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Shoenfield’s Absoluteness Theorem

Theorem, J. Shoenfield, 1961
Every Σ1

2(a) relation and every Π1
2(a) relation is absolute for inner

models M of the Zermelo–Fraenkel axioms and dependent choice
that contain the real number a as an element.

Remarks: 1961 was before the advent of the forcing era. People had
not even two different models of ZFC, just Gödel’s constructible L
from 1938 was there, not known whether V 6= L is relatively
consistent.
Steinhaus’ Axiom of Determinacy (AD, compatible with ZF +
dependent choice) was already there, however very few
consequences of it were known.
Later the theorem found many applications. Σ1

2(a) and Π1
2(a) is

optimal.
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Overview over the talk

Theorem, J. Shoenfield, 1961
Every Σ1

2(a) relation and every Π1
2(a) relation is absolute for inner

models M of the Zermelo–Fraenkel axioms and dependent choice
that contain the real number a as an element.

1. Explanation:
Absoluteness for a class of models

2. Review:
The theory: Zermelo–Fraenkel and dependent choice

3. Explanation:
The complexity classes Σ1

2(a) and Π1
2(a),

interspersed with steps of the proof
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Upwards absoluteness

Definition
Let T be a theory. A property ϕ is upwards absolute for models of
T if for any two models M1 and M2 of T such that M1 is a
substructure of M2 and such that ϕ is true in M1, the statement ϕ
holds also in M2.

Example
If ϕ has only existential quantifiers ranging over Mi and no others
then is upwards absolute.
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Upwards absoluteness, downwards absoluteness

Definition
Let T be a theory. A property ϕ is upwards absolute for models of
T if for any two models M1 and M2 of T such that M1 is a
substructure of M2 and such that ϕ is true in M1, the statement ϕ
holds also in M2.

Definition
Let T be a theory. A property ϕ is downwards absolute for models
of T if for any two models M1 and M2 of T such that M1 is a
substructure of M2 and such that ϕ is true in M2, the statement ϕ
holds also in M1.

Example
If ϕ has only universal quantifiers ranging over Mi and no others
then is downwards absolute.
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Absoluteness

Definition
Let T be a theory. A property ϕ is absolute for models of T if the
following holds: It holds in one model of T iff it holds in any model
of T .

Definition
Let T be a weak part of set theory.
(1) A property ϕ is absolute for inner models of T if the following

holds: It holds in one model V of T iff it holds in any inner
model M of V that fulfils T .

(2) M is an inner model of V iff

(a) M contains all the ordinals of V and

(b) V is an end extension of M in the following sense: If
y ∈M and x ∈ V and x ∈ y then x ∈M .
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Absoluteness and provability

Gödel’s completeness theorem
Let T be a theory with set-sized models and let ϕ be a sentence of
first order logic. Absoluteness of ϕ for all set-sized models of T
coincides with provability of ϕ or provability of ¬ϕ from T (in any
calculus, e.g., the Hilbert calculus).

In set theory we work with class sized models. Shoenfield’s theorem
is about any two models with the same ordinals, as it relates any
model M with a ∈M to its inner model L[a], the smallest inner
model that contains a as an element.

You will see from the proof sketch where the premise about “the
same ordinals” is used.
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From algebra and model theory

Theories T like the first order theory of algebraically closed fields of
characteristic 0 (e.g.) are complete, that is for any sentence ϕ, T
proves ϕ or T proves ¬ϕ.
Complete theories have absoluteness for first order properties.

Examples are T that allow elimination of quantifiers have
Nullstellensaetze. Often then there only few completions.
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Overview over the talk, second time

Theorem, J. Shoenfield, 1961
Every Σ1

2(a) relation and every Π1
2(a) relation is absolute for inner

models M of the Zermelo–Fraenkel axioms and dependent choice
that contain the real number a as an element.

1. Explanation:
Absoluteness for a class of models

2. Review:
The theory: Zermelo–Fraenkel and dependent choice

3. Explanation:
The complexity classes Σ1

2(a) and Π1
2(a),

interspersed with steps of the proof
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The theory from Shoenfield’s theorem: Zermelo Fraenkel set
theory and the axiom of dependent choice

The axiom of dependent choice, DC
Let R be a relation such that ∀x∃yR(x, y). Then there is a
sequence (xn)n∈N such that (∀n ∈ N)R(xn, xn+1).

Recall: The Zermelo–Fraenkel axioms, ZF
(Existence), extensionality, infinity, pairing, union, powerset,
well-foundedness of ∈, replacement, comprehension.
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Riddles: Which are absolute for inner models of ZF +DC?

the Goodstein series converge

P = NP
x is Lebesgue measurable
x has Lebesgue measure 0
x is countable
the Goldbach conjecture
x is a vector space over the field y and x has a basis
x is an arithmetical set
x is a Borel set
2ℵ0 = ℵ1, the open coloring axiom (from Luca’s habil talk), or any
independent statement.
the Riemann hypothesis
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Overview over the talk, third and last time

Theorem, J. Shoenfield, 1961
Every Σ1

2(a) relation and every Π1
2(a) relation is absolute for inner

models M of the Zermelo–Fraenkel axioms and dependent choice
that contain the real number a as an element.

1. Explanation:
Absoluteness for a class of models

2. Review:
The theory: Zermelo–Fraenkel and dependent choice

3. Explanation:
The complexity classes Σ1

2(a) and Π1
2(a),

interspersed with steps of the proof
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Arithmetical sets

Definition
A set X ⊆ N is called arithmetical iff there are a first order formula
ϕ(x, p̄) in the language of arithmetic and a finite tuple
p̄ = (p1, . . . , pk) of socalled parameters pi ∈ N such that

X = {n ∈ N | (N,+, ·, 0, 1) fulfils ϕ(n, p̄)}

Fact
Arithmetical sets are absolute for models of ZF.

Example
The twin prime set {n | n and n+ 2 are prime} is arithmetical.
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Computable sets, also called recursive sets

A subset of the arithmetical sets are the computable sets:

Definition
X ⊆ N is computable (or recursive or decidable) iff there is a
Turing machine MX such that for all n ∈ N, the question whether
n ∈ X is decided by a Turing machine MX .

Counterexample
The halting problem. Let (Tn)n∈N be a computable enumeration of
all Turing machines. The halting problem

H = {n | the Turingmachine Tn, run on the empty
input, stops after finitely many steps}

is arithmetical and not computable.

14 / 1



Important variation: Arithmetical sets relative to a real
parameter (oracle)

Definition
Let a ⊆ N. A set X ⊆ N is called arithmetical in a iff there are a
first order formula ϕ(x, p̄) in the language of arithmetic expanded
by an extra unary predicate for a and a finite tuple p̄ of natural
numbers such that

X = {n ∈ N | (N,+, ·, a, 0, 1) fulfils ϕ(n, p̄)}

Fact
Sets that are arithmetical in a are absolute for models of ZF that
contain a as an element.
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Oracle-computable sets

A subset of the arithmetical sets in a are the sets that are
computable relative to a.

Definition
We say “X is computable relative to a” iff n ∈ X is decided by a
Turing machine MX that has an infinite auxiliary Turing tape on
which a is written. The real a is also called an oracle.

Example
Example of a non-arithmetical set: Let a be the first order theory of
(N,+, ·, 0, 1).

Is the halting problem computable relative to a?
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Oracle-computable sets

A subset of the arithmetical sets in a are the sets that are
computable relative to a.

Definition
We say “X is computable relative to a” iff n ∈ X is decided by a
Turing machine MX that has an infinite auxiliary Turing tape on
which a is written. The real a is also called an oracle.

Example
Example of a non-arithmetical set: Let a be the first order theory of
(N,+, ·, 0, 1).

Is the halting problem computable relative to a?

16 / 1



The “ugly monster of independence” (Erdős) is lurking
around the corner

The power set of N, P(N), depends on the respective model M of
ZF + DC.

Although R ∼= P(N) ∼= NN, the set of real numbers R is a very
successful notion (as a complete, ordered field, with Archimedean
order). In each model of ZF + DC, these axioms give up to
isomorphism exactly one R.

As P(N) is already variable, the set P(R) varies even more with
the background model of ZF + DC.
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Taming the monster: The Borel sets

Definition
By induction on 1 ≤ α < ℵ1 we simultaneously define Σ0

α(R) and
Π0
α(R) as follows:

Σ0
1(R) = {Y ⊆ R | Y open},

Π0
α(R) = {Rr Y | Y ∈ Σ0

α(R)},
Σ0
α(R) = {

⋃
n∈N

Bn | (∀n ∈ N)Bn ∈
⋃
β<α

Π0
β(R)}.

Borel(R) =
⋃
α<ℵ1

Σ0
α(R) is the Borel σ-algebra over R.
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Remark

Lemma, Freiburg wisdom from the 1980’s
By the way, in ZFC, |Borel(R)| = |R|.
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The lightface analytical sets, also known as Σ1
1-sets

Definition
X ⊆ R is Σ1

1 iff there is a computable closed set Z ⊆ R× R such
that

X = {x ∈ R | ∃y ∈ R(x, y) ∈ Z} =: p(Z).

Equivalently, iff there is a computable set R such that

X = {x ∈ R | ∃y ∈ R∀n ∈ N(x � n, y � n) ∈ R}.

20 / 1



Allow real parameters

We replace computability by computablily relative to a for a real
number a ∈ R and get Σ1

1(a).

Definition
The set of analytical sets is Σ1

1(R) =
⋃
{Σ1

1(a) | a ∈ R}.

Definition
The set of coanalytical sets is Π1

1(R) = {RrX | X ∈ Σ1
1(R)}.
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The Lusin separation theorem

Theorem, Lusin, 1927
In ZF + DC we have

Borel(R) = Σ1
1(R) ∩Π1

1(R).
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A weaker absoluteness theorem

Mostowski’s absoluteness theorem, 1959
Π1

1(a) and Σ1
1(a) relations are absolute for inner models of ZF +

DC that contain a.

Sketch of proof:
∃y ∈ R∀n . . . is an existence, so upwards absolute.

Also its negation is an existence:
There is no such y then any search tree for such an y does not
have an infinite branch, so it (or rather its turn-over) is
well-founded and has a rank function. “There is a rank function” is
an existential clause.

23 / 1
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Rank functions on well-founded trees

Let T be a tree whose nodes are finite sequences (of members of a
fixed set, here: N) and whose tree order ≤T is end extension. Also
assume that T has no infinite branch. (Then T , or rather the mirror
(T,≥T ) is sometimes called “well-founded”.)

Definition
We define by recursion on the well-founded relation ≥T a function
rk : T → Ordinals as follows:

rk(t) = 0 iff t is a leaf of T ;
rk(s) = sup{rk(t) + 1 | t is an immediate ≤T -successor of s}.

Once rk is defined, we let Rk(T ) = sup{rk(t) | t ∈ T}.
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Π1
2(a)-sets and Σ1

2(a)-sets

Definition
Let a ∈ R. X ⊆ R is Π1

2(a) if there is a closed set Z ⊆ R× R× R
such that X = {x ∈ R | ∀y ∈ R∃z ∈ R(x, y, z) ∈ Z}.

( iff there is a computable set C such that X = {x ∈ R | ∀y ∈
R∃z ∈ R∀n ∈ N(x � n, y � n, z � n, a � n) ∈ C}. )

Definition
Σ1
2(a) sets are complements in R of Π1

2(a) sets.
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Carrying rank functions further: Shoenfield trees

Lemma
If A is Σ1

2(a) then A = p([T ]) where T is a tree on N× ℵ1 and
T ∈ L[a] and [T ] is the set of branches of T .

Proof sketch: There is a tree U ⊆ (N<N)3 constructible from a
such that

x ∈ A ↔ ∃y∀z∃n(x � n, y � n, z � n) 6∈ U

that is

x ∈ A ↔ ∃yU(x, y) := {s | s ∈ U(x � |s|, y � |s|, s)} is well-founded

x ∈ A ↔ ∃y∃f : U(x, y)→ ℵ1 s.t., if s ⊂ s′ then f(s′) < f(s)

Well-foundedness is absolute for models of ZF + DC.
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Consequences

The theorem has corollaries that Σ1
3 sentences are upward absolute

(if such a sentence holds in L then it holds in V ) and Π1
3 sentences

are downward absolute (if they hold in V then they hold in L).

Since any two transitive models of set theory with the same
ordinals have the same constructible universe, Shoenfield’s theorem
shows that two such models must agree about the truth of all Π1

3

sentences.
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The rôle of the axiom of choice, and assumptions beyond ZF
+ DC

Gödel proved that every model V of ZF has an inner model, namely
L, that satisfies ZFC.

Shoenfield’s theorem shows that Π1
3-statements are downwards

absolute for inner models. If there is a model of ZF in which a given
Σ1
3 statement ϕ is false, then ϕ is also false in the constructible

universe of that model.

In contrapositive, this means:
If ZFC + V = L proves a Σ1

3 sentence then that sentence is also
provable in ZF.

In particular:
If ZFC + 2ℵ0 = ℵ1 proves a Σ1

3 sentence then that sentence is also
provable in ZF.
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universe of that model.

In contrapositive, this means:
If ZFC + V = L proves a Σ1

3 sentence then that sentence is also
provable in ZF.

In particular:
If ZFC + 2ℵ0 = ℵ1 proves a Σ1

3 sentence then that sentence is also
provable in ZF.
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Independence is not a panacea

It is not possible to use forcing to change the truth value of
arithmetical sentences, as forcing does not change the ordinals of
the model to which it is applied.

Many famous open problems can be expressed as Π1
2 sentences or

Σ1
2 sentences (or sentences of lower complexity), and thus cannot

be proven independent of ZFC by forcing.
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Answers: Which are absolute for inner models of ZF + DC?

Goodstein series converge: a (not provable in Peano arithmetic)

P = NP : a
x is Lebesgue measurable: not (but upwards absolute)
x has Lebesgue measure 0: not (but upwards absolute)
x is countable: not (but upwards absolute)
the Goldbach conjecture: a
x is a vector space over the field y and x has a basis: not (but
absolute for inner models of ZFC)
x is an arithmetical set: a
x is a Borel set: not (but a is a code for a Borel set is)
2ℵ0 = ℵ1, the Open Coloring Axiom (from Luca’s habil talk), or
any independent statement. not
the Riemann hypothesis: a
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