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Ostaszewski’s guessing principle ♣

Definition
♣ is the abbreviation of the following statement:

(∃〈Aα : α ∈ ω1, lim(α)〉)

(Aα is cofinal in α and

∀X ⊆unc ω1{α ∈ ω1 : Aα ⊆ X} is stationary).

Theorem, Devlin
♣+ CH ↔ ♦.
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Separating ♣ from ♦

Theorem, Shelah, Baumgartner
♣+ ¬CH is consistent relative to ZFC.

In the recent years, more models of

♣+ ci = c > ℵ1,

for some cardinal characteristics ci have been found by Fuchino, Shelah,
Soukup, Džamonja and Shelah, Brendle.
No particularly easy construction has yet come up.
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Two weakenings of the ♣-principle

Definition
♣w is the abbreviation of the following statement:

(∃〈Aα : α ∈ ω1, lim(α)〉)

(Aα is cofinal in α and

(∀X ⊆unc ω1){α ∈ ω1 : Aα ⊆∗ X} is stationary).

Definition
♣w2 is the abbreviation of the following statement:

(∃〈Aα : α ∈ ω1, lim(α)〉)

(Aα is cofinal in α and

(∀X ⊆unc ω1){α ∈ ω1 : Aα ⊆∗ X ∨ Aα ⊆∗ αr X} is stationary).
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A weakening of ♣w in another direction

Definition

|• is the abbreviation of the folllowing statement:

(∃〈Aα : α ∈ ω1, lim(α)〉)

(Aα is countably infinite and ∀X ⊆unc ω1∃αAα ⊆ X ).

|• follows from the CH.
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A longstanding open question

Question, Juhász
Does ♣ imply the existence of a Souslin tree?

Stronger version of the question if heading for a negative answer
Is ♣ together with all Aronszajn trees are special consistent relative to
ZFC?
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Special Aronszajn trees

Recall, a specialisation of an Aronszajn tree T = (ω1, <T) is a function
f : ω1 → Q such that for any s, t ∈ ω1, s <T t → f (s) < f (t). We call
such a function monotone.
A special Aronszajn tree has an uncountable antichain. “All Aronszajn trees
are special” is strictly stronger than “there are no Souslin trees”.
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Bad news about forcings with good reflection properties

Suppose that P = 〈Pβ,Q
˜
α : α < ω2, β ≤ ω2〉 is a countable support

iteration of proper forcings with the ℵ2-c.c. Suppose that it forces
“|•+ ¬CH” or ♣w. Then by the properties of names for objects in P(ω1),
the guessing sequence is already in some intermediate model.
However, then no Souslin trees can be destroyed any more, because
uncountable branches and uncountable antichains can be guessed in the
intermediate model and hence cannot come in only later in the iteration.
So any Souslin tree existing in the intermediate model will be Souslin in the
final extension.
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♣w2 does not have this obstruction

Theorem
“♣w2 + CH + all Aronszajn trees are special” is consistent relative to ZFC.

Based on techniques from MdSh:848.
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Weak diamonds

Definition, Moore, Hrušák, Džamonja
Let A,B ⊆ R be Borel and let E ⊆ A× B be Borel in R2. ♦(A,B,E ) is
the following principle:

(∀F : 2<ω1 → A)(∃gF : ω1 → B)(∀f : ω1 → 2)

{α ∈ ω1 : F (f � α)EgF (α)}is stationary.
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♣w2 and the weak diamond for the reaping relation

Observation
The weak diamond for the reaping relation, i.e.,
♦(2ω, [ω]ω, is almost constant on), implies ♣w2 .

Proof: For α < ω, fix some hα : ω → α such that range(hα) has ordertype
ω and is cofinal in α.
Define F � 2α : 2α → 2ω by

F (f � α)(n) = f (hα(n)).
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Shifting realms of constancy

We assume that gF : ω1 → [ω]ω is a guessing function as in the weak
diamond for the reaping relation.
Then for every f : ω1 → 2,
{α < ω1 : F (f � α) is almost constant on gF (α)} =

{α < ω1 : n 7→ f (hα(n)) is almost constant on gF (α)} =

{α < ω1 : β 7→ f (β) is almost constant on h
′′
αgF (α)}.

So
Aα = h

′′
αgF (α)

gives a ♣w2-sequence.
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An extension of 848

Theorem
“♦(reaping) + CH + all Aronszajn trees are special” is consistent relative
to ZFC.
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Cichoń’s diagram of weak diamonds

♦(reaping)

��

$$HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

♦(Cov(N ))

��

♦(Unif(M))

��

oo ♦(Cof(M))

��

oo ♦(Cof(N ))oo

��

♦(ωω, ωω, 6≥∗)

��

♦(ωω, ωω,≤∗)

��

oo

♦(Add(N )) ♦(Add(M))oo ♦(Cov(M))oo ♦(Unif(N ))oo

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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Connections: Weak diamonds, CH or not, and Souslin trees

Theorem, Moore, Hrušák, Džamonja
♦(M,R, 63) implies that there is a Souslin tree.

Theorem, Laver plus a bit Moore, Hrušák, Džamonja
♦(N ,R, 63) + ¬CH+ “all Aronszajn trees are special” is consistent.

Theorem, Hirschorn
♦(N ,R, 63) + CH+ “there are no Souslin trees” is consistent.

Theorem, M Shelah 848
♦(R,N ,∈) + CH+ “all Aronszajn trees are special” is consistent.
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Non-Connections: The club and weak diamonds

Theorem, Fuchino, Shelah, Soukup
♣ and cov(M) = ℵ2 is consistent relative to ZFC.

Theorem, Brendle
♣ and cov(N ) = ℵ2 is consistent relative to ZFC.

Theorem, Džamonja, Shelah
♣ and add(M) = ℵ2 is consistent relative to ZFC.
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Weak diamond versus “cardinal equals ℵ1”

Fact
The weak diamond for a relation implies that the cardinal from the relation
is ℵ1.

Example, Brendle
cof(M) = ℵ1 does not imply ♦(M,M,⊆).

Just force with an iteration of all Souslin trees in a countable support
iteration giving each of them a cofinal branch. So there is no Souslin tree.
Because of the Sacks property, cof(M) stays small. By Moore Hrušák and
Džamonja, ♦(M,M,⊆) would also imply that there is a Souslin tree.
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Connections: The club principle and Souslin trees

Theorem, Brendle
♣ and cof(M) = ℵ1 implies the existence of a Souslin tree.

Theorem, MdSh:778, Hirschorn
d = ℵ1 < c and “all Aronszajn trees are special” is consistent.

Theorem, M.
♦(ωω, ωω,≤∗) and ¬CH and “all Aronszajn trees are special” is consistent.
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Iterations of lengths ℵ2 adding no reals

Specialising Aronszajn trees adding no reals with a very good completeness
system. New techniques to compute in a Borel manner generics filters over
countable models that have suprema.
Recall, p ∈ P is (M,P)-generic if for every P-generic filter G over V with
p ∈ G , p  M[G

˜
] ∩ On = M ∩ On.

An (M,Pγ)-generic filter G is called bounded if there is a q ∈ Pγ such that
G = {p ∈ M ∩ Pγ : p ≤ q}.
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Forcings with side conditions

Now we work with monotone functions f , that specialise only a part of T,
namely the union of countably many of its levels, so that the indices of the
levels form a closed set C . We call such a pair (f ,C ) an approximation.

Definition

H ⊆ Q[Tγ ]n is called dispersed iff for each t ∈ [Tγ ]<ω, there is some h ∈ H
such that t ∩ dom(h) = ∅.
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Promises

Definition
(See Definition 4.1 (4) in [AbSh:403].) Γ is a T-promise iff dom(Γ) is club
in ω1 and Γ = 〈Γ(γ) : γ ∈ dom(Γ)〉 has the following properties:

(a) For each γ ∈ dom(Γ), Γ(γ) is a countable set of requirements of height
γ.

(b) (∀γ ∈ dom(Γ))(∀H ∈ Γ(γ)) H is dispersed.

(c) (∀α0 < α1 ∈ dom(Γ))(Γ(α0) ⊇ {Hdα0 : H ∈ Γ(α1)}). Here,
Hdα0 = {hdα0 : h ∈ H}, and for h : Tα1 → Q we let
dom(hdα0) ⊆ Tα0 and hdα0(x) = min{h(y) : ydα0 = x , y ∈ dom(h)}.
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The iterands

Definition
(Def. 4.2 [AbSh:403]) QT is the set of (f ,C , Γ) such that (f ,C ) is an
approximation, and Γ is a promise and (f ,C ) fulfils Γ. The partial order is
defined as “(f1,C1, Γ1) is stronger than (f0,C0, Γ0)” iff

(1) f1 extends f0,

(2) C1 is an end-extension of C0 and C1 r C0 ⊆ dom(Γ0), and

(3) (∀γ ∈ dom(Γ0 r last(f1))(γ ∈ dom(Γ1) and Γ0(γ) ⊆ Γ1(γ)).

If p = (f ,C , Γ), we write f = f p , C = Cp and Γ = Γp, and we write
last(p) = last(f p) = max(Cp).
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A reflection property

Why does every Aronszajn tree in VPω2 have a Pα-name for some α < ω2?
We have |QT| = ℵ2, so that we cannot work with the ℵ2-chain condition
for each iterand. Now Chapter VIII, Section 2 of [Sh:f] helps: Each QT has
the ℵ2-p.i.c. (proper isomorphism condition), see Chapter VIII, Def. 2.2 of
[Sh:f], and hence by Chapter VIII, Lemma 2.4 [Sh:f], Pω2 has the ℵ2-c.c, if
V0 fulfils the CH.
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Completeness systems

Definition
(Chapter V, 5.5 [Sh:f])

(1) We call D a completeness system if for some µ, D is a function defined on the set of triples 〈M,P, p〉,
p ∈ M ∩ P, P ∈ M, M ≺ (H(µ),∈), M countable such that D(M,P, p) is a family of non-empty subsets of

Gen(M,P, p) ={G : G ⊆ M ∩ P,G is directed and p ∈ G

and G ∩ I 6= ∅

for every dense subset I of P which belongs to M}.

(2) We call D a λ-completeness system if each family D(M,P, p) has the property that the intersection of any i
elements is non-empty for i < 1 + λ (so for λ ≥ ℵ0, D(M,P, p) generates a filter). ℵ1-completeness systems
are also called countably closed completeness systems.

(3) We say D is on µ if M ≺ (H(µ),∈). We do not always distinguish strictly between D and its definition.
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Adding no reals in the limit steps

If all iterands are D-complete and < ω1 proper, then no reals are added in
the countable support iteration.
Abraham’s handbook article on “Proper forcing”.
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Many generic filters over small models

Definition
Suppose that D is a completeness system on χ. We say P is D-complete, if
for every countable M ≺ (H(χ),∈) with P ∈ M, D ∈ M, p ∈ P ∩M, the
following set contains as a subset a member of D(M,P, p):

Gen+(M,P, p) = {G ∈ Gen(M,P, p) :

there is an upper bound for G in P}.
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Simplicity: All is given by real parameters

Definition
(Chapter V, 5.5 [Sh:f]) A completeness system D is called simple if there is a first
order formula ψ such that

D(M,P, p) = {Ax : x is a finitary relation on M, i.e.,

x ⊆ Mk for some k ∈ ω},

where

Ax = {G ∈ Gen(M,P, p) : (M ∪ P(M),∈, p,M,P) |= ψ(x ,G )}.
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Our completeness system

Lemma
QT is D-complete for the simple ℵ1-completeness system D given by ψ(x,G) = ψ0(x) ∧ ψ1(x,G), with

ψ0(x) ≡x = (x1, x2, β̄) ∧ β̄ = 〈βn : n ∈ ω〉 increasing

∧M ∩ ω1 =
[
{βn : n < ω}

and

ψ1(x,G) ≡(∀ε > 0)(∃m < ω)(∀n1 < n2 ∈ [m, ω))(∀t ∈ Tµ)(∀y1, y2 <T t)„
(y1 ∈ Tβn1

∧ y2 ∈ Tβn2
∧ y1 <T y2 → f

˜
[G ](y2) < f

˜
[G ](y1) +

ε

2n2

«
∧ “G is a filter”

∧ p ∈ G ∧ ∀D ∈ M((D ⊆ P ∧ D dense in P)→ D ∩ G 6= ∅)

∧ (∀H ∈ x2)(∀n)(∀t ∈ [Tβn ]<ω)(∃h ∈ H)

(dom hdβn ∩ t = ∅ ∧ f
˜

[G ] � Tβn fulfils hdβn).

Here M, P, x and G appear in the formulas as (names for) predicates and p is a constant. To ease readability, we
write Tµ instead of x1 (though Tµ is not a subset of M) and

S
γ≥µ Γp(γ)dµ instead of x2.
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Computing bounded generic filters by Borel functions

Lemma
Let p ∈ QT ∩M. Let µ = otp(M ∩ ω1) = sup〈βn : n < ω〉, βn+1 > βn . Let c : ω → M be a bijection with
c(0) = QT, c(1) = p, c(2n + 2) = βn , and let

U = U(M,QT, p) = {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2) + 1 : c(n1) <
∗
χ c(n2)}.

We let η stand for function from ω to ω and we let the functions hy,β̄ and hp,Hn be defined as to code the levels
and the promises on the levels.
There is a Borel function B1 : ωω × P(ω)→ P(ω), such that if

(∀y ∈ Tµ)(hy,β̄ ≤
∗
η) (3.1)

and
(∀x ∈ Tlast(p))(∀n)(hp,Hn (l(·)) ≤∗ η) (3.2)

for
G = {c(n) : n ∈ B1(η,U)}

the following holds: G is (M,QT)-generic and p ∈ G and there is an upper bound r of G.
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Version of the previous lemma for iterated forcing

Theorem
Let Pω2 = 〈Pα,Q

˜
β : α ≤ ω2, β < ω2〉 be a countable support iteration of iterands of the form QT. If χ is

sufficiently large and regular and if M ≺ (H(χ),∈, <∗χ) is a countable elementary model and

(a) Pγ ∈ M, γ ≤ ω2,

(b) p ∈ Pγ ∩M,

(c) α = otp(M ∩ γ),

(d) Let β̄ be cofinal in M ∩ ω1. Let c : ω → M be a bijection with c(0) = Pγ , c(1) = p, c(2n + 2) = βn , and let

U = U(M,Pγ , p) = {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2) + 1 : c(n1) <
∗
χ c(n2)}.

Then there is a Borel function B = Bα : (ωω)α × P(ω)→ P(ω), such that in the following game a(M,Pγ,p) the

generic player has a winning strategy σ, which depends only on the isomorphism type of (M,∈, <∗χ,Pγ , p, β̄):

(α) a play lasts α moves,

(β) in the ε-th move the generic player chooses some real νε and the antigeneric player chooses some ηε ∈ ωω ,
such that ηε 6≤∗ νε,
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Continuation

Continuation
(γ) in the end the generic player wins iff the following is true:

Gγ = {c(n) : n ∈ Bα(〈ηε : ε < α〉,U)} is (M,Pγ )-generic and

p ∈ Gγ and

(∃q ∈ Pγ )(p ≤ q and q bounds Gγ ).
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Choosing a suitable argument η̄

Lemma
Suppose that

(α) γ < ω1, and

(β) B′ is a Borel function from (ωω)γ to 2ω,

Then we can find some C = CB′ such that

(a) C ∈ [ω]ω,

(b) in the following game a(γ,B′) between two players, IN and OUT, the player IN
has a winning strategy, the play lasts γ moves and in the ε-th move OUT
chooses νε ∈ ωω and then IN chooses ηε 6≤∗ νε. In the end IN wins iff
B′(〈ηε : ε < γ〉) is almost constant on C.
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