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Abstract. We answer Blass' question from 1989 of whether the in-
equality u < g is strictly stronger than the �lter dichotomy principle
[6, page 36] a�rmatively. We show that there is a forcing extension in
which every non-meagre �lter on ω is ultra by �nite-to-one and the semi-
�lter trichotomy does not hold. This trichotomy says: every semi�lter
is either meagre or comeagre or ultra by �nite-to-one. The trichotomy
is equivalent to the inequality u < g by work of Blass and La�amme.
Combinatorics of block sequences is used to establish forcing notions
that preserve suitable properties of block sequences.

1. Introduction

We separate two useful combinatorial principles: We show the �lter di-
chotomy principle is strictly weaker than the semi�lter trichotomy principle.
Consequences of the latter and equivalent statements to the latter in the
realm of measure, category, rare�cation orders are investigated in [20, 18, 7].
Paul Larson proves in [21] a long-standing question about medial limits: The
�lter dichotomy implies that there are none. Our result on the combinator-
ical side thus separates two powerful principles in analysis.

We �rst recall the de�nitions: For B ⊆ ω and f : ω → ω, we let f ′′B =
{f(b) : b ∈ B} and f−1′′B = {n : f(n) ∈ B}. By a �lter we mean a
proper �lter on ω. We call a �lter non-principal if it contains all co�nite
sets. Let F be a non-principal �lter on ω and let f : ω → ω be �nite-to-
one (that means that the preimage of each natural number is �nite). Then
also f(F) = {X : f−1′′X ∈ F} is a non-principal �lter. From now on we
consider only non-principal �lters. Two �lters F and G are nearly coherent,
if there is some �nite-to-one f : ω → ω such that f(F) ∪ f(G) generates a
�lter. The set of all in�nite subsets of ω is denoted by [ω]ω. A semi�lter S
is a subset of [ω]ω that contains ω as an element and that is closed under
almost supersets, i.e., (∀X ∈ S)(∀Y ∈ [ω]ω)(X r Y �nite → Y ∈ S). In
particular, [ω]ω is a semi�lter.
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The �lter dichotomy principle, abbreviated FD, says that for every �lter
there is a �nite-to-one function f such that f(F) is either the �lter of co�-
nite sets (also called the Fréchet �lter) or an ultra�lter. In the latter case
we call F ultra by �nite-to-one or nearly ultra. A semi�lter S is called mea-
gre/comeagre if the set of the characteristic functions of the members of S
is a meagre/comeagre subset of the space 2ω.

The semi�lter trichotomy principle, abbreviated SFT, says that for every
semi�lter S either S is meagre or f(S) is ultra or f(S) = [ω]ω for some
�nite-to-one f . The latter is equivalent to S being comeagre, for an explicit
proof see [21, Th. 4.1].

The semi�lter trichotomy can also formulated in terms of two cardinal
characteristics: Let F be a �lter on ω. B ⊆ F is a base for F if for every
X ∈ F there is some Y ∈ B such that Y ⊆ X. The character of F , χ(F),
is the smallest cardinality of a base of F . The cardinal u is the smallest
character of a non-principal ultra�lter. We denote by g be the groupwise
density number, that is the smallest number of groupwise dense sets whose
intersection is empty. A set G ⊆ [ω]ω is called groupwise dense if it is closed
under almost subsets and for every strictly increasing function f : ω → ω
there is an in�nite A such that

⋃
n∈A[f(n), f(n + 1)) ∈ G. La�amme [20,

Theorem 8] showed that u < g implies SFT, and Blass [7] showed that SFT
implies u < g. The purpose of this paper is to show the following:

Main Theorem. � FD and the negation of SFT� is consistent relative to
ZFC.

A groupwise dense family that is closed under �nite unions is called a
groupwise dense ideal. The groupwise density number for �lters, gf , is the
smallest number of groupwise dense ideals with empty intersection. From
[10] and Blass [7], just read for groupwise dense ideals, it follows that u < gf
is equivalent to FD. Moreover, FD implies b = u < gf = d = c [7]. Hence
FD and and not SFT is equivalent to g ≤ u < gf . Brendle [13] constructed
a c.c.c. extension with κ = g < gf = b = κ+, and asked whether b = g < gf
is consistent. By Shelah's gf ≤ b+ in ZFC [31], the only constellation for
b ≤ g < gf is b = g < gf = b+. Since in any model of the dichotomy
and u = g we have the cardinal constellation b = u = g < gf = c, the
main theorem also answers a question by Brendle [13, Question 10] about
separating g and gf above b.

For S,X ∈ [ω]ω we say S splits X i� X ∩ S and X r S are both in�nite.
A set SP ⊆ [ω]ω is called splitting or a splitting family i� for every X ∈ [ω]ω

there is some S ∈ SP splitting X. The smallest cardinal of a splitting family
is called the splitting number and denoted by s. Necessarily the splitting
number s must be bounded by u for FD and u ≥ g, because by [22, Cor. 4.4.],
FD together with s > u implies u < g.

The same argument shows:

Proposition 1.1. gf ≤ s implies g = gf .
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Proof. Assume that we have groupwise dense families Gα, α < κ for some
κ < gf . Then there is a diagonalisation D of the generated ideals, that
is for every α < κ there are nα ∈ ω and Aα,i ∈ Gα, i ≤ nα, such that
D ⊆ Aα,0 ∪ · · · ∪ Aα,nα . Since κ < gf ≤ s, these Aα,i ∩ D, α < κ, i < nα,
are not a splitting family in [D]ω. Hence there is some in�nite D′ ⊆ D and
there are iα, α < κ, such that (∀α < κ)(D′ ⊆ Aα,iα). So D′ ∈

⋂
α<κ Gα and

g > κ. �

A third principle is strictly weaker than FD: The principle of near coher-
ence of �lters, short NCF, says that for any two �lters (recall: they contain
the Fréchet �lter) are nearly coherent. The �lter dichotomy implies NCF by
[10]; the converse does not hold by [24].

Often in set theory of the reals, combinatorial work in the Baire space
and its subsets isolates indicators to non-implication, and work in the set
of the hereditarily countable sets allows to construct a proper forcing just
in the ℵ1-ℵ2-scenario that proves the non-implication. Also this paper is
of this kind. Only a few mathematical reasons for smallness and cardinal
spread one are known, among them the Raisonnier �lter [28], which implies
NCF→ add(N ) = ℵ1 and the base matrix tree [2], from which Shelah derived
the already mentioned bound gf ≤ b+ [31].

The paper is organised as follows: In Section 2 we explain Matet forc-
ing with centred systems. In Section 3 we recall Matet forcing with stable
ordered-union ultra�lters and Eisworth's work. In Section 4 we de�ne block-
swallowing and prove preservation theorems for it. In Section 5 we de�ne
iterated forcing orders and a name for a semi�lter that serves as a counterex-
ample to the trichotomy. The �nal section contains some related results on
cardinal characteristics.

Unde�ned notation on cardinal characteristics can be found in [4, 9]. Un-
de�ned notation about forcing can be found in [19, 30]. In the forcing, we
follow the Israeli style that the stronger condition is the larger one. A good
background in proper forcing is assumed.

2. A variant of Matet forcing

We de�ne a variant of Matet forcing. For this purpose, we �rst introduce
some notation about block sequences. Our nomenclature follows Blass [5]
and Eisworth [15].

We let F be the collection of all �nite non-empty subsets of ω. For a, b ∈ F
we write a < b if (∀n ∈ a)(∀m ∈ b)(n < m). A �lter over F is a subset of
P(F) that is closed under intersections and supersets. A sequence ā = 〈an :
n ∈ ω〉 of members of F is called unmeshed if for all n, an < an+1. An in�nite
unmeshed sequence ā is called a block sequence, and the an are called blocks
of ā. The set (F)ω denotes the collection of block sequences. If X is a subset
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of F, we write FU(X) for the set of all �nite unions of members of X. We
write FU(ā) instead of FU({an : n ∈ ω}).

We write set(b̄) =
⋃
{bn : n ∈ ω}. We say E ⊆ (F)ω generates C i�

C = {ā : (∃b̄ ∈ E)(b̄ v∗ ā)}.
De�nition 2.1. Given ā and b̄ in (F)ω, we say that b̄ is a condensation of
ā and we write b̄ v ā if {bn : n ∈ ω} ⊆ FU(ā). We say b̄ is stronger than ā
and we write b̄ v∗ ā i� there is an n such that 〈bt : t ≥ n〉 is a condensation
of ā.

De�nition 2.2. A set C ⊆ (F)ω is called centred, if for any �nite C ⊆ C
there is ā ∈ C that is stronger than any c̄ ∈ C.
De�nition 2.3. In the Matet forcing, M, the conditions are pairs (a, c̄) such
that a ∈ F and c̄ ∈ (F)ω and a < c0. The forcing order is (b, d̄) ≥ (a, c̄)
(recall the stronger condition is the larger one) i� a ⊆ b and br a is a union
of �nitely many of the cn and d̄ is a condensation of c̄.

De�nition 2.4. Given a centred system C ⊆ (F)ω, the notion of forcing
M(C) consists of all pairs (s, ā′), such that s ∈ F and there is ā ∈ C such
that ā′ is an end-segment of ā, i.e., ā′ = 〈an : n ≥ k〉. The forcing order is
the same as in the Matet forcing.

A poset P is called centred if for any �nite F ⊆ P there is q stronger than
any of the p ∈ F . P is σ-centred if it is the union of countably many centred
sub-posets. The forcing orders M(C) are σ-centred, and hence proper.

Here is more notation for handling block sequences.

De�nition 2.5.

(1) The set of �nite-to-�nite relations is

R∗ = {R ⊆ ω × ω :

(∀m)(there are �nitely many and at least one n)(mRn)∧
(∀n)(there are �nitely many and at least one m)(mRn)}.

We let the letter R range over elements of R∗.
(2) For a ⊆ ω, R ∈ R∗ we let R(a) = {n : mRn,m ∈ a}.
(3) For c̄ = 〈cn : n ∈ ω〉 ∈ (F)ω, R ∈ R∗ we let R(c̄) = 〈R(cn) : n ∈ ω〉.

This can be not unmeshed or even be not pairwise disjoint, but it does
not matter. When we use it, we will �rst look whether it is a block
sequence.

The purpose of R ∈ R∗ is to increase in�nite sets in a gentle manner, as
with �nite-to-one functions: If f ′′x ⊆ f ′′y, then x ⊆ Ry for R = {(m,n) :
f(n) = f(m)}. Another use is: For a �nite-to-one f , f(F) = {X : f−1′′X ∈
F} = {X : R(X) ∈ F}, where xRy i� f(y) = x. Since f is a �nite-to-one
function, we have R ∈ R.
Remark 2.6. There are many R ∈ R∗: For any two sequences c̄, d̄ in (F)ω

there is Rc̄,d̄ such that Rc̄,d̄(c̄) = d̄, e.g., Rc̄,d̄ =
⋃
{cn × dn : n ∈ ω}.
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3. Preserving a P -point from the ground model

In this section we specialise the partial orders M(C) further. The results
we collect in this section are Hindman's and Eisworth's (see [15]).

An ultra�lter U is called a P -point if for every for every sequence An,
n ∈ ω, of elements of U , there is some A ∈ U such that for all n, A ⊆∗ An;
such an A is called a pseudo-intersection of the An. Let P be a notion of
forcing. We say that P preserves an ultra�lter U if P �(∀X ∈ [ω]ω)(∃Y ∈
U)(Y ⊆ X ∨ Y ⊆ ω rX))� and in the contrary case we say �P destroys U�.
If P is proper and preserves U and U is a P -point, then U stays a P -point
[11, Lemma 3.2].

De�nition 3.1. A non-principal �lter F over F is said to be an ordered-
union �lter if it has a basis of sets of the form FU(d̄) for d̄ ∈ (F)ω. Let µ be
an uncountable cardinal. An ordered-union �lter is said to be < µ-stable if,
whenever it contains FU(d̄α) for d̄α ∈ (F)ω, α < κ, for some κ < µ, then it
also contains some FU(ē) for some ē that is almost a condensation of d̄α for
α < κ. For �< ω1-stable� we say �stable�. Stable ordered-union ultra�lters
are also called Milliken�Taylor ultra�lters.

Ordered-union ultra�lters need not exist, as their existence implies the
existence of Q-points [5] and there are models without Q-points [27]. With
the help of Hindman's theorem one shows that under MA(σ-centred) stable
(even < 2ω-stable) ordered-union ultra�lters exist [5]. We recall Hindman's
theorem:

Theorem 3.2. (Hindman, [17, Corollary 3.3]) If the set F is partitioned into
�nitely many pieces then there is a set d̄ ∈ (F)ω such that FU(d̄) is included
in one piece.

The theorem also holds if instead of F we partition only FU(c̄) for some
c̄ ∈ (F)ω, the homogeneous sequence d̄ given by the theorem is then a con-
densation of c̄.

Corollary 3.3. Under CH for every ā ∈ (F)ω there is a stable ordered-union
ultra�lter U such that FU(ā) ∈ U .

In order to state a preservation property of M(U), we need the following
de�nition.

De�nition 3.4. Let U be a �lter over F. The core of U is the �lter Φ(U)
such that

X ∈ Φ(U) i� (∃FU(c̄) ∈ U)(
⋃
n∈ω

cn ⊆ X).

If U is ultra over F, then Φ(U) does not have a pseudointersection (see [15,
Prop. 2.3]) and also all �nite-to-one images of Φ(U) do not (same proof). So
Φ(U) is not meagre.

Blass proved that the �lter Φ(U), though, is not ultra by �nite-to-one [8].
The reason is: There are two ultra�lters min(U) = {{min(d) : d ∈ D} :
D ∈ U}, max(U) ⊃ Φ(U) that are not nearly coherent.
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The Rudin-Blass ordering on semi�lters is de�ned as follows: Let F ≤RB G
i� there is a �nite-to-one f such that f(F) ⊆ f(G). Usually only �lters are
considered. We use this order also for semi�lters.

The following property of stable ordered-union ultra�lters U will be im-
portant for our proof:

Theorem 3.5. (Eisworth [15, �←� Theorem 4, �→� Cor. 2.5, this direction
works also with non-P ultra�lters]) Let U be a stable ordered-union ultra�lter
on F and let V be a P -point. The forcing M(U) preserves V i� V 6≥RB Φ(U).

Let ωω denote the set of functions from ω to ω. For f, g ∈ ωω we say g
eventually dominates f and write f ≤∗ g i� (∃n0 ∈ ω)(∀n ≥ n0)(f(n) ≤
g(n)).

The forcing M(U) adds an unbounded real, i.e., a real such that is not
eventually dominated by any real of the ground model. Indeed, any pseu-
dointersection of Φ(U) is unbounded over the ground model. Since Φ(U) is
not meagre, this claim follows from the following result due to Talagrand
[32]:

Lemma 3.6. For every semi�lter S the following are equivalent

(1) There is a �nite-to-one function such that {X : (∃S ∈ S)(f ′′S ⊆ X)}
is the Fréchet �lter.

(2) S is meagre.

(3) The set of enumerating functions of members of S is ≤∗-bounded.

4. Preserving block-swallowing families

From now on we consider only the simple case that C is generated by the
range of a v∗-descending sequence 〈c̄ε : ε < δ〉.

De�nition 4.1. Suppose that G is an M(C)-generic �lter over V. The
generic real is s(C) =

⋃
{s : ∃c̄ ∈ C(s, c̄) ∈ G}.

We intend to arrange that later in an iteration no forcing M(C′) appears
that adds a generic real that is a subset of s(C). For this we introduce block-
swallowing families. The quanti�er ∃∞n says that there are in�nitely many
n.

De�nition 4.2. (1) We say x̄ swallows ā i�

(∃∞n)(∃k)(xk ⊇ an).

(2) Let X be a set of block sequences. We say X is block-swallowing i� for
any block sequence ā there is x̄ ∈ X that swallows ā.

Remark 4.3. Let X be a block-swallowing family. Then, given any countable
sequence (āj)j of block sequences there is x̄ ∈ X such that

(∃∞n)(∃k)(∃i0 . . . in)(xk ⊇
⋃
{aj,ij : j ≤ n}),

i.e., for any n, x̄ swallows ān.
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In order to see this, diagonally interweave the sequences (āj)j : As a �rst
block we take any block of ā0, then we take a block of ā0 and one of ā1

such that both of them lie after the �rst block and merge them and declare
the outcome as the second block, an so on. This interweaving procedure
can in particular be applied to all block-seqeunces in a countable elementary
submodel M . Then we get one block sequence that swallows all of them.
(End of remark)

Now we want to preserve block-swallowing families in later iteration steps
and create new block-swallowing families.

We denote by MA<κ(σ-centred) Martin's axiom for σ-centred posets and
< κ dense sets. Let Γ be a class of forcings. MA<κ(Γ) says: For any P ∈ Γ
for any collection D of size strictly less than κ of dense sets there is a �lter
G ⊆ P such that (∀D ∈ D)(D ∩G 6= ∅).

The following is a cornerstone:

Lemma 4.4. Let κ = 2ω. We assume CH or MA<κ(σ-centred). Let Xζ ,
ζ < κ, be block-swallowing families. There are a sequence C = 〈c̄ε : ε < κ〉
and a sequence 〈d̄ε+1 : ε < κ〉 such that the following hold:

(A) After forcing with M(C)
(1) for each ζ < κ, Xζ is still block-swallowing, and

(2) out(C) := {d̄ε+1 : ε < κ} is block-swallowing.
(B) For each ε < κ, set(d̄ε+1) ∩ set(c̄ε+1) is �nite.

The proof of the lemma we use a technique called �sealing antichains� or
�processing names�. This method has been used in the set theory of the reals
[1, 12, 14, 16, 23] and possibly elsewhere and also in constructing forcings
under the assumption of large cardinals.

Let f : ω → H(ω). As usual, H(ω) denotes the set of hereditarily �nite
sets. Suppose that P is a c.c.c forcing order. A standardised name for f is

f = {〈(n, kn,m), pn,m〉 : n,m ∈ ω},
such that {pn,m : m ∈ ω} is predense in P and pn,m P f � n = kn,m, kn,m ∈
H(ω), and such that kn′,m′ � n = kn,m if pn′,m′ and pn,m are compatible and
n′ ≥ n.

We write P ⊆ic P′ i� P ⊆ P′ and for any p, q ∈ P, if p and q are incompat-
ible in P then they are also incompatible in P′. If P ⊆ic P′ then not every
standardised P-name for a real is also P′-name for a real. This happens,
however, if any maximal antichain {pn,m : m ∈ ω} in P stays maximal in P′.
In the end we evaluate only names in the �nal order, and each name that
made it to the �nal stage appears at some stage of countable co�nality (see
Lemma 4.5) and then can be construed also as a name of a forcing order of
any later stage.

If C ⊆ C′ are centred systems, then M(C) ⊆ic M(C′). If f is an M(C)-name
and an M(C′)-name for a function from ω to H(ω), C ⊆ C′, p ∈ M(C), and
k ∈ H(ω), then p M(C) f(n) = k is equivalent to p M(C′) f(n) = k.
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We write M(c̄) for M({c̄}). In general M(C) is not a complete suborder
of M(C′). For example, there are M(C) that preserve an ultra�lter from the
ground model, as in Eisworth's theorem, and on the other hand, M(c̄) is
Cohen forcing.

Lemma 4.5. Let 〈c̄ε : ε < δ〉, be a decreasing sequence that generates
C. Assume cf(δ) > ω0 and f is a M(C)-name for a function from ω to
H(ω). Then we can �nd an ε0 < δ such that for every ε ∈ [ε0, δ) there are
pn,m ∈ M(c̄ε) and kn,m ∈ H(ω) such that {pn,m : m < ω} is predense in
M(C) and pn,m  f(n) = kn,m.

Proof. We assume that f = {〈(n, hn,m), qn,m〉 : m,n < ω}. Since cf(δ) > ω,
there is some ε0 < δ such that all qn,m are in M(c̄β : β ≤ ε0). Now, given
ε ∈ [ε0, δ), we take

In = {q ∈M(c̄ε) : (∃m)(q ≥ qn,m)}.

Then In is predense in M(C). Now let pn,m, m < ω, list In and choose kn,m
such that pn,m  f(n) = kn,m. Then kn,m, pn,m, n,m ∈ ω, describe f as
desired. �

The purpose of the lemma is to allow to work just in M(c̄ε) for a single
c̄ε.

Some notation:

(1) If c̄ε is a block sequence, then we let c̄ε = 〈cε,n : n ∈ ω〉.
(2) We let ā ; past n = 〈am : m ∈ [k, ω)〉 with the minimal k such that

n < min(ak).

(3) We let ā ; beforen = 〈am : m ∈ [0, k]〉 with the maximal k such that
max(ak) < n.

Proof of Lemma 4.4:
Let 〈b̄ε, ζε, fε, : ε < κ〉 list the tuples (b̄, ζ, f) such that b̄ ∈ (F)ω, ζ ∈ κ,
and f = {〈(n, kn,m), pn,m〉 : m,n ∈ ω} is a standardised M(b̄)-name for a
block-sequence. We assume that each triple (b̄, ζ, f) appears in the list κ
many times.

We choose by induction on ε < κ a v∗-descending sequence c̄ε ∈ (F)ω.

For ε = 0 we let c̄0 = 〈{n} : n < ω〉.
Limit step:

Let ε < κ be a limit ordinal. We apply MA<κ(σ-centred) to the σ-centred
forcing notion {(c̄, n, F ) : c̄ is a �nite block sequence of subsets of n and F
is a �nite subset of ε}, ordered by (c̄′, n′, F ′) ≥ (c̄, n, F ) i� n′ ≥ n, F ′ ⊇ F ,
c̄′ v c̄, c′i = ci for i < n and (∀γ ∈ F )(∀k)(c′k ⊆ [n, n′) → c′k ∈ FU(c̄γ)),
and the dense sets Iδ,n = {(c̄,m, F ) : set(c̄) r n 6= ∅ ∧ δ ∈ F ∧ m > n},
δ < ε, n < ω, and thus we get a �lter G intersecting all the Iδ,n. The set
c̄ε =

⋃
{c̄ : (∃n, F )((c̄, n, F ) ∈ G)} is as desired. If cf(ε) = ω then we simply

take a v∗-lower bound in ZFC.
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Step ε = δ + 1, and c̄δ is chosen. We assume that for some γ ≤ δ,
b̄δ = c̄γ and fδ is a M(b̄δ)-name of a block sequence that has an equivalent
M(c̄δ)-name f . Otherwise we can take c̄δ+1 = c̄δ.

By our coding, f = {〈〈n, kn,m〉, pn,m〉 : n,m ∈ ω}, kn,m is an unmeshed
sequence of n blocks.

By induction on r ∈ ω we �rst choose c+
δ,r ∈ F, b(r) ∈ ω, and ur ∈ F such

that c+
δ,r =

⋃
{cδ,n : n ∈ ur}. We let c+

δ,0 = cδ,0, b(0) = max(c+
δ,0) + 1.

Suppose that c+
δ,r−1 and b(r − 1) are chosen. Let {wr,i : i < 2b(r−1)}

enumerate all subsets of b(r − 1). We write p = (w ∪ c(p), c̄(p)) to indicate
components. Since we work in M(c̄δ), c̄(p) is an end segment of c̄δ.

Now by subinduction on i < 2b(r−1) we choose n(r, i) = n(i),m(r, i) = n(i)
such that

(1) n(−1) ≥ r and pn(0),m(0) ≥ (wr,0, c̄δ ; past b(r − 1)).

(2) pn(i),m(i) = (wr,i ∪ c(pn(i),m(i)), c̄(pn(i),m(i))).

(3) (c(pn(i),m(i)), c̄(pn(i),m(i))) ≤ (c(pn(i+1),m(i+1)), c̄(pn(i+1),m(i+1))).

(4) For 0 ≤ i ≤ 2b(r−1) − 1, pn(i),m(i) determines f ; beforen(i) and forces
that there is a full f -block that is a subset of [n(i − 1), n(i)). We call
this selected block f(pn(i),m(i)) in[n(i− 1), n(i)).

Once the subinduction is performed, we do not drop the counter r anymore.
We take the union⋃

{f(pn(r,i),m(r,i)) in[n(r, i− 1), n(r, i)) : i < 2b(r)}

and call this fr. The parts of fr come from possibly incompatible conditions,
because of the di�erent wr,i. We let c+

δ,r =
⋃
{c(pn(r,i),m(r,i)) : i < 2b(r−1)}.

This also determines ur. Thus the step r is �nished. We start the step from
r to r + 1 with b(r) = max(c+

δ,r) + 1 and c̄δ ; past b(r).

Since Xζδ is a block-swallowing family there is x̄ ∈ Xζδ and there is an
in�nite set {rk : k ∈ ω} such that the frk , k ∈ ω, are pairwise disjoint and

(∀k ∈ ω)(x̄ ; past rk has a block that is a superset of frk)(⊕1)

In addition, after possibly thinning out the (rk)k further, we assume that

[max(c+
δ,rk

),min(c+
δ,rk+1

)) ⊇ fr for some rk ≤ r < rk+1(⊕2)

We let for k ∈ ω,

cε,k = c+
δ,r2k
∪ c+

δ,r2k+1
,(⊕3)

and

dε,k = [max(c+
δ,r2k

),min(c+
δ,r2k+1

)).(⊕4)

We say c̄ε seals fδ at c̄δ for the block-swallowing family Xζδ and d̄ε seals
block-swallowing fδ at c̄δ.
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Of course, any sequence stronger than c̄ε would seal fδ as well. The fact
that sealed sequences cannot be broken up into sub-blocks is a technical core
of the di�erence between gf and g.

We show that in the generic extension by M(C), Xζ is block-swallowing.
Assume towards a contradiction that there is a M(C)-name f for a count-

able sequence of block sequences and there is p ∈M(C) such that

p  (∀x̄ ∈ Xζ)(x̄ does not swallow f).

Since cf(κ) > ω, by Lemma 4.5 there is some γ < κ such that f is an
M(c̄γ)-name. Since in the enumeration every name appears co�nally often,
for some δ ≥ γ we have (b̄δ, ζδ, fδ) = (c̄γ , ζ, f). So at stage ε = δ + 1 in our
construction we took care of f 's equivalent M(c̄δ)-name, call it f as well. Let
x̄, {rk : k ∈ ω} and c̄ε be as in ⊕1 of this step.

By our assumption there are q ≥ p and some n(∗) such that

q no block of x̄ ; past n(∗) contains a full block of f .(4.1)

By the form of M(C), q = (s, c̄ε(1)) for some ε(1) ≥ ε and some s, such
that c̄ε(1) is a condensation of c̄ε. So there are k, j, `j , `j+1 and r2k ≥
n(∗) (from the step δ of the construction) such that that cε(1),j ⊆ `j+1 and

cε(1),j ∩ [`j , `j+1) = cε,k and ε = δ + 1. However, cε,k = c+
δ,r2k
∪ c+

δ,r2k+1
. We

let s′ = s ∪ (
⋃
c̄ε(1) ∩ [0, `j)), and we let q′ = (s′ ∪ cε,k, cε(1),j+1, . . . ).

There is i < 2b(r2k−1) such that s′ = wr2k,i. Then we have q ≤ q′ and
pn(r2k,i),m(r2k,i) ≤ q′. Property (⊕1) in the choice of x̄ together with the

de�nitions of c̄+
δ and c̄ε yield

q′  �x̄ ; past n(r2k, i− 1) has a block that is a superset of fr2k �.

Since by de�nition of fr2k clause (4), the sequence fr2k contains at least one
f -block past n(i − 1) according to the opinion of pn(r2k,i),m(r2k,i) and since
n(r2k, i− 1) ≥ r2k ≥ n(∗), this contradicts Equation (4.1).

That out(C) = 〈d̄ε+1 : ε < ω1〉 is block-swallowing in the extension by
M(C) is proved similarly using Equations ⊕2, ⊕3, and ⊕4.

Conclusion (B) holds by our arrangement in Equation ⊕4. �4.4

De�nition 4.6. Let x̄, ā be a block sequences and n ∈ ω. We say

āRnx̄ i�

there is ` ≥ n such that x` is a superset of a full block of ā

A block sequence x̄ swallows ā i� (∀n)(āRnx̄). We let ωω also denote the
Baire space. This is the set of functions from ω to ω, endowed with the
topology given by the open sets Ns = {f : s ⊆ f} for s : n → ω. We �x
a bijection b : F → ω. We de�ne e : (F)ω → ωω by letting e(ā)(n) = b(an).
Thus e maps (F)ω onto the Gδ-set B

′ = {f ∈ ωω : (∀n)(b−1(f(n)) <
b−1(f(n + 1)))}. We equip B′ with the topology it inherits from the Baire
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space; and we let (F)ω carry the topology such that e is a homeomorphism
from (F)ω onto B′.

Lemma 4.7. For any x̄, the set {ā : āRnx̄} is open in B′.

Remark 4.8. Suppose, that X is block-swallowing and for β < α,

Pβ  �M(Cβ) preserves that X is block-swallowing�,

and Pα = 〈Pβ,M(Cγ) : β ≤ α, γ < α〉 is a countable support iteration. By
citation, we show that also Pα forces that X is block-swallowing.

Let M be a countable elementary submodel of some H(θ), θ ≥ (2ω2)+ a
regular cardinal. We work with R̄ = 〈Rn : n ∈ ω〉 from Def. 4.6. We let gM
be a block sequence that block-swallows any block sequence in M . In other
words, (∀ā ∈M)(∀n)(āRngM ). In Shelah's notation gM is (M, R̄)-covering.
Now the proof of Lemma 4.4 shows: M(C)  (∀ā ∈ M [G])(∀n)(āRngM ).
Since M(C) is proper, this says that M(C) is (R̄,gM )-preserving in the sense
of De�nition [30, Ch. XVIII, Def. 3.4] 1 By Lemma 4.7 we are in so-called
Case A of iteration theory: the sets {ā : āRng} are open or closed subsets
of a Gδ-subset of the Baire space. Hence (R̄,g)-preservation is preserved in
the successor step according to [30, Chapter XVIII, �3, Claim 3.5] and in
the countable support limit [30, Chapter XVIII, �3, Theorem 3.6]. So each
block-swallowing family that is preserved by any iterand will be preserved
by a countable support iteration of these iterands.

5. Iterated forcing

We let S2
1 = {α ∈ ω2 : cf(α) = ω1}. We start with a ground model V

that ful�ls CH and ♦(S2
1) (and hence 2ℵ1 = ℵ2). We �x a ♦(S2

1)-sequence
〈Dα : α ∈ S2

1〉.
We work with countable support iterations Pω2 = 〈Pβ,Qγ : β ≤ α, γ <

α〉. We denote VPα by Vα. If the iterands are proper each real appears in a
Vα for some α with countable co�nality [29, Ch. III]. A re�ection property
ensures that each non-meagre �lter F in the �nal model has ω1-club many
α ∈ ω2 such that F ∩Vα has a Pα-name and is a non-meagre �lter in Vα

(see [11, Item 5.6 and Lemma 5.10]). A subset of ω2 is called ω1-club if it is
unbounded in ω2 and closed under suprema of strictly ascending sequences
of lengths ω1. A subset of ω2 is called ω1-stationary if is has non-empty
intersection with every ω1-club. By well-known techniques based on coding
Pα-names for �lters as subsets of ω2 (e.g., such a coding is carried out in
[26, Claim 2.8]) and based on the maximal principle (see, e.g., [19, Theorem
8.2]) the ♦(S2

1)-sequence 〈Dα : α ∈ S2
1〉 gives ω1-club often a Pα-name Dα

for a non-meagre �lter in Vα such that for any non-meagre �lter F ∈ Vω2

there are ω1-stationarily many α ∈ S2
1 with F ∩Vα = Dα.

1Read in a form with one additional index running, see [25, Def. 4.5]. Unfortunately
there is a misprint in [30, Ch. XVIII, Def. 3.4]. The proofs of the preservation of preser-
vation in [30, Ch. XVIII, Claim 3.5, Theorem 3.6] work with a de�nition with one more
running index. More explanations and rewritten proofs can be read in [25, Section 4].
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In Vα, we de�ne Qα = M(Uα) and a name sα := s(Uα).
We also �x a P -point E ∈ V that will be preserved throughout our iter-

ation. We �x an enumeration 〈Eε : ε < ω1〉 of a basis of E such that each
element appears co�nally often. For X ⊆ [ω]ω, we let cl(X ) = {Y : (∃X ∈
X )(Y ⊇ X)}.

We use R for elements of R∗, and R ∈ Vα means R ∈ R∗∩Vα. We use b̄,
c̄, d̄ for elements of (F)ω, and c̄ ∈ Vα means c̄ ∈ (F)ω ∩Vα. We use letters
B for subsets of F and f for a standardised M(c̄)-name for block-sequence
for some block sequence c̄.

We construct by induction on α ≤ ω2 a countable support iteration P =
〈Pα,Qβ : β < ω2, α ≤ ω2〉 such that for any α ≤ ω2, the initial segment
〈Pγ ,Qβ : β < α, γ ≤ α〉 ful�ls:
(I1) For all β < α, Pβ �Qβ is proper and |Qβ| ≤ ℵ1�.

(I2) Pα �cl(E) is ultra�.

(I3) If β ∈ S2
1 ∩ α and if Dβ is a Pα-name F for a non-meagre �lter in VPβ ,

then Pβ+1
�gβ(F) = gβ(cl(E))�. Here gβ(n) = |sβ ∩ n|.

(I4) For β < α: Qβ = M(Uβ), Uβ and out(Uβ) are as in Lemma 4.4, and Uβ
is a stable ordered union ultra�lter, Φ(Uβ) 6≤RB E and

Vα  out(Uβ) is block-swallowing.

(I5) For all β < α: sβ is ≤∗-unbounded over Vβ and

(∀γ < β)(∀R ∈ R∗ ∩Vγ)
(
Pβ+1  (sβ 6⊆∗ R(sγ))

)
.

Property (I4) is used to construct Uα and out(Uβ) so that M(Uα) forces
the the statements in (I5) that forbid almost-inclusions. For deriving SFT
and not FD only properties (I1), (I2), (I3), and (I5) play a role.

We �rst show that the existence of such an iteration implies the main
theorem:

Lemma 5.1. Assume that P has the properties listed above. Then in Vω2

the �lter dichotomy holds and the semi�lter

S = {x ∈ [ω]ω : (∃α ∈ ω2)(x ⊇∗ sα)}
is not-meagre, not comeagre, and not ultra by �nite-to-one.

Proof. By properness our iteration preserves ℵ1. It preserves ℵ2, because
any collapse would appear at some intermediate step Pα, but Pα has size ℵ1

and the ℵ2-c.c. So ℵV1 = ℵVω2
1 and ℵV2 = ℵVω2

2 and we write just ℵ1, ℵ2.
The �lter dichotomy holds because of (I2) and (I3).

By Talagrand's lemma 3.6 and since the enumerating functions of the sα,
α ∈ ω2, form an ≤∗-unbounded family, the semi�lter is not meagre.

Since FD implies NCF, the statement �S is not ultra by �nite-to-one� is
equivalent to �S is not nearly coherent with E�. Assume for a contradiction
that S is nearly coherent with E . Then a �nite-to-one function f with f(E) =
f(S) would appear in some Vα, cf(α) = ω and α < ω2. We take β > α. By
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the properties of Qβ , the increasing enumeration of f ′′sβ is ≤∗-unbounded
over Vα. Hence f

′′sβ 6⊇∗ f ′′E for any E ∈ E . So f(S) 6= f(E).
Suppose that S is comeagre. Then there is a �nite-to-one f such that

f(S) = [ω]ω. There is α ∈ ω2 such that such an f ∈ Vα. Then by (I5) for
α < β < ω2, f

′′sβ 6⊆∗ sα. However, sα has 2ω = ℵ2 pairwise almost disjoint
subsets, and hence {f ′′sβ : β ≤ α}, being of size at most ℵ1, is not dense in
([sα]ω,⊆∗). So the whole set f(S) = {f ′′sβ : β ∈ ω2} is not ⊆∗-dense below
sα and hence f(S) 6= [ω]ω. �

Lemma 5.2. The forcing tasks (I5) follow from (I4).

Proof. We showed at the end of Section 3 that sβ is unbounded over Vβ . Let
γ < β < ω2 and R ∈ Vγ be given. The family out(Cγ) = {d̄γ,ε+1 : ε < ω1}
is a block-swallowing family in Vγ+1. The latter is preserved in Vβ by (I5).

Now we work in Vβ . Let Uβ = 〈c̄β,ε : ε < ω1〉. Since R ∈ Vγ and
γ < β and sβ is ≤∗-unbounded over Vβ , for su�ciently large ε, the sequence
R−1(c̄β,ε) is a block sequence, say for ε ≥ δ. For each ε ∈ [δ, ω1), the
block sequence R−1(c̄β,ε) is swallowed by some d̄γ,h(ε), where h(ε) < ω1 is a
successor ordinal. So for each ε ∈ [δ, ω1),

M(Uβ)  �(∃∞n)((R−1(c̄β,ε))n is a subset of a block of d̄γ,h(ε))�.

Since set(d̄γ,h(ε)) ∩ set(c̄γ,h(ε)) is �nite, this implies:

M(Uβ)  �R−1(c̄β,ε) has in�nitely many blocks that

are not subsets of set(c̄γ,h(ε))�.

Since set(c̄γ,δ) ⊇∗ sγ for any δ, this yields:

M(Uβ)  �R−1(c̄β,ε) has in�nitely many blocks that

are not subsets of sγ�.

Since Uβ is generated by the descending sequence 〈c̄β,ε : ε < ω1〉 and the
latter holds for co�nally many ε, we have M(Uβ)  sβ 6⊆∗ R(sγ). �

So from now on we work in order to get (I1) to (I4).
We note that (I1) to (I4) are true for α = 0.

Lemma 5.3. Induction lemma. Assume that α ≤ ω2 and that 〈Pγ ,Qδ : γ <
α, δ < γ〉 is de�ned with properties (I1) to (I4). Then there is a continuation
〈Pγ ,Qδ : γ ≤ α, δ < α〉 with properties (I1) to (I4).

The proof of the induction lemma has four cases:

(a) α is a limit ordinal of uncountable co�nality

(b) α is a limit ordinal of countable co�nality

(c) α is a successor ordinal of a successor ordinal or of a limit ordinal of
countable co�nality

(d) α is a successor ordinal of a limit ordinal of uncountable co�nality
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We begin with the easiest case: In case (a) all statements are true, since
names for reals in proper forcings are hereditarily countable objects.

In case (b) we invoke preservation theorems: Preservation of properness
[29], preservation of P -points [11, Theorem 4.1]. Preservation of �out(Uβ) is
block-swallowing� follows from Remark 4.8.

In the successor cases α = β + 1 we construct Uβ and out(Uβ) in Vβ . In
order to organise the construction, we introduce two helpers.

De�nition 5.4. We call a sequence 〈Bε, Rε, Eε, ζε, fε : ε < ω1〉 ∈ Vβ

a book-keeping in Vβ if any (B,R,E, ζ, f) is named co�nally often, where
B ⊆ F, B ∈ Vβ , R ∈ R∗ ∩Vβ , E ∈ E , ζ ∈ ω1, and �nally, for some c̄ ∈ Vβ ,
the sequence f ∈ Vβ is a standardised M(c̄)-name for a block sequence (see
page 7 in Lemma 4.4).

Since Vβ |= CH, there is a book-keeping. We use standardised names in
order to have only ℵ1 names.

De�nition 5.5. A pair 〈c̄ε : ε < ω1〉, 〈d̄ε+1 : ε < ω1〉 is called a good
pair for Vβ if the following holds: The sequence 〈c̄ε : ε < ω1〉 ∈ Vβ , is
descending and there is a book-keeping 〈Bε, Rε, Eε, ζε, fε : ε < ω1〉 in Vβ

such for each ε < ω1 there are c̄1
ε, c̄

2
ε, c̄

3
ε with the following properties:

(1) (The Hindman tasks) FU(c̄1
ε) is included in Bε or disjoint from Bε and

c̄1
ε v∗ c̄ε.

(2) (The Eisworth tasks) ω rRε(set(c̄2
ε)) ∈ R(clVβ (E)) and c̄2

ε v∗ c̄1
ε.

(3) (The Blass�La�amme tasks) If possible we take c̄3
ε v∗ c̄2

ε such that
c̄3
ε  gβ

′′Eε ∈ gβ(F), for the �nite-to-one function gβ(n) = |sβ ∩ n|.
If there is no such c̄3

ε, we let c̄3
ε = c̄2

ε. Here F is a non-meagre �lter
handed down by the diamond. (This item is only relevant in the case
of a successor of an ordinal of uncountable co�nality.)

(4) (Preservation of block-swallowing and creating the block-swallowing
out(Uβ) and disjointness) If fε has a equivalent M(c̄ε)-name f , the suc-
cessor c̄ε+1 v∗ c̄3

ε seals fε at c̄
3
ε for the block-swallowing family out(Uζε).

The block-sequence d̄ε+1 seals block-swallowing fε at c̄
3
ε.

Continuation the proof of the induction lemma:
Case (c): Let α = β + 1 and cf(β) ≤ ω. We let c̄0 = 〈{n} : n ∈ ω〉, and
we construct a good pair 〈c̄ε : ε < ω1〉, 〈d̄ε+1 : ε < ω1〉. We let Uβ be
generated by 〈c̄ε : ε < ω1〉, and let out(Uβ) = {bdε+1 : ε < ω1}.

We show that all properties (Ix) follow from goodness and the induction
hypotheses: Since decreasing countable sequences in Uβ have lower bounds
and since there are the Hindman tasks, the centred system Uβ generated by
the �rst sequence in the good pair is a stable ordered-union ultra�lter.

The forcing M(Uβ) is σ-centred, hence proper. It has size ℵ1. Forcing
with M(Uβ) preserves E by the Eisworth tasks and Eisworth's Theorem 3.5.

So (I1), (I2), (I3) (vacuously) are carried on. By induction hypothesis,
Pβ preserves the block-swallowing families out(Uγ), γ < β. By the sealing
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tasks and by Lemma 4.4, the forcing M(Uβ) preserves the block-swallowing
families out(Uγ), γ < β. Now Pα = Pβ ∗M(Uβ) preserves them as well, by
Shelah's successor step lemma [30, Ch. XVIII, Claim 3.5]. By construction,
Pβ+1  out(Uβ) is block-swallowing and (∀ε)(set(d̄ε+1)∩set(c̄ε+1) = ∅). This
�nishes the proof of (I4) and concludes case (c).

Case (d): α = β + 1 and cf(β) = ω1. Tasks can be ful�lled only in stages
in which all the inputs are evaluated. Let 〈Bε, Rε, Eε, ζε, fε : ε < ω1〉 ∈ Vβ

be a book-keeping. Let 〈βε : ε < ω1〉 be a continuously increasing sequence
with supremum β. By continuouity there is a continuous subsequence αε,
ε < ω1, such that for any γ ∈ αε, we have Bγ , Rγ , Eγ , ζγ , fγ ∈ Vαε . We
assume that α0 = 0. Now we construct a good pari.

We start with c̄0 = 〈{n} : n ∈ ω〉.
At limit steps ε we take the c̄ε v∗ c̄ζ for all ζ < ε.

We carry out the successor step, ε = δ + 1. Suppose c̄δ ∈ Vαδ is given.
We work until further notice in Vαδ . We strengthen c̄δ four times in order
to ful�l the current instance of the Hindman task, the Eisworth task, the
Blass�La�amme task, the sealing task and we call the outcome c̄δ+1 v c̄δ,
d̄δ+1. The names Bδ, Rδ, Eδ (in V0), ζδ, fδ and the handed down names for
members of F are elements of Vαδ and all the strengthening is done in Vαδ .
Now we leave Vαδ and go to Vαδ+1

. Thus we have a good pair. We showed
in case (c) that goodness implies that (I1), (I2), and (I4) are carried on. We
show now that (I3) follows from goodness: Since F is not meagre, the set

G1(Eε,F) =
{
Z ∈ [ω]ω ∩Vβ : (∃Y ∈ F)(∀a, b ∈ Z)(

[a, b) ∩ Y 6= ∅ → [a, b) ∩ Eε 6= ∅
)}(5.1)

is groupwise dense. For details see [9, Section 9]. So (∀c̄ ∈ (F)ω ∩Vβ)(∃b̄ v∗
c̄)(set(b̄) ∈ G1(Eε,F)). If already in Vαε there is such a b̄ v c̄2

ε then we let
c̄3
ε v∗ b̄ in the relevant intermediate step. Recall gβ(n) = |sβ ∩n|. Blass and
La�amme [10] showed that c̄3

ε ensures that Pβ+1  �g′′βEε = g′′βY ∈ gβ(F)�,

for a witness Y ∈ F that is as in Equation (5.1). Since F ∈ Vβ and every
task E ∈ E appears at co�nally many stages and since ful�lling the task for
E will be possible starting from some stage ε when a suitable member Y ∈ F
is seen, at some stage the task will be taken care of. �

So we have proved the main theorem.

6. Side results on cardinal characteristics

The negation of SFT implies g ≤ u. From the short proof of La�amme's
[20] theorem u < g → SFT in [9, Lemma 9.15, Theorem 9.22] we read o�
groupwise dense families that witness g ≤ u in our forcing extensions.
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Observation 6.1. In the ground model, we �x a basis {Eε : ε < ω1} for
the P -point E. Then we let

Gε = {Z ∈ [ω]ω : (∃S ∈ S)(∀m,n ∈ Z)([m,n) ∩ S 6= ∅ → [m,n) ∩ Eε 6= ∅)∧
(∃T ∈ [ω]ω)(T c 6∈ S ∧ (∀m,n ∈ Z)([m,n) ∩ T 6= ∅ → [m,n) ∩ Eε 6= ∅))}.

Since S is not comeagre and not meagre, the sets Gε are groupwise dense,
The intersection

⋂
ε<ω1

Gε = ∅ because S is not equal to E by �nite-to-one.

Now we renounce the P -point and the symmetry between S and its dual
{Xc : X ∈ [ω]ω r S} that comes with the ultra�lter E and go for a �nite
support construction of length κ+, κ regular.

Theorem 6.2. Let κ be a regular cardinal and assume ♦({α ∈ κ+ : cf(α) =
κ}). Then there is a �nite support iteration of c.c.c. forcings that forces
g = b = s = κ and gf = 2ω = κ+.

Proof. We start with a ground model in which 2ω = κ. There is a �nite sup-
port iteration of length κ+ of a variant of the iterands of the main theorem
in which all properties of E and the Eisworth tasks are dropped. Equation
⊕2 guarantees that M(C) adds an unbounded real (formerly we argued with
the ultra�lter U). If κ ≥ ω2, we force to get the lower bounds in the limit
steps of uncountable co�nality (less than κ) in the limit steps of construction
in the proof of Lemma 4.4, see page 8. These intermediate forcings have size
strictly less than κ, and hence preserve well-ordered block-swallowing fami-
lies by [3, Lemma 2.1]. Our families, coming from descending sequences, are
well-ordered: x ≺ y i� x = d̄δ and y = d̄ε and δ < ε. The requirements onto
this well-order are: At any point δ, the family {c̄ε : ε ≥ δ} is still block-
swallowing. In addition we can arrange the descending sequences so that any
splitting family of size less than κ gets destroyed. We iterate with �nite sup-
port. By [4, Theorem 6.4.13], �nite support limits of forcings that preserve
a block-swallowing family preserve that the family is block-swallowing.

Now we evaluate the invariants in the extension: The diamond hands
down groupwise dense ideals and thus as in case(d) of the induction lemma
we can arrange gf = κ+.

It is easy to see that any block-swallowing family has size at least b. Thus
the block-swallowing family out(C0), being of size κ, witnesses b ≤ κ.

The bounding number is κ, by Shelah's result that gf ≤ b+ [31]. The
splitting number is at least κ by arrangement.

We let [ω]ω ∩V0 be enumerated as {Xε : ε < κ}. We let

Gε = {Z ∈ [ω]ω : (∃S ∈ S)(∀m,n ∈ Z)([m,n) ∩ S 6= ∅ → [m,n) ∩Xε 6= ∅)}.
Since S is not comeagre, the family Gε is groupwise dense. Suppose for a
contradiction that Z ∈

⋂
ε<κ Gε, Z ∈ Vα. Hence S is mapped by the �nite-

to-one function fZ that takes the elements of the n-th Z-interval to n, into
the set of supersets of elements of [ω]ω∩V0. This implies that S is generated
by [ω]ω ∩Vα. However, the Matet real sα is ≤∗-unbounded over Vα, and
hence sα is not a superset of any in�nite set in Vα. Contradiction. The
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groupwise dense families Gε, ε < κ, witness g ≤ κ. By Proposition 1.1 we
get from gf = κ+ and s ≥ κ and g ≤ κ that g = κ and s = κ. �

In research it is a good custom to conclude with open questions.

Question 6.3. Is b < u < d consistent relative to ZFC?

Beside that we refer to the plethora of riddles in the third but last para-
graph of the introduction.

Acknowledgement. Part of the research was carried out in the fall of
2007 at the Gödel Center of the University of Vienna, and in the winter
of 2009/2010 at the Hebrew University in Jerusalem and at the Mittag Lef-
�er Institute, supported by an assistant's position at the University of Vi-
enna and by Marie Curie grant PIEF-2008-219292 of the European Union.
I thank Stevo Todor£evi¢ for his remarks about block sequences and Péter
Komjáth for encouragement to return to old problems. I thank Jörg Brendle
and Lyubomyr Zdomskyy for valuable comments. Biggest thanks go to the
referee for reading, spotting a gap in an earlier version and a detailed report.

References

[1] Uri Abraham. Proper forcing. In Matthew Foreman and Akihiro Kanamori, editors,
Handbook of Set Theory. Springer, 2010.

[2] Bohuslav Balcar and Petr Simon. Disjoint re�nement. In J. Donald Monk and R. Bon-
net, editors, Handbook of Boolean Algebras, vol. II, pages 35�67. North-Holland, Am-
sterdam, 1989.

[3] Tomek Bartoszy«ski and Haim Judah. On the co�nality of the smallest covering of
the real line by meager sets. J. Symbolic Logic, 54(2):828�832, 1989.

[4] Tomek Bartoszy«ski and Haim Judah. Set Theory, On the Structure of the Real Line.
A K Peters, 1995.

[5] Andreas Blass. Ultra�lters related to Hindman's �nite unions theorem and its ex-
tensions. In Stephen Simpson, editor, Logic and Combinatorics, Arcata, California,

1985, volume 65 of Contemp. Math., pages 89�124. Amer. Math. Soc., 1987.
[6] Andreas Blass. Applications of superperfect forcing and its relatives. In Juris Stepr	ans

and Steve Watson, editors, Set Theory and its Applications, volume 1401 of Lecture
Notes in Mathematics, pages 18�40, 1989.

[7] Andreas Blass. Groupwise density and related cardinals. Arch. Math. Logic, 30:1�11,
1990.

[8] Andreas Blass. Homogeneous sets from several ultra�lters. Topology Appl., 156:2581�
2594, 2009.

[9] Andreas Blass. Combinatorial cardinal characteristics of the continuum. In Matthew
Foreman and Akihiro Kanamori, editors, Handbook of set theory. Vols. 1, 2, 3, pages
395�489, Dordrecht, 2010. Springer.

[10] Andreas Blass and Claude La�amme. Consistency results about �lters and the num-
ber of inequivalent growth types. J. Symbolic Logic, 54:50�56, 1989.

[11] Andreas Blass and Saharon Shelah. There may be simple Pℵ1 - and Pℵ2 -points and the
Rudin-Keisler ordering may be downward directed. Ann. Pure Appl. Logic, 33:213�
243, 1987.

[12] Jörg Brendle. Mob families and mad families. Arch. Math. Logic, 37(3):183�197, 1997.
[13] Jörg Brendle. Distinguishing groupwise density numbers. Monatshefte für Mathe-

matik, 152(3):207�215, 2007.



18 HEIKE MILDENBERGER

[14] R. Michael Canjar. Mathias forcing which does not add dominating reals. Proc. Amer.
Math. Soc., 104:1239�1248, 1988.

[15] Todd Eisworth. Forcing and stable ordered-union ultra�lters. J. Symbolic Logic,
67:449�464, 2002.

[16] Vera Fischer and Juris Stepr	ans. The consistency of b = κ < s = κ+. Fund. Math.,
2001(3):283�293, 2008.

[17] Neil Hindman. Finite sums from sequences within cells of a partition of N . J. Combin.
Theory Ser. A, 17:1�11, 1974.

[18] Winfried Just and Claude La�amme. Classifying sets of measure zero with respect to
their open covers. Trans. Amer. Math. Soc., 321(2):621�645, 1990.

[19] Kenneth Kunen. Set Theory, An Introduction to Independence Proofs. North-Holland,
1980.

[20] Claude La�amme. Equivalence of families of functions on natural numbers. Trans.
Amer. Math. Soc., 330:307�319, 1992.

[21] Paul B. Larson. The �lter dichotomy and medial limits. J. Math. Log., 9(2):159�165,
2009.

[22] Heike Mildenberger. Groupwise dense families. Arch. Math. Logic, 40:93 �112, 2001.
[23] Heike Mildenberger and Saharon Shelah. Increasing the groupwise density number by

c.c.c. forcing. Ann. Pure Appl. Logic, 149(1-3):7�13, 2007.
[24] Heike Mildenberger and Saharon Shelah. The principle of near coherence of �lters does

not imply the �lter dichotomy principle. Trans. Amer. Math. Soc., 361:2305�2317,
2009.

[25] Heike Mildenberger and Saharon Shelah. Many countable support iterations of proper
forcings preserve Souslin trees. Ann. Pure Appl. Logic, 165(2):573�608, 2014.

[26] Heike Mildenberger, Saharon Shelah, and Boaz Tsaban. Covering the Baire space
with meager sets. Ann. Pure Appl. Logic, 140:60�71, 2006.

[27] Arnold Miller. There are no Q-points in Laver's model for the Borel conjecture. Proc.
Amer. Math. Soc., 78:103�106, 1980.

[28] Jacques Raisonnier. A Mathematical Proof of S. Shelah's Theorem on the Measure
Problem and Related Results. Israel J. Math., 49:48�56, 1984.

[29] Saharon Shelah. Proper forcing, volume 940 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin-New York, xxix+496 pp, 1982.

[30] Saharon Shelah. Proper and Improper Forcing, 2nd Edition. Springer, 1998.
[31] Saharon Shelah. Groupwise density cannot be much bigger than the unbounded num-

ber. Math. Logic Quart., 54:340�344, 2008.
[32] Michel Talagrand. Compacts de fonctions mesurables et �ltres non mesurables. Studia

Mathematicae, 67:13 � 43, 1980.

Heike Mildenberger, Albert-Ludwigs-Universität Freiburg, Mathematis-

ches Institut, Abteilung für math. Logik, Eckerstr. 1, 79104 Freiburg im

Breisgau, Germany

E-mail address: heike.mildenberger@math.uni-freiburg.de


