There may be infinitely many near coherence classes under $\mathfrak{u} < \mathfrak{d}$

Heike Mildenberger

Kurt Gödel Research Center for Mathematical Logic, University of Vienna

The First European Set Theory Meeting

Będlewo

July 8 – 13, 2007

Outline

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

 $f(\mathcal{F})$ contains less information than \mathcal{F} :

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

 $f(\mathcal{F})$ contains less information than \mathcal{F} :

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f:\omega\to\omega$ such that $f(\mathscr{F})\cup f(\mathscr{G})$ generates a proper filter.

If \mathcal{U} is an ultrafilter, then also $f(\mathcal{U})$ is an ultrafilter.

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f:\omega\to\omega$ such that $f(\mathscr{F})\cup f(\mathscr{G})$ generates a proper filter.

If $\mathscr U$ is an ultrafilter, then also $f(\mathscr U)$ is an ultrafilter.

Two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent if there is a finite-to-one function $f:\omega\to\omega$ such that $f(\mathscr{U})=f(\mathscr{V})$.

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f:\omega\to\omega$ such that $f(\mathscr{F})\cup f(\mathscr{G})$ generates a proper filter.

If $\mathscr U$ is an ultrafilter, then also $f(\mathscr U)$ is an ultrafilter. Two ultrafilters $\mathscr U$ and $\mathscr V$ are nearly coherent if there is a finite-to-one function $f\colon \omega \to \omega$ such that $f(\mathscr U)=f(\mathscr V)$.

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f:\omega\to\omega$ such that $f(\mathscr{F})\cup f(\mathscr{G})$ generates a proper filter.

If $\mathscr U$ is an ultrafilter, then also $f(\mathscr U)$ is an ultrafilter. Two ultrafilters $\mathscr U$ and $\mathscr V$ are nearly coherent if there is a finite-to-one function $f\colon \omega \to \omega$ such that $f(\mathscr U)=f(\mathscr V)$.

If $f(\mathcal{U}) = f(\mathcal{V})$ and $g(\mathcal{V}) = g(\mathcal{W})$, then there is a slower growing finite-to-one function h such that $h(\mathcal{U}) = h(\mathcal{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

Its classes are called near-coherence classes of ultrafilters.

If $f(\mathcal{U}) = f(\mathcal{V})$ and $g(\mathcal{V}) = g(\mathcal{W})$, then there is a slower growing finite-to-one function h such that $h(\mathcal{U}) = h(\mathcal{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

Its classes are called near-coherence classes of ultrafilters.

Two filters $\mathscr F$ and $\mathscr G$ are nearly coherent iff there are nearly coherent ultrafilters $\mathscr U$ and $\mathscr V$ such that $\mathscr U\supseteq \mathscr F$ and $\mathscr V\supseteq \mathscr G$. So "NCU" implies NCF.

If $f(\mathcal{U}) = f(\mathcal{V})$ and $g(\mathcal{V}) = g(\mathcal{W})$, then there is a slower growing finite-to-one function h such that $h(\mathcal{U}) = h(\mathcal{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

Its classes are called near-coherence classes of ultrafilters.

Two filters $\mathscr F$ and $\mathscr G$ are nearly coherent iff there are nearly coherent ultrafilters $\mathscr U$ and $\mathscr V$ such that $\mathscr U\supseteq\mathscr F$ and $\mathscr V\supseteq\mathscr G$. So "NCU" implies NCF.

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra) filters, NCF.

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF.

Conjecture: There is a model with exactly two near-coherence classes.

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF.

Conjecture: There is a model with exactly two near-coherence classes. Big open question: Other finite numbers.

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF.

Conjecture: There is a model with exactly two near-coherence classes. Big open question: Other finite numbers.

Excluded numbers

Theorem. Banakh, Blass, 2005

If there are infinitely many near-coherence classes of ultrafilters then there are $2^{2\omega}$ classes.

Theorem. Blass, 1987

 $\mathfrak{d} \leq \mathfrak{u}$ implies that there are infinitely many near-coherence classes of ultrafilters

Excluded numbers

Theorem. Banakh, Blass, 2005

If there are infinitely many near-coherence classes of ultrafilters then there are $2^{2\omega}$ classes.

Theorem. Blass, 1987

 $\mathfrak{d} \leq \mathfrak{u}$ implies that there are infinitely many near-coherence classes of ultrafilters.

Question. Banakh, Blass, 2005

Does $\mathfrak{u} < \mathfrak{d}$ imply that there are only finitely many near-coherence classes of ultrafilters?

Excluded numbers

Theorem. Banakh, Blass, 2005

If there are infinitely many near-coherence classes of ultrafilters then there are $2^{2\omega}$ classes.

Theorem. Blass, 1987

 $\mathfrak{d} \leq \mathfrak{u}$ implies that there are infinitely many near-coherence classes of ultrafilters.

Question. Banakh, Blass, 2005

Does $\mathfrak{u} < \mathfrak{d}$ imply that there are only finitely many near-coherence classes of ultrafilters?

Bases and characters, u

Definition

A set $\mathscr{B} \subseteq \mathscr{F}$ is called a base for \mathscr{F} if

 $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F).$

A set $\mathscr{B} \subseteq [\omega]^{\omega}$ is called a pseudobase for \mathscr{F} if $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F)$.

Bases and characters, u

Definition

A set $\mathscr{B} \subseteq \mathscr{F}$ is called a base for \mathscr{F} if

 $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F).$

A set $\mathscr{B}\subseteq [\omega]^\omega$ is called a pseudobase for \mathscr{F} if

 $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F).$

The smallest size of a base of \mathscr{F} is called $\chi(\mathscr{F})$, the character of \mathscr{F} .

Bases and characters, u

Definition

A set $\mathscr{B} \subseteq \mathscr{F}$ is called a base for \mathscr{F} if

 $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F).$

A set $\mathscr{B} \subseteq [\omega]^{\omega}$ is called a pseudobase for \mathscr{F} if

 $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F).$

The smallest size of a base of \mathscr{F} is called $\chi(\mathscr{F})$, the character of \mathscr{F} .

Taking the minimum over all ultrafilters

Definition

The ultrafilter characteristic $\mathfrak u$ is the minimal $\chi(\mathscr U)$ for a non-principal ultrafilter $\mathscr U$.

The reaping number \mathfrak{r} is the minimal cardinality of a pseudobase for a non-principal ultrafilter \mathscr{U} .

Taking the minimum over all ultrafilters

Definition

The ultrafilter characteristic $\mathfrak u$ is the minimal $\chi(\mathscr U)$ for a non-principal ultrafilter $\mathscr U$.

The reaping number \mathfrak{r} is the minimal cardinality of a pseudobase for a non-principal ultrafilter \mathscr{U} .

Theorem, Goldstern, Shelah, 1990 $\mathfrak{r} < \mathfrak{u}$ is consistent relative to ZFC.

But then $\mathfrak{d} \leq \mathfrak{u}$ by a theorem of Aubrey.

Taking the minimum over all ultrafilters

Definition

The ultrafilter characteristic $\mathfrak u$ is the minimal $\chi(\mathscr U)$ for a non-principal ultrafilter $\mathscr U$.

The reaping number $\mathfrak r$ is the minimal cardinality of a pseudobase for a non-principal ultrafilter $\mathscr U$.

Theorem, Goldstern, Shelah, 1990

 $\mathfrak{r} < \mathfrak{u}$ is consistent relative to ZFC.

But then $\mathfrak{d} \leq \mathfrak{u}$ by a theorem of Aubrey.

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$.

For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n: f(n) \leq g(n)\} \in \mathscr{F}$.

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$.

For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n: f(n) < g(n)\} \in \mathscr{F}$.

Definition

A family D is dominating $[\mathscr{F}$ -dominating] iff for every $f \in {}^{\omega}\omega$ there is some $g \in D$ such that $f \leq^* g$ $[f \leq_{\mathscr{F}} g]$.

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$.

For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n: f(n) < g(n)\} \in \mathscr{F}$.

Definition

A family D is dominating [\mathscr{F} -dominating] iff for every $f \in {}^{\omega}\omega$ there is some $g \in D$ such that $f \leq^* g$ [$f \leq_{\mathscr{F}} g$].

The dominating number \mathfrak{d} [the dominating number of \mathscr{F} , $\mathfrak{d}(\mathscr{F})$,] is the smallest cardinal of a dominating $[\mathscr{F}$ -dominating] family $D \subset {}^{\omega}\omega$

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$.

For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n: f(n) \leq g(n)\} \in \mathscr{F}$.

Definition

A family D is dominating $[\mathscr{F}$ -dominating] iff for every $f \in {}^{\omega}\omega$ there is some $g \in D$ such that $f \leq^* g$ $[f \leq_{\mathscr{F}} g]$.

The dominating number \mathfrak{d} [the dominating number of \mathscr{F} , $\mathfrak{d}(\mathscr{F})$,] is the smallest cardinal of a dominating $[\mathscr{F}$ -dominating] family $D \subset {}^{\omega}\omega$.

The role of \mathfrak{u} and \mathfrak{d}

u comes in as the minimal number of steps in constructing one representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size $\mathfrak d$ such that any two ultrafilters $\mathscr U$ and $\mathscr V$ are nearly coherent, if there is some $f\in D$ with $f(\mathscr U)=f(\mathscr V)$.

The role of \mathfrak{u} and \mathfrak{d}

 $\mathfrak u$ comes in as the minimal number of steps in constructing one representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size \mathfrak{d} such that any two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent, if there is some $f \in D$ with $f(\mathscr{U}) = f(\mathscr{V})$.

The construction of two non-nearly-coherent ultrafilters can be seen as a diagonalization with $\mathfrak u$ steps and $\mathfrak d$ tasks.

The role of \mathfrak{u} and \mathfrak{d}

 $\mathfrak u$ comes in as the minimal number of steps in constructing one representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size $\mathfrak d$ such that any two ultrafilters $\mathscr U$ and $\mathscr V$ are nearly coherent, if there is some $f\in D$ with $f(\mathscr U)=f(\mathscr V)$.

The construction of two non-nearly-coherent ultrafilters can be seen as a diagonalization with $\mathfrak u$ steps and $\mathfrak d$ tasks.

Candidates

models of $\mathfrak{u}<\mathfrak{d}$: The known models with *countable support* iterations fulfil the stronger inequality $\mathfrak{u}<\mathfrak{g}$, which implies NCF.

There is one type of model (from [BsSh:257], 1989) of $\mathfrak{u} < \mathfrak{d}$ gotten with a *finite support iteration* of c.c.c. partial orders.

Candidates

models of $\mathfrak{u}<\mathfrak{d}$: The known models with *countable support* iterations fulfil the stronger inequality $\mathfrak{u}<\mathfrak{g}$, which implies NCF. There is one type of model (from [BsSh:257], 1989) of $\mathfrak{u}<\mathfrak{d}$ gotten with a *finite support iteration* of c.c.c. partial orders.

Theorem. M.

It is consistent relative to ZFC that there are infinitely many near-coherence classes of ultrafilters and $\mathfrak{u} < \mathfrak{d}$.

Candidates

models of $\mathfrak{u}<\mathfrak{d}$: The known models with *countable support* iterations fulfil the stronger inequality $\mathfrak{u}<\mathfrak{g}$, which implies NCF. There is one type of model (from [BsSh:257], 1989) of $\mathfrak{u}<\mathfrak{d}$ gotten with a *finite support iteration* of c.c.c. partial orders.

Theorem. M.

It is consistent relative to ZFC that there are infinitely many near-coherence classes of ultrafilters and $\mathfrak{u} < \mathfrak{d}$.

Mathias reals

 ν

Mathias reals

Figure 1: A sketch of $V[(r_{\alpha}: \alpha < \delta)][(s_{\xi}: \xi < \nu)]$

Figure 1: A sketch of $V[(r_{\alpha}: \alpha < \delta)][(s_{\xi}: \xi < \nu)])$

The forcing construction

Let V be a ground model of CH. Let ν and δ be regular cardinals such that $\aleph_1 \leq \nu < \delta$.

First δ Cohen reals are added (or something else) in a finite support iteration, call them r_{α} , $\alpha < \delta$. Thereafter ν Mathias reals are added by Mathias forcings $Q(\mathcal{U}_{\xi})$, $\xi < \nu$, in a finite support support iteration. We call the whole forcing \mathbb{P} .

The forcing construction

Let V be a ground model of CH. Let ν and δ be regular cardinals such that $\aleph_1 \leq \nu < \delta$.

First δ Cohen reals are added (or something else) in a finite support iteration, call them r_{α} , $\alpha < \delta$. Thereafter ν Mathias reals are added by Mathias forcings $Q(\mathcal{U}_{\xi})$, $\xi < \nu$, in a finite support support iteration. We call the whole forcing \mathbb{P} .

The ultrafilters \mathscr{U}_{ξ} are carefully chosen (— at least P-points with no rapid ultrafilters below them in the Rudin-Keisler ordering by a result of Canjar, but not Ramsey ultrafilters as in the original Mathias forcing —) such that the Cohen reals are not bounded by fewer than δ reals in $V^{\mathbb{P}}$ and such that the Mathias reals s_{ξ} , $\xi < \nu$, generate an ultrafilter in $V^{\mathbb{P}}$.

The forcing construction

Let V be a ground model of CH. Let ν and δ be regular cardinals such that $\aleph_1 \leq \nu < \delta$.

First δ Cohen reals are added (or something else) in a finite support iteration, call them r_{α} , $\alpha < \delta$. Thereafter ν Mathias reals are added by Mathias forcings $Q(\mathcal{U}_{\xi})$, $\xi < \nu$, in a finite support support iteration. We call the whole forcing \mathbb{P} .

The ultrafilters \mathscr{U}_{ξ} are carefully chosen (— at least P-points with no rapid ultrafilters below them in the Rudin-Keisler ordering by a result of Canjar, but not Ramsey ultrafilters as in the original Mathias forcing —) such that the Cohen reals are not bounded by fewer than δ reals in $V^{\mathbb{P}}$ and such that the Mathias reals s_{ξ} , $\xi < \nu$, generate an ultrafilter in $V^{\mathbb{P}}$.

A variant of Mathias forcing

A forcing condition in $Q(\mathcal{U}_{\xi})$ is a pair (a, A), such that a is a finite set of natural numbers and $A \in \mathcal{U}_{\xi}$ and $\max(a) < \min(A)$.

A condition (b, B) extends (a, A) iff $B \subseteq A$ and $b \supseteq a$ and $b \setminus a \subseteq A$.

A variant of Mathias forcing

A forcing condition in $Q(\mathcal{U}_{\xi})$ is a pair (a,A), such that a is a finite set of natural numbers and $A \in \mathcal{U}_{\xi}$ and $\max(a) < \min(A)$. A condition (b,B) extends (a,A) iff $B \subseteq A$ and $b \supseteq a$ and $b \setminus a \subseteq A$.

In order to understand our proof it almost suffices to know that the forcing relation \Vdash of $Q(\mathcal{U}_{\xi})$ yields $(a,A) \Vdash a \subseteq s_{\xi} \subseteq a \cup A$. We use s_{ξ} for a $Q(\mathcal{U}_{\xi})$ -name of s_{ξ} .

A variant of Mathias forcing

A forcing condition in $Q(\mathcal{U}_{\xi})$ is a pair (a, A), such that a is a finite set of natural numbers and $A \in \mathcal{U}_{\xi}$ and $\max(a) < \min(A)$.

A condition (b, B) extends (a, A) iff $B \subseteq A$ and $b \supseteq a$ and $b \setminus a \subseteq A$.

In order to understand our proof it almost suffices to know that the forcing relation \Vdash of $Q(\mathcal{U}_{\xi})$ yields $(a,A) \Vdash a \subseteq s_{\xi} \subseteq a \cup A$. We use s_{ξ} for a $Q(\mathcal{U}_{\xi})$ -name of s_{ξ} .

For $\alpha \leq \delta$ and $\xi \leq \nu$ we set

$$V(\alpha,\xi) = V[(r_{\beta} : \beta < \alpha)][(s_{\eta} : \eta < \xi)].$$

Every real appears in some intermediate model

For $\alpha \leq \delta$ and $\xi \leq \nu$ we set

$$V(\alpha,\xi) = V[(r_{\beta} : \beta < \alpha)][(s_{\eta} : \eta < \xi)].$$

Every real appears in some intermediate model.

The really sophisticated part is to show for $\alpha \leq \delta$ and $\xi \leq \nu$ that the part of the ultrafilter \mathscr{U}_{ξ} in $V(\alpha+1,\xi)$ can be chosen such that no real with a $Q(\mathscr{U}_{\xi} \cap V(\alpha,\xi))$ -name is dominating r_{α} in the Mathias extension built with $\mathscr{U}_{\xi} \cap V(\alpha+1,\xi)$ over $V(\alpha+1,\xi)$ (nor in later extensions with larger first coordinate).

For $\alpha \leq \delta$ and $\xi \leq \nu$ we set

$$V(\alpha,\xi) = V[(r_{\beta} : \beta < \alpha)][(s_{\eta} : \eta < \xi)].$$

Every real appears in some intermediate model.

The really sophisticated part is to show for $\alpha \leq \delta$ and $\xi \leq \nu$ that the part of the ultrafilter \mathscr{U}_{ξ} in $V(\alpha+1,\xi)$ can be chosen such that no real with a $Q(\mathscr{U}_{\xi} \cap V(\alpha,\xi))$ -name is dominating r_{α} in the Mathias extension built with $\mathscr{U}_{\xi} \cap V(\alpha+1,\xi)$ over $V(\alpha+1,\xi)$ (nor in later extensions with larger first coordinate).

The forcing is arranged such that $s_{\xi} \subseteq^* s_{\eta}$ for $\eta < \xi$ and hence the generated ultrafilter is a simple P_{ν} -point, and by results of Blass and me, $\nu = \mathfrak{b} = \mathfrak{u}$.

For $\alpha \leq \delta$ and $\xi \leq \nu$ we set

$$V(\alpha,\xi) = V[(r_{\beta} : \beta < \alpha)][(s_{\eta} : \eta < \xi)].$$

Every real appears in some intermediate model.

The really sophisticated part is to show for $\alpha \leq \delta$ and $\xi \leq \nu$ that the part of the ultrafilter \mathscr{U}_{ξ} in $V(\alpha+1,\xi)$ can be chosen such that no real with a $Q(\mathscr{U}_{\xi} \cap V(\alpha,\xi))$ -name is dominating r_{α} in the Mathias extension built with $\mathscr{U}_{\xi} \cap V(\alpha+1,\xi)$ over $V(\alpha+1,\xi)$ (nor in later extensions with larger first coordinate).

The forcing is arranged such that $s_\xi \subseteq^* s_\eta$ for $\eta < \xi$ and hence the generated ultrafilter is a simple P_ν -point, and by results of Blass and me, $\nu = \mathfrak{b} = \mathfrak{u}$.

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S)$ and $X \setminus S$ are both infinite). The splitting number \mathfrak{s} is the smallest size of a splitting family.

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S)$ and $X \setminus S$ are both infinite). The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S)$ and $X \setminus S$ are both infinite). The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S)$ and $X \setminus S$ are both infinite). The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

If $\mathfrak{r} < \mathfrak{d}$ then $\mathfrak{r} = \mathfrak{u}$.

Conclusion: In $V^{\mathbb{P}}$, we have $\nu = \mathfrak{u} = \mathfrak{r}$.

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S)$ and $X \setminus S$ are both infinite). The splitting number \mathfrak{S} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

If $\mathfrak{r} < \mathfrak{d}$ then $\mathfrak{r} = \mathfrak{u}$.

Conclusion: In $V^{\mathbb{P}}$, we have $\nu = \mathfrak{u} = \mathfrak{r}$.

A small splitting family

Proposition

In $V^{\mathbb{P}}$, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, s_{ξ} , $\xi < \nu$, are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega : |s_{\xi} \cap n| \text{ is even} \}.$$

A small splitting family

Proposition

In
$$V^{\mathbb{P}}$$
, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, s_{ξ} , $\xi < \nu$, are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega : |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi}: \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$.

A small splitting family

Proposition

In
$$V^{\mathbb{P}}$$
, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, s_{ξ} , $\xi < \nu$, are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega : |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi} : \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$.

(We have $\mathfrak{s} = \nu$ in these models.)

A small splitting family

Proposition

In
$$V^{\mathbb{P}}$$
, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, s_{ξ} , $\xi < \nu$, are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega : |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi}: \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$. \square (We have $\mathfrak{s} = \nu$ in these models.)

Conclusion: In $V^{\mathbb{P}}$, we have $\mathfrak{s} \leq \nu = \mathfrak{u} = \mathfrak{r}$ and hence the $\mathfrak{r} < \mathfrak{s}$ -Theorem does not apply.

A small splitting family

Proposition

In
$$V^{\mathbb{P}}$$
, $\mathfrak{s} < \nu$.

Sketch of proof: Remember, s_{ξ} , $\xi < \nu$, are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega : |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi} : \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$. (We have $\mathfrak{s} = \nu$ in these models.)

Conclusion: In $V^{\mathbb{P}}$, we have $\mathfrak{s} \leq \nu = \mathfrak{u} = \mathfrak{r}$ and hence the $\mathfrak{r} < \mathfrak{s}$ -Theorem does not apply.

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_ξ , $\xi<\nu$.

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$.

By [BM] all ultrafilters $\mathscr U$ with $<\mathfrak d$ generators have $\mathrm{cf}(\omega^\omega/\mathscr U)=\mathfrak d>\mathfrak r$ and hence are nearly coherent to $\mathscr U_P.$

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$.

By [BM] all ultrafilters $\mathscr U$ with $<\mathfrak d$ generators have $\mathrm{cf}(\omega^\omega/\mathscr U)=\mathfrak d>\mathfrak r$ and hence are nearly coherent to $\mathscr U_P$.

We shall show that there is a filter \mathcal{H}_0 that is non-nearly-coherent to \mathcal{U}_P such that \mathcal{H}_0 extended by fewer than $\mathfrak{d}(\mathcal{H}_0)$ sets is not almost ultra.

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$.

By [BM] all ultrafilters $\mathscr U$ with $<\mathfrak d$ generators have $\mathrm{cf}(\omega^\omega/\mathscr U)=\mathfrak d>\mathfrak r$ and hence are nearly coherent to $\mathscr U_P$.

We shall show that there is a filter \mathcal{H}_0 that is non-nearly-coherent to \mathcal{U}_P such that \mathcal{H}_0 extended by fewer than $\mathfrak{d}(\mathcal{H}_0)$ sets is not almost ultra.

We shall get \mathcal{H}_0 from the Cohen reals.

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$.

By [BM] all ultrafilters $\mathscr U$ with $<\mathfrak d$ generators have $\mathrm{cf}(\omega^\omega/\mathscr U)=\mathfrak d>\mathfrak r$ and hence are nearly coherent to $\mathscr U_P$.

We shall show that there is a filter \mathcal{H}_0 that is non-nearly-coherent to \mathcal{U}_P such that \mathcal{H}_0 extended by fewer than $\mathfrak{d}(\mathcal{H}_0)$ sets is not almost ultra.

We shall get \mathcal{H}_0 from the Cohen reals.

$$X_{\alpha,\xi} = \{r_{\alpha}(n) : |s_{\xi} \cap n| \text{ even}\},$$

$$X_{\alpha,\xi} = \{r_{\alpha}(n) : |s_{\xi} \cap n| \text{ even}\},$$

 $\mathcal{H}_{\xi} = \{X_{\alpha,\xi} : \alpha < \delta\},$

$$\begin{array}{lcl} X_{\alpha,\xi} &=& \{r_{\alpha}(\mathbf{n}): |s_{\xi}\cap\mathbf{n}| \; \mathrm{even}\}, \\ \\ \mathscr{H}_{\xi} &=& \{X_{\alpha,\xi}: \alpha<\delta\}, \\ \\ \mathscr{H} &=& \{X_{\alpha,\xi}: \alpha<\delta, \xi<\nu, \xi \; \mathrm{is \; an \; even \; ordinal}\}, \end{array}$$

$$\begin{array}{lll} \textit{X}_{\alpha,\xi} &=& \{r_{\alpha}(\textit{n}) : |\textit{s}_{\xi} \cap \textit{n}| \; \text{even}\}, \\ \\ \textit{\mathscr{H}}_{\xi} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta\}, \\ \\ \textit{\mathscr{H}} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta, \xi < \nu, \xi \; \text{is an even ordinal}\}, \\ \\ \textit{\mathscr{H}}_{\text{full}} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta, \xi < \nu\}. \end{array}$$

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{lcl} \textit{X}_{\alpha,\xi} &=& \{r_{\alpha}(\textit{n}) : |\textit{s}_{\xi} \cap \textit{n}| \; \text{even}\}, \\ \\ \textit{\mathscr{H}}_{\xi} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta\}, \\ \\ \textit{\mathscr{H}} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta, \xi < \nu, \xi \; \text{is an even ordinal}\}, \\ \\ \textit{\mathscr{H}}_{\text{full}} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta, \xi < \nu\}. \end{array}$$

Lemma

 $\mathscr{H}_{\mathrm{full}}$ has the finite intersection property.

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{lcl} \textit{X}_{\alpha,\xi} &=& \{r_{\alpha}(\textit{n}) : |\textit{s}_{\xi} \cap \textit{n}| \; \text{even}\}, \\ \\ \textit{\mathscr{H}}_{\xi} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta\}, \\ \\ \textit{\mathscr{H}} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta, \xi < \nu, \xi \; \text{is an even ordinal}\}, \\ \\ \textit{\mathscr{H}}_{\text{full}} &=& \{\textit{X}_{\alpha,\xi} : \alpha < \delta, \xi < \nu\}. \end{array}$$

Lemma

 $\mathscr{H}_{\text{full}}$ has the finite intersection property.

$f(\mathscr{H}_0) \not\subseteq f(\mathscr{U}_P)$

Lemma

For every $\xi < \nu$, for every $Y \in V(\delta, \xi)$ for every $\alpha_i < \delta$, i < k, we have: If $Y \cap \bigcap_{i < k} \operatorname{range}(r_{\alpha_i})$ is infinite, then the set

$$Y \cap \bigcap_{0 \le i < k} X_{\alpha_i, \xi}$$

is infinite.

Lemma

For every finite-to-one f, $f(\mathcal{H}_0) \not\subseteq f(\mathcal{U}_P)$.

$f(\mathcal{H}_0) \not\subseteq f(\mathcal{U}_P)$

Lemma

For every $\xi < \nu$, for every $Y \in V(\delta, \xi)$ for every $\alpha_i < \delta$, i < k, we have: If $Y \cap \bigcap_{i < k} \operatorname{range}(r_{\alpha_i})$ is infinite, then the set

$$Y \cap \bigcap_{0 \le i < k} X_{\alpha_i, \xi}$$

is infinite.

Lemma

For every finite-to-one f, $f(\mathcal{H}_0) \not\subseteq f(\mathcal{U}_P)$.

So \mathcal{H}_0 and \mathcal{U}_P are not nearly coherent, and thus we have at least two near coherence classes of ultrafilters.

$f(\mathcal{H}_0) \not\subseteq f(\mathcal{U}_P)$

Lemma

For every $\xi < \nu$, for every $Y \in V(\delta, \xi)$ for every $\alpha_i < \delta$, i < k, we have: If $Y \cap \bigcap_{i < k} \operatorname{range}(r_{\alpha_i})$ is infinite, then the set

$$Y \cap \bigcap_{0 \le i < k} X_{\alpha_i, \xi}$$

is infinite.

Lemma

For every finite-to-one f, $f(\mathcal{H}_0) \not\subseteq f(\mathcal{U}_P)$.

So \mathcal{H}_0 and \mathcal{U}_P are not nearly coherent, and thus we have at least two near coherence classes of ultrafilters.

Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among the supersets of \mathcal{H}_0 .

Proposition. Banakh, Blass, 2005

If a filter $\mathscr F$ and a ultrafilter $\mathscr U$ are not nearly coherent, then $\mathfrak d(\mathscr F) \leq \chi(\mathscr U).$

Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among the supersets of \mathcal{H}_0 .

Proposition. Banakh, Blass, 2005

If a filter $\mathscr F$ and a ultrafilter $\mathscr U$ are not nearly coherent, then $\mathfrak d(\mathscr F) \leq \chi(\mathscr U).$

So in
$$V^{\mathbb{P}}$$
, $\mathfrak{d}(\mathscr{H}_0) \leq \nu$.

Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among the supersets of \mathcal{H}_0 .

Proposition. Banakh, Blass, 2005

If a filter $\mathscr F$ and a ultrafilter $\mathscr U$ are not nearly coherent, then $\mathfrak d(\mathscr F) \leq \chi(\mathscr U).$

So in $V^{\mathbb{P}}$, $\mathfrak{d}(\mathscr{H}_0) \leq \nu$.

Small test sets

Let $t(\mathscr{F})$ be the smallest size of a test set for near coherence in $[\mathscr{F}] = \{\mathscr{G} : \mathscr{G} \text{ filter}, \mathscr{G} \supseteq \mathscr{F}\}.$

Proposition. Banakh, Blass, 2005 $t(\mathscr{T}) < 2(\mathscr{T})$

Small test sets

Let $t(\mathscr{F})$ be the smallest size of a test set for near coherence in $[\mathscr{F}] = \{\mathscr{G} : \mathscr{G} \text{ filter}, \mathscr{G} \supseteq \mathscr{F}\}.$

Proposition. Banakh, Blass, 2005

$$t(\mathscr{F}) \leq \mathfrak{d}(\mathscr{F}).$$

So, in $V^{\mathbb{P}}$, $t(\mathscr{H}_0) \leq \nu$.

Small test sets

Let $t(\mathscr{F})$ be the smallest size of a test set for near coherence in $[\mathscr{F}] = \{\mathscr{G} : \mathscr{G} \text{ filter}, \mathscr{G} \supseteq \mathscr{F}\}.$

Proposition. Banakh, Blass, 2005

$$t(\mathscr{F}) \leq \mathfrak{d}(\mathscr{F}).$$

So, in $V^{\mathbb{P}}$, $t(\mathscr{H}_0) \leq \nu$.

A tree of near-coherence classes

Lemma. Slight generalization of Blass, 1987

If all extensions of \mathcal{H}_0 by fewer than $t(\mathcal{H}_0)$ sets are not almost ultra, then we can construct infinitely many pairwise non-nearly coherent ultrafilters by an induction of length $t(\mathcal{H}_0)$.

So our proof is finished with

Lemma

In $V^{\mathbb{P}}$, each extension of \mathscr{H}_0 by fewer than ν sets is not almost ultra.

and we do not need to construct the desired tree explicitly.

A tree of near-coherence classes

Lemma. Slight generalization of Blass, 1987

If all extensions of \mathcal{H}_0 by fewer than $t(\mathcal{H}_0)$ sets are not almost ultra, then we can construct infinitely many pairwise non-nearly coherent ultrafilters by an induction of length $t(\mathcal{H}_0)$.

So our proof is finished with

Lemma

In $V^{\mathbb{P}}$, each extension of \mathscr{H}_0 by fewer than ν sets is not almost ultra.

and we do not need to construct the desired tree explicitly.

Jason Aubrey. Combinatorics for the Dominating and the Unsplitting Numbers. J. Symbolic Logic, 69:482–498, 2004.

Taras Banakh and Andreas Blass. The Number of Near-Coherence Classes of Ultrafilters is Either Finite or 2°. Set Theory (Proceedings of the Special Year in Set Theory in Barcelona, 2003/2004). Pages 257 – 273. Eds. J. Bagaria and S. Todorcevic. Series: Trends in Mathematics. Birkhaeuser, 2006.

Andreas Blass. Near coherence of filters, II: Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups. Trans. Amer. Math. Soc., 300:557–581, 1987.

Andreas Blass. Groupwise density and related cardinals. Arch. Math. Logic, 30:1–11, 1990.

Andreas Blass and Claude Laflamme. Consistency results about filters and the number of inequivalent growth types. J. Symbolic Logic, 54:50–56, 1989.

Andreas Blass and Heike Mildenberger. On the cofinality of ultrapowers. J. Symbolic Logic, 64:727–736, 1999.

Andreas Blass and Saharon Shelah. [BsSh:242]. There may be simple $P_{\aleph_1}\text{- and }P_{\aleph_2}\text{-points and the Rudin-Keisler ordering may be downward directed. Ann. Pure Appl. Logic, 33:213–243, [BsSh:242], 1987.$

Andreas Blass and Saharon Shelah. [BsSh:287]. Near coherence of filters III: A simplified consistency proof. Notre Dame J. Formal Logic, 30:530–538, [BsSh:287], 1989.

Andreas Blass and Saharon Shelah. [BsSh:257]. Ultrafilters with small generating sets. Israel J. Math., 65:259–271, [BsSh:257], 1989.

Jörg Brendle. Distinguishing Groupwise Density Numbers. Preprint, 2006.

Martin Goldstern and Saharon Shelah. Ramsey ultrafilters and the reaping number— $\mathrm{Con}(\mathfrak{r}<\mathfrak{u}).$ Ann. Pure Appl. Logic, 49, 1990.

Heike Mildenberger. Groupwise dense families. Arch. Math. Logic, 40:93 –112, 2000.

Heike Mildenberger. There may be infinitely many near coherence classes under $\mathfrak{u}<\mathfrak{d},$ to appear in JSL

Heike Mildenberger. On the groupwise density number for filters. Acta Univ. Carolinae - Math. et Phys., 46:55–63, 2005.

Heike Mildenberger, Saharon Shelah, and Boaz Tsaban. Covering the Baire Space with Meager Sets, [MdShTs:847]. Ann. Pure Appl. Logic 140:60–71, 2006.