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& is the abbreviation of the following statement:

(F(Aq : a € wi,lim(@)))
(As is cofinal in a and

VX Cune wi{a € wi : Ay C X} is stationary).
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& is the abbreviation of the following statement:

(3(Aa @ a € wy,lim(a)))

(As is cofinal in a and

VX Cune wi{a € wi : Ay C X} is stationary).

&+ CH « <.
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& - —CH is consistent relative to ZFC. '
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& - —CH is consistent relative to ZFC.

Sewmngdfono
Peen s oungros

In the recent years, more models of
& +ci=c> Ny,

for some cardinal characteristics ¢/ have been found by Fuchino, Shelah,
Soukup, DZzamonja and Shelah, Brendle.
No particularly easy construction has yet come up.
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&, is the abbreviation of the following statement:

(F(Aq : @ € wr,lim()))
(A, is cofinal in a and

(VX Cune w1){a € w1 : Ay CF X} is stationary).
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Two weakenings of the &-principle

Definition
&, is the abbreviation of the following statement:
(F(Aq : a € wr, lim(w)))
(As is cofinal in v and
(VX Cune w1){a € w1 : Ay CF X} is stationary).
Definition
&> is the abbreviation of the following statement:
(F(Aq : a € wr, lim(w)))
(A, is cofinal in v and
(VX Cunc w1){a € wy : Ay CF XV A, CF o\ X} is stationary).
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T is the abbreviation of the folllowing statement:

(F(Aq : @ € wr,lim(@)))
(A, is countably infinite and VX Cype widaA, C X).
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T is the abbreviation of the folllowing statement:

(F(Aq : @ € wr,lim(@)))
(A, is countably infinite and VX Cype widaA, C X).

T follows from the CH.
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Does & imply the existence of a Souslin tree? '
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Does & imply the existence of a Souslin tree? I

Is & together with all Aronszajn trees are special consistent relative to
ZFC?
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Recall, a specialisation of an Aronszajn tree T = (w1, <T) is a function
f:w; — Q such that for any s, t € wy, s <t t — f(s) < f(t). We call

such a function monotone.
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Special Aronszajn trees

Recall, a specialisation of an Aronszajn tree T = (w1, <T) is a function
f:wi — Q such that for any s, t € wy, s <t t — f(s) < f(t). We call
such a function monotone.

A special Aronszajn tree has an uncountable antichain. “All Aronszajn trees

are special” is strictly stronger than “there are no Souslin trees”.
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Bad news about forcings with good reflection properties

Suppose that P = (P3,Qn : @ < w2, 3 < wp) is a countable support
iteration of proper forcings with the Ny-c.c. Suppose that it forces

T + = CH" or &,. Then by the properties of names for objects in &?(w1),
the guessing sequence is already in some intermediate model.
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Bad news about forcings with good reflection properties

Suppose that P = (P3,Qn : @ < w2, 3 < wp) is a countable support
iteration of proper forcings with the Ny-c.c. Suppose that it forces

T + = CH" or &,. Then by the properties of names for objects in &?(w1),
the guessing sequence is already in some intermediate model.

However, then no Souslin trees can be destroyed any more, because
uncountable branches and uncountable antichains can be guessed in the
intermediate model and hence cannot come in only later in the iteration.
So any Souslin tree existing in the intermediate model will be Souslin in the

final extension.
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“&,2 + CH + all Aronszajn trees are special” is consistent relative to ZFC.
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“&,2 + CH + all Aronszajn trees are special” is consistent relative to ZFC.

Based on techniques from MdSh:848.
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Let A, B C R be Borel and let E C A x B be Borel in R?. {(A,B,E) is
the following principle:

(VF: 259t — A)(Jgr: w1 — B)(Vf: w1 — 2)
{a € w1 : F(f | a)Egr(«)}is stationary.
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The weak diamond for the reaping relation, i.e.,

(2, [w]”, is almost constant on), implies &.,,2.
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The weak diamond for the reaping relation, i.e.,

(2, [w]”, is almost constant on), implies &.,,2.

Proof: For a < w, fix some h,: w — « such that range(h,) has ordertype
w and is cofinal in a.
Define F | 2%: 2% — 2% by

F(f T a)(n) = f(ha(n)).
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We assume that gr: w1 — [w]® is a guessing function as in the weak
diamond for the reaping relation.
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We assume that gr: w1 — [w]® is a guessing function as in the weak
diamond for the reaping relation.
Then for every f: wi — 2,

{a <w1 : F(f | ) is almost constant on gr(a)} =
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We assume that gr: w1 — [w]® is a guessing function as in the weak
diamond for the reaping relation.
Then for every f: wi — 2,

{a <w1 : F(f | ) is almost constant on gr(a)} =

{a <w1 : n— f(hy(n)) is almost constant on gr(a)} =

) D“Ydlﬁﬁ set thééri wérks‘ﬁ&ﬁi'l



Shifting realms of constancy

We assume that gr: w1 — [w]® is a guessing function as in the weak
diamond for the reaping relation.

Then for every f: wy — 2,

{a <wiy : F(f | @) is almost constant on ge(a)} =

{a < w1 : n— f(hy(n)) is almost constant on gr(a)} =
{oo < wy : B+ f(B) is almost constant on h.gr(c)}.

So
Aa = h/o/ng(a)

gives a &, 2-sequence.
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“O(reaping) + CH + all Aronszajn trees are special” is consistent relative
to ZFC.
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Cichon's diagram of weak diamonds

{(reaping)

O(Cov(A) =——P(Unif(M)) | <—— [ (Cof(M)) | <——[ O (Cof (A))

|

Ow?,w, 2* Ow?,wv, <¥)

l |

O(Add(N)) <—— O(Add(M)) <—— ¢(Cov(M)) <—— $(Unif(N))

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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O(reaping)

O(Cov(A/))\<—’\Q\(Unif(M)) |<—| O(Cof(M)) |<— O(Cof(N))

O(ww,w“’y?_‘* O(wwvww’g*)

l |

O(Add(NV)) <—— O(Add(M)) <—— (Cov(M)) <—— O (Unif(V))

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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O(reaping)

O(Cov(A/))\<—’\Q\(Unif(M)) |<—| O(Cof(M)) |<— O(Cof(N))

O(ww,w‘”,?_‘* O(wwvww’g*)

l |

O(Add(NV)) <—— O(Add(M)) <—— O(Cov(M)) <—— O(Unif(V))

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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O(reaping)

O(Cov(A/))\<—’\Q\(Unif(M)) |<—| O(Cof(M)) |<— O(Cof(N))

O(ww,w‘”,?_‘* O(Wwvwwvg*)

l |

O(Add(NV)) <—— O(Add(M)) <—— (Cov(M)) <—— O (Unif(V))

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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O(reaping)

O(Cov(N))\<—’\Q\(Unif(M)) |<—| O(Cof(M)) |<— O(Cof(N))

O(ww,w“’y?_‘* O(wwvww’g*)

l |

O(Add(NV)) <—— O(Add(M)) <—— O(Cov(M)) <—— O (Unif(N))

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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{(reaping)

O(Cov(A/))\<—’\Q\(Unif(M)) |<—| O(Cof(M)) |<— O(Cof(N))

O(ww,w‘”,?_‘* O(wwvww’g*)

l |

O(Add(NV)) <—— O(Add(M)) <—— (Cov(M)) <—— O (Unif(V))

Figure: The framed weak diamonds imply the existence of a Souslin tree. The
arrows indicate implications.
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O(M, R, %) implies that there is a Souslin tree. l
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O(M, R, %) implies that there is a Souslin tree. I

O(N, R, %) + =CH+ "all Aronszajn trees are special” is consistent.
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O(M, R, #) implies that there is a Souslin tree.

O(N, R, F) + =CH+ “all Aronszajn trees are special” is consistent. I
O(N, R, %) + CH+ “there are no Souslin trees” is consistent. '

) D“Ydlﬁﬁ set thééri wérks‘%ﬁi'l



Connections: Weak diamonds, CH or not, and Souslin trees

Theorem, Moore, Hrusak, Dzamonja
O(M, R, Z) implies that there is a Souslin tree.

Theorem, Laver plus a bit Moore, Hrusak, Dzamonja
SN, R, F) + ~CH+ “all Aronszajn trees are special” is consistent.

Theorem, Hirschorn
O(N, R, F) + CH+ “there are no Souslin trees” is consistent.

Theorem, M Shelah 848
O(R, N, €) + CH+ "“all Aronszajn trees are special” is consistent.
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& and cov(M) = X5 is consistent relative to ZFC. l
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& and cov(M) = X5 is consistent relative to ZFC. l

& and cov(N) = Xy is consistent relative to ZFC.
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& and cov(M) = X5 is consistent relative to ZFC.

& and cov(N) = Xy is consistent relative to ZFC. I
& and add(M) = Ry is consistent relative to ZFC. I
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The weak diamond for a relation implies that the cardinal from the relation
is Nl.
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The weak diamond for a relation implies that the cardinal from the relation
is Nl.

cof(M) = Ry does not imply $(M, M, C).

) D“Ydlﬁﬁ set thééri wérks‘ﬁ&ﬁi'l



Weak diamond versus “cardinal equals N;"

Fact

The weak diamond for a relation implies that the cardinal from the relation
is Nl.

Example, Brendle
cof (M) = N; does not imply $(M, M, Q).

Just force with an iteration of all Souslin trees in a countable support
iteration giving each of them a cofinal branch. So there is no Souslin tree.
Because of the Sacks property, cof(M) stays small. By Moore Hrusak and
Dzamonja, (M, M, C) would also imply that there is a Souslin tree.
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& and cof(M) = Ry implies the existence of a Souslin tree. l
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& and cof(M) = Ry implies the existence of a Souslin tree. l

0 = N; < ¢ and “all Aronszajn trees are special” is consistent.
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& and cof(M) = Ry implies the existence of a Souslin tree.

0 = N; < ¢ and “all Aronszajn trees are special” is consistent. '

O(w?,w”, <*) and =CH and “all Aronszajn trees are special” is consistent.

) D“Ydlﬁﬁ set thééri wérks‘ﬁ&ﬁi'l



: D“Ydlﬁ"\ﬁ set thé6=r¥ w%rks‘ﬁ&ﬁ'l



Specialising Aronszajn trees adding no reals with a very good completeness
system. New techniques to compute in a Borel manner generics filters over
countable models that have suprema.
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lterations of lengths N, adding no reals

Specialising Aronszajn trees adding no reals with a very good completeness
system. New techniques to compute in a Borel manner generics filters over
countable models that have suprema.

Recall, p € P is (M, P)-generic if for every P-generic filter G over V with
pe G, plkM[G]NOn=Mn On.
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lterations of lengths N, adding no reals

Specialising Aronszajn trees adding no reals with a very good completeness
system. New techniques to compute in a Borel manner generics filters over
countable models that have suprema.

Recall, p € P is (M, P)-generic if for every P-generic filter G over V with
pe G, plkM[G]NOn=Mn On.

An (M, P, )-generic filter G is called bounded if there is a g € P, such that
G={peMnP,: p<q}
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Forcings with side conditions

Now we work with monotone functions f, that specialise only a part of T,
namely the union of countably many of its levels, so that the indices of the
levels form a closed set C. We call such a pair (f, C) an approximation.
Definition

H C QI™1" is called dispersed iff for each t € [T,]<*, there is some h € H
such that t Ndom(h) = 0.
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Promises

Definition
(See Definition 4.1 (4) in [AbSh:403].) T is a T-promise iff dom(I") is club
inwi and ' = (I'(v) : v € dom(I")) has the following properties:
(a) For each v € dom(I'), I'(y) is a countable set of requirements of height
5.
(b) (Vy € dom(IN))(VH € T'(vy)) H is dispersed.
(c) (Voo < a1 € dom(N))(M(cwo) 2 {H[awp : H € T(a1)}). Here,
Hlag = {h[ag : h € H}, and for h: T, — Q we let
dom(h[ag) C Ta, and hlag(x) = min{h(y) : y[ao = x,y € dom(h)}.
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The iterands

Definition

(Def. 4.2 [AbSh:403]) Qr is the set of (f, C,T) such that (f, C) is an
approximation, and I is a promise and (f, C) fulfils I'. The partial order is
defined as “(f, C1,T1) is stronger than (fy, Co,To)" iff

(1) f extends fy,

(2) G is an end-extension of Cy and G\ Gy € dom(lp), and

(3) (Vv € dom(lg \ last(f))(y € dom(I'1) and Fo(7y) C M1(7)).

If p=(f,C,I"), we write f =fP, C=CPand [l =TP, and we write
last(p) = last(fP) = max(CP).
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A reflection property

Why does every Aronszajn tree in VP~2 have a P,-name for some a < w,?
We have |Qt| = X2, so that we cannot work with the Np-chain condition
for each iterand. Now Chapter VIII, Section 2 of [Sh:f] helps: Each Qt has
the Np-p.i.c. (proper isomorphism condition), see Chapter VIII, Def. 2.2 of

[Sh:f], and hence by Chapter VIII, Lemma 2.4 [Sh:f], P,, has the Np-c.c, if
Vo fulfils the CH.
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(Chapter V, 5.5 [Sh:f])

(1) We call D a completeness system if for some p, D is a function defined on the set of triples (M, P, p),
pEMNP, PeM, M= (H(n), €), M countable such that D(M, P, p) is a family of non-empty subsets of

Gen(M,P,p) ={G : G C MNP,G is directed and p € G
and GNZ #0
for every dense subset Z of P which belongs to M}.
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Completeness systems

Definition
(Chapter V, 5.5 [Sh:f])

(1) We call D a completeness system if for some p, D is a function defined on the set of triples (M, P, p),
peEMNP, PeM, M= (H(n), €), M countable such that D(M, P, p) is a family of non-empty subsets of

Gen(M,P,p) ={G : G C MNP, G is directed and p € G
and GNZ #0

for every dense subset 7 of P which belongs to M}.

(2) We call D a A-completeness system if each family D(M, P, p) has the property that the intersection of any i
elements is non-empty for i < 1+ X (so for A > Rg, D(M, P, p) generates a filter). Rj-completeness systems
are also called countably closed completeness systems.

(3) We say D is on p if M < (H(i), €). We do not always distinguish strictly between D and its definition.
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If all iterands are D-complete and < wy proper, then no reals are added in
the countable support iteration.
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If all iterands are D-complete and < wy proper, then no reals are added in
the countable support iteration.
Abraham’s handbook article on “Proper forcing”.
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Many generic filters over small models

Definition

Suppose that D is a completeness system on . We say P is D-complete, if
for every countable M < (H(x),€) with Pe M, D e M, p € PN M, the
following set contains as a subset a member of D(M, P, p):

Gent (M, P,p) = {G € Gen(M, P, p) :
there is an upper bound for G in P}.

“Youing set theory workshc/>p”,
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(Chapter V, 5.5 [Sh:f]) A completeness system D is called simple if there is a first
order formula v such that

D(M, P, p) = {A : x is a finitary relation on M, i.e.,
x C MK for some k € w},

where

A, ={G € Gen(M,P,p) : (MUP(M),e,p, M,P) E ¢(x,G)}.

) D“Ydlﬁﬁ set thééri wérks‘%ﬁi'l



Our completeness system

Lemma
Q is D-complete for the simple Ri-completeness system I given by 1(x, G) = o(x) A ¥1(x, G), with

ho(x) =x = (x1,x2,B8) A B = (Bn :

1 n € w) increasing

/\Mﬂwl—U{@n:n<w}

and
P1(x, G) =(Ve > 0)(Im < w)(Vny < n2 € [m, w))(Vt € Ty)(Vy1,y2 <t t)

€
(02 € Tapy A2 € Ty Aya <732 = £lGI2) < £1G100) + 5o )

A “G is a filter”
Ap€E GAVD € M(D C PAD denseinP) — DN G #0)
A (VH € x2)(¥n)(Vt € [T5,1<“)(3h € H)
(domh[Bn Nt =0 A f[G] | Tg,, fulfils h[Bn).
Here M, P, x and G appear in the formulas as (names for) predicates and p is a constant. To ease readability, we

write T, instead of x1 (though T, is not a subset of M) and U’YZH IP(~y)[p instead of x2.
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Computing bounded generic filters by Borel functions

Lemma

Letp € Qr N M. Let p =otp(M Nwy) =sup{Bn : N < w), Bnt1 > Bn. Let c: w — M be a bijection with
c(0) = Q1, c(1) = p, c(2n + 2) = Bp, and let

U = UWM,Qr,p) = {2e(n,n2) : c(m) € c(n2)} U {2e(m,n2) + 1 : c(m) <} c(n2)}.
We let n stand for function from w to w and we let the functions hy 3 and hy, . be defined as to code the levels

and the promises on the levels.
There is a Borel function By : w* X P(w) — P(w), such that if

(Vy € Tu)(hy 5 <* ) (3.1)

(VX € Tiage(p))(¥N)(hp, 1, (1)) <™ 1) (3:2)

for
G ={c(n) : n€Bai(n U)}

the following holds: G is (M, Qt)-generic and p € G and there is an upper bound r of G.
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Version of the previous lemma for iterated forcing

Theorem

Let Py, = (PR3 Qs a<w2,B < wz) be a countable support iteration of iterands of the form Q. If x is
sufficiently large and regular and if M < (H(x), €, <;‘<) is a countable elementary model and

(a) Py eM, vy < w2,

(b) pe Py N M,

(c) a =otp(M N ),

(d) Let 3 be cofinal in M N wy. Let c: w — M be a bijection with c(0) = P.,, c(1) = p, c(2n + 2) = 3, and let

U = UM, Py,p) = {2e(m,n2) : c(m) € c(m)} U {2e(n,n2) +1 : c(m) <} c(n2)}

Then there is a Borel function B = B, : (w“)® X P(w) — P(w), such that in the following game E)(M,P,\, .p) the
generic player has a winning strategy o, which depends only on the isomorphism type of (M, €, <;, P+, p, B)
(e) a play lasts o moves,

in the e-th move the generic player chooses some real v, and the antigeneric player chooses some € wv,
g ¢ & 8 ¢ MNe
such that 7. g* Ve,
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() in the end the generic player wins iff the following is true:

Gy ={c(n) : n € Ba((ne : € < ), U)} is (M, P )-generic and
pE Gy and
(3g € Py)(p < q and q bounds G-).
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Choosing a suitable argument 7

Lemma
Suppose that
(o) v < w1, and

(B) B’ is a Borel function from (w*)Y to 2¥,
Then we can find some C = Cg/ such that
(a) C € [w]”,

(b) in the following game O, g/y between two players, IN and OUT, the player IN
has a winning strategy, the play lasts v moves and in the e-th move OUT
chooses v. € w* and then IN chooses 1. £* v.. In the end IN wins iff

B'({n. : € < 7)) is almost constant on C.

m 1
Young set theory workshop”,
H. Mildenberger (Univ of Vienna) Clubs and diamonds /1



	Outline
	Survey
	Three club principles
	Weak Diamonds
	Survey of results

	Technique: Forcing weak diamonds
	Adding no reals
	Computing generic filters


