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Countable tightness

All topological spaces considered are regular.

Definition
A topological space (X, τ) is called countably tight if for every
A ⊆ X and x ∈ A if X is in the closure of A, then there is a
countable subset B of A such that x is in the closure of B.
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L-spaces

Definition
A topological space (X, τ) is called Lindelöf if every open cover has
a countable subcover.

Definition
A topological space (X, τ) is called hereditarily Lindelöf if every
subspace is Lindelöf.

Definition
A topological space (X, τ) is called an L-space if it is hereditarily
Lindelöf and not separable.
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Existence

Theorem, Moore
There is an L-space.
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Additional wishes

Theorem, Todorčević
Under the assumption (K),

any regular space Z with countable tightness such that
Zn is Lindelöf for all n ∈ ω has no L-subspace.

�

6 / 18



The combinatorial principle K

Todorčević 1989

Definition
Let S be an uncountable set and let [S]<ω = K0 ∪K1 be a
partition. Then this is called a c.c.c. partition of all singletons are
in K0 and K0 is closed under subsets and every uncountable subset
of K0 has two elements whose union is in K0.

Definition
The principle (K) says: For any c.c.c. partition (S,K0,K1) there is
an uncountable H ⊆ S such that [H]2 ⊆ K0. If we replace 2 by
the finite number m in the dimension (still partitioning into two
parts) we get (Km).

7 / 18



The combinatorial principle K

Todorčević 1989

Definition
Let S be an uncountable set and let [S]<ω = K0 ∪K1 be a
partition. Then this is called a c.c.c. partition of all singletons are
in K0 and K0 is closed under subsets and every uncountable subset
of K0 has two elements whose union is in K0.

Definition
The principle (K) says: For any c.c.c. partition (S,K0,K1) there is
an uncountable H ⊆ S such that [H]2 ⊆ K0. If we replace 2 by
the finite number m in the dimension (still partitioning into two
parts) we get (Km).

7 / 18



The combinatorial principle K

Todorčević 1989

Definition
Let S be an uncountable set and let [S]<ω = K0 ∪K1 be a
partition. Then this is called a c.c.c. partition of all singletons are
in K0 and K0 is closed under subsets and every uncountable subset
of K0 has two elements whose union is in K0.

Definition
The principle (K) says: For any c.c.c. partition (S,K0,K1) there is
an uncountable H ⊆ S such that [H]2 ⊆ K0. If we replace 2 by
the finite number m in the dimension (still partitioning into two
parts) we get (Km).

7 / 18



A predecessor

Theorem, Szentmiklóssy 1977
Assume MAω1 . Let Z be a compact space with countable
tightness. Then Z has no L-subspaces.
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P -ideals

An ideal I on a set S is a P -ideal, if for every countable J ⊆ I
there exists I ∈ I such that J ⊆∗ I for all J ∈J .

We say that T ⊂ S is locally in (resp. orthogonal to) the ideal I ,
if [T ]ω ⊆ I (resp. P(T ) ∩I = [T ]<ω).
We consider only ideals I ⊆ [S]≤ω containing all singletons.
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Two P -ideal dichotomy principles

Todorčević

WPID
For every P -ideal on an uncountable set S, either S contains an
uncountable subset locally in I , or an uncountable subset
orthogonal to I .

PID
For every P -ideal on an uncountable set S, either S contains an
uncountable subset locally in I , or S can be decomposed into
countably many pieces orthogonal to I .
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Restrictions

We write PIDκ for the restriction of PID for sets S of size at most
κ,

and we write PID(ω1-generated) for the the restriction of PID for
P -ideals I with at most ω1 generators.

Similarly with WPID (here “W” stands for “weak”), but WPIDκ is
obviously equivalent to WPIDω1 for every cardinal κ.
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A new premise

Theorem
� follows from p > ω1 and the WPID.
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Strengths?

An iterated forcing adding ℵ2 reals and doing the
Abraham-Todorčević forcing from with a suitable book-keeping
shows that PID restricted to ω1-generated P -ideals together with
2ω = ℵ2 is consistent relative to ZFC.

But the proof of our first Theorem uses the WPID restricted to
P -ideals on ω1 which are not necessarily ω1-generated in the final
model, and we do not know the strength of the condition.
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Not stronger than ZFC

Nevertheless, the conclusion of the Theorem is equiconsistent with
ZFC, since countable support iterations of proper forcings have
sufficiently strong reflection properties and we actually do not use
the WPID for all P -ideals on ω1.

Theorem
The conjunction of MAω1 , PID for ω1-generated ideals on ω1, and
� is consistent relative to the consistency of ZFC.
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Getting ¬K

As the following theorem shows, the previous Theorem adds more
cases as compared with Todorčević’s theorem.

Theorem
The following is consistent: PID(ω1-generated) and p > ω1, �, and
there is a non-special Aronszajn tree. Therefore, PID(ω1-generated)
and p > ω1 does not imply (K).
If we assume the existence of a supercompact cardinal then the
same is true about the (full version) of PID.
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A non special Aronszajn tree

Definition IX.4.5 of Shelah Proper and Improper Forcing
Usually S is costationary. We call a forcing notion P
(T, S)-preserving if the following holds: T is an Aronszajn tree,
S ⊆ ω1, and for every λ > (2|P |+ℵ1)+ and countable N ≺ H(λ,∈)
such that P, T, S ∈ N and δ = N ∩ ω1 6∈ S, and every p ∈ N ∩ P
there is some q ≥ p (bigger conditions are stronger) such that
(1) q is (N,P ) generic; and

(2) for every x ∈ Tδ, if
(x ∈ A→ (∃y <T x)y ∈ A) for all A ∈P(T ) ∩N, then
q  (x ∈ A

˜
→ (∃y < x)y ∈ A

˜
) for every P -name A

˜
∈ N such

that P A
˜
⊂ T.
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Preserving a non-special Aronszajn tree

Lemma, Mi, Zdomskyy
Let T be an Aronszajn tree, S costationary, and D be a centred
subfamily of [ω]ω of size ω1. Then the forcing PD for increasing p

is (T, S)-preserving.

Theorem, Hirschorn
Let T be an Aronszajn tree and let S be costationary. The
Abraham-Todorčević forcing is (T, S)-preserving.

Theorem, Abraham
Let T be a Souslin tree and let S be costationary. No countable
support iteration of (T, S)-preserving proper iterands specialises T
on the levels in S.
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The last slide

Thank you for your attention.
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