More results on non-elementary proper forcings

Heike Mildenberger and Saharon Shelah

Universität Freiburg, Mathematisches Institut, Abteilung für Logik http://home.mathematik.uni-freiburg.de/mildenberger

Third European Set Theory Meeting, Edinburgh, (July 3 - 8, 2011), July 7 2011

1/26

A brief introduction to non-elementary proper forcing

Definition

 $(\mathbb{P}, \leq_{\mathbb{P}})$ is proper iff: For any regular $\chi > 2^{2^{|\mathbb{P}|}}$, for any $p \in P$ and $N \prec (H(\chi), \in, <)$ with $P, p \in N$ there is a stronger condition q such that q is (N, P)-generic. q is (N, P)-generic iff the following holds: For any $D \in N$: If

 $N\models D \text{ is dense in }\mathbb{P}$

then

$$q \Vdash G_{\mathbb{P}} \cap D \neq \emptyset.$$

3 / 26

Take the first definition is now strengthened: Existence of generic conditions is required for more countable \in -structures $N \models \mathsf{ZFC}^*$.

For example we think of M' = M[g] for some g that "makes things more convenient" and is not related to \mathbb{P} . $N \prec H(\chi)$, $M = \pi_N(M)$, the collapse. So M is as usual.

 $N[g] \prec H(\chi)[g]$, and $M[g'] \subseteq H(\chi)$ if g' is small. Still: $N[g], M[g'] \models \mathsf{ZFC}^*$. We consider definable forcings: $(\mathbb{P},\leq_{\mathbb{P}})=(\varphi_{\mathbb{P}},\varphi_{\leq_{\mathbb{P}}}).$

 $N^{\mathbb{P}}$ is the interpretation of $(\varphi_{\mathbb{P}}, \varphi_{\leq_{\mathbb{P}}})$ in N. Now, of course $N \cap \mathbb{P} \neq \mathbb{P}^N$ is now possible.

We add absoluteness requirements: $\varphi_{\mathbb{P}}$ and $\varphi_{\leq_{\mathbb{P}}}$ are upwards absolute.

5/26

Then $(\mathbb{P}^N, \leq_{\mathbb{P}}^N) = (N \cap \mathbb{P}, \leq_{\mathbb{P}} \cap N \times N).$

Given $D \in N$ that is dense in \mathbb{P} , from outside we can find a maximal antichain $\langle p_n \mid n \in \omega \rangle$ in D. Then "q is generic" implies that $\langle p_n \mid n \in \omega \rangle$ is predense above q. Let us put this fact to two fomulae

 $\begin{array}{l} \varphi(\langle p_n \ | \ n \in \omega \rangle) \text{ and} \\ \varphi^+(\langle p_n \ | \ n \in \omega \rangle \hat{} q) \end{array}$

that hold in V. Now the aim is, given p and $\langle p_n \mid n \in \omega \rangle$ to compute such a q in an absolute way, ideally Borel.

Then the outcome of the computation is a condition in N, and the computation is repeated with this starting point and with the next dense set D'. The chain of results should have a common strengthening, an (N, \mathbb{P}) generic condition.

$q_{n+1} \ge_n q_n$ such that $\varphi^+(D_n, q_{n+1})$.

Given N, \mathbb{P} , p we compute in some $N' \supseteq N$, $N \in N'$, $N' \models \mathsf{ZFC}^*$, $N' \subseteq V$, and get in N' a result q.

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ● 臣 - ののの

8/26

We compare the computation to that in V, and want:

 $N'\models q \text{ is } (N,\mathbb{P},p)\text{-generic.}$ implies

q is $(N,\mathbb{P},p)\text{-generic.}$

Let $T \in N \prec H(\chi)$ be a Souslin tree. $\mathbb{P} \in N$.

Idee:

We look at the question whether \mathbb{P} preserves T not in $\pi_N(N)$ but in the Levy extension that changes the height of T to ω .

Now let \mathbb{P} be a nep forcing.

We want to find a an easy criterion when \mathbb{P} preserves Souslin trees: Let $(T, <_T)$ be a Souslin tree. \mathbb{P} preserves T, if in for any \mathbb{P} -generic Filter $G_{\mathbb{P}}$,

 $V[G_{\mathbb{P}}] \models (T, <_T)$ is a Souslin tree.

We consider only normal Souslin trees. Adding a branch amounts to adding an uncountable antichain. So the Souslin tree can be destroyed by destroying ω_1 or by adding an uncountable antichain.

In this criterion, the Souslin tree $(T, <_T)$ is considered as a forcing \mathbb{Q} adding a branch to T. Stronger conditions in $\leq_{\mathbb{Q}}$ are nodes higher up in the Souslin tree.

Definition

Let $Y \subseteq T$. We say T is (Y, \mathscr{S}) -proper iff $Y \subseteq T$ and $\mathscr{S} \subseteq [\omega_1]^{\omega}$ and for every sufficiently large χ for every countable $N \prec \mathscr{H}(\chi)$ with $\{T, \mathscr{S}\} \subset N$ and $N \cap \omega_1 \in \mathscr{S}$, $\delta = N \cap \omega_1$ for every $t \in Y \cap T_{\delta}$,

$$T_{$$

is (N,T) generic.

Every Souslin tree T is $(T, [\omega_1]^{\omega})$ -proper and every (Y, S)-proper (for a stationary S and stationarily many levels in Y) tree T is Souslin.

Definition

We say \mathbb{P} is (T, Y, \mathscr{S}) -preserving iff the following holds: Let $\mathscr{S} \subseteq \omega_1$ be stationary and let T be a Souslin tree, $Y \subseteq T$. For every $N \prec \mathscr{H}(\chi)$ with $\{Y, T, \mathbb{P}, \mathscr{S}\} \subseteq N$ and $p \in \mathbb{P} \cap N$: if $\sup(N \cap \omega_1) = \delta$, $N \cap \omega_1 \in \mathscr{S}$, and for every $t \in Y \cap T_{\delta}$, $T_{<t}$ is (N, \mathbb{P}, p) -generic, then there is $q \geq_{\mathbb{P}} p$ such that q is (N, \mathbb{P}) -generic and

 $q \Vdash_{\mathbb{P}} (\forall t \in Y \cap T_{\delta})(T_{< t} \text{ is } (N[\mathbf{G}_{\mathbb{P}}], T)\text{-generic}).$

Let $N \prec H(\chi)$ and $(T, < T) \in N$, $\mathbb{P}, p \in N$. P shall be nep in a strong sense. We add a suitable generic g of the Levy collapse of ω_1 to ω to M.

 $M = \pi_N(N).$

Forcing with a normal Souslin tree can look like Cohen forcing

$$\ln M = \pi_N''N, N \prec H(\chi), (T, <_T) \in N.$$

Then $T \cap M$ is $(T_{<\delta}, <_T)$ where $\delta = \omega_1 \cap M$.

In M[g] , g a ${\rm Coll}(\omega,\delta)\text{-generic reals over }M$, $(T,<_T)$ looks like the Cohen partial order.

Preserving the Cohen genericity of $T_{< t}$ over M[g] follows from preserving any Cohen real

Let $t \in T_{\delta}$. Then $T_{\leq t}$ is a branch through T in N and hence if T is c.c.c in N, $T_{\leq t}$ is (N, T) generic. Let $\mathbb{R} = \operatorname{Col}(\omega, \delta)$, $\delta = \omega_1 \cap M$

Now: There is a Levy collapse-generic g over M such that $T_{< t}$ is $(M[g],(T,<_T))\text{-generic, so Cohen generic.}$

Let \mathcal{I} be a an $\mathbb{R}\text{-name}$ for a dense subset of T. Then

$$\{q \in \mathbb{R} \mid \exists \nu \in Tq \not\vDash_{\mathbb{R}} \nu \notin \mathcal{I}\}$$

is dense in \mathbb{R} .

 $M[g] \models T_{<t}$ is Cohen generic, $p \in \mathbb{P}^{M[g]}$. Wish: There is an $(M[g], \mathbb{P})$ -generic $q \ge p$ such that $q \Vdash_{\mathbb{P}} "M[g][G_{\mathbb{P}}] \models T_{<t}$ is Cohen generic."

Definition

Let \mathbb{P} be a proper forcing notion. We say \mathbb{P} is ω -Cohen preserving iff the following holds: For every $N \prec \mathscr{H}(\chi)$ such that $\mathbb{P} \in N$, for every $p \in \mathbb{P} \cap N$ for every $\{x_n \mid n \in \omega\}$ such that every x_n is a Cohen real over N, there is an (N, \mathbb{P}) -generic condition $q \geq p$ such that

 $q \Vdash (\forall n \in \omega)(x_n \text{ is Cohen over } N[\mathbf{G}_{\mathbb{P}}]).$

<ロト < 課 ト < 注 ト < 注 ト - 注

19/26

Definition

Let \mathbb{P} be a proper forcing notion. We say \mathbb{P} is ω -Cohen preserving over candidates iff the following holds: For every candidate $N \subseteq \mathscr{H}(\chi)$ such that $\mathbb{P} \in N$, for every $p \in \mathbb{P} \cap N$ for every $\{x_n \mid n \in \omega\}$ such that every x_n is a Cohen real over N, there is an (N, \mathbb{P}) -generic condition $q \geq p$ such that

$$q \Vdash (\forall n \in \omega)(x_n \text{ is Cohen over } N[\mathbf{G}_{\mathbb{P}}]).$$

back to the uncountable forcings

$M, p T_{< t}, \ t \in T_{\delta}$

$T_{< t}, \ t \in T_{\delta}$

$M, p T_{< t}, \ t \in T_{\delta}$

$q', M[G_{\mathbb{P}}] \qquad T_{< t}, \ t \in T_{\delta}$

$M, p \qquad M[g] \qquad \qquad T_{< t}, \ t \in T_{\delta}$

$T_{< t}, t \in T_{\delta}$

$M,p \qquad M[g] \qquad q, M[g][G_{\mathbb{P}}] \qquad T_{< t}, \ t \in T_{\delta}$

$T_{< t}, \ t \in T_{\delta}$

$M,p \qquad \quad M[g] \qquad \quad q, M[g][G_{\mathbb{P}}] \qquad \quad T_{< t}, \; t \in T_{\delta}$

$q', M[G_{\mathbb{P}}] \qquad T_{< t}, \ t \in T_{\delta}$

If M_1 is a $(\bar{\varphi}, \mathfrak{B}, \operatorname{ZFC}^*)$ -candidate and $M_1 \models "M_0$ is a $(\bar{\varphi}, \mathfrak{B}, \operatorname{ZFC}^*)$ -candidate and $p \in \mathbb{P}^{M_0}$ " then then there is $q \in \mathbb{P}^{M_1}$, $q \ge p$ such that $M_1 \models "q$ is (M_0, \mathbb{P}) -generic" and such that in \mathbf{V} , q is (M_0, \mathbb{P}) -generic

Many definable forcings (definitions with parameters in $H(\omega_1)$) fulfil the criterion.

Examples: Tree forcings, creature forcings.

Counterexamples: Cohen forcing, random forcing, Blass-Shelah forcing.

Theorem

Suppose $(\bar{\varphi}, \mathfrak{B}, \operatorname{ZFC}^*)$ is a definition of \mathbb{P} that is non-elementary proper and fulfils the criterion on existence of generics in candidates.

Suppose that \mathbb{P} is ω -Cohen preserving for $(\bar{\varphi}, \mathfrak{B}, \operatorname{ZFC}^*)$ -candidates. Then \mathbb{P} preserves Souslin trees.

- Let $\ensuremath{\mathbb{P}}$ be a forcing destroying Souslin trees and not adding reals, for example
- the NNR forcing from the Proper and Improper Forcing book
- Jensen's forcing for the relative consistency of SH and CH.
- These forcings are proper and do not add reals. So for elementary submodels N, they are Cohen preserving. They are non-elementary proper to some extent.
- Cohen preserving over candidates. back to Cohen preserving over candidates

$$q \Vdash (\forall t \in \pi_N(Y(\delta)))(\pi_N(T_{\leq_T t}) \text{ is } (M[\mathbf{G}_{\mathbb{P}}], \pi_N(T))\text{-generic})$$

and q is $(M, \mathbb{P})\text{-generic}.$ (2.1)

Now we get from the latter

 $(\exists q_3 \ge \pi_N(p))(q \Vdash ``(\forall t \in \pi_N(Y(\delta))) \\ \pi_N(T_{<_T t}) \text{ is } (N[\mathbf{G}_{\mathbb{P}}], \pi_N(T))\text{-generic'' and } q_3 \text{ is } (N, \mathbb{P})\text{-generic}).$ (2.2)

イロト イポト イヨト イヨト 二日

26 / 26