Note that the stationary subset depends on F (and

f of course), but the guessing function g does not. So actually we proved a diamond
of the kind:

There is some g : ω1 → B such that for every Borel map F : 2<ω1 → A and for
every f : ω1 → 2 the set

{α ∈ ω1 : F( f � α)Eg(α)}

is stationary. ��
The forcing from Definition 3.6 could easily be mixed with proper ℵ2-p.i.c. iter-

ands, for example iterands with |Qα| ≤ ℵ1 (by [23, Lemma VIII 2.5] this is sufficient
for the ℵ2-p.i.c.) that add reals. Still we specialise all Aronszajn trees in such a mixed
iteration. However, the parallel of our main technique for the weak diamonds does not
work any more, since the completeness systems are no longer in the ground model.
In future work with Shelah we plan to extend these techniques in order to interweave
the addition of ωω-bounding reals into the iteration.

Acknowledgments I thank Teruyuki Yorioka for pointing out a mistake in a former version. I thank the
referee for numerous hints.
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