Splitting Numbers

Heike Mildenberger

Universität Freiburg, Mathematisches Institut, Abteilung für Mathematische Logik

http://home.mathematik.uni-freiburg.de/mildenberger

Young Set Theory Conference Copenhagen, June 13-17, 2016

Increasing the splitting number by forcing

Increasing the splitting number by forcing

The splitting number at regular uncountable cardinals

Increasing the splitting number by forcing

The splitting number at regular uncountable cardinals

▶ Let $X, S \in [\omega]^{\omega}$. We say S splits X if both $S \cap X$ and $X \smallsetminus S$ are infinite.

- ▶ Let $X, S \in [\omega]^{\omega}$. We say S splits X if both $S \cap X$ and $X \smallsetminus S$ are infinite.
- ► A subset $\mathscr{S} \subseteq [\omega]^{\omega}$ is called a splitting family if any $X \in [\omega]^{\omega}$ is split by a member of \mathscr{S} .

- ▶ Let $X, S \in [\omega]^{\omega}$. We say S splits X if both $S \cap X$ and $X \smallsetminus S$ are infinite.
- ▶ A subset $\mathscr{S} \subseteq [\omega]^{\omega}$ is called a splitting family if any $X \in [\omega]^{\omega}$ is split by a member of \mathscr{S} .
- ► The splitting number, s, is the smallest cardinal of a splitting family.

- ▶ Let $X, S \in [\omega]^{\omega}$. We say S splits X if both $S \cap X$ and $X \smallsetminus S$ are infinite.
- ▶ A subset $\mathscr{S} \subseteq [\omega]^{\omega}$ is called a splitting family if any $X \in [\omega]^{\omega}$ is split by a member of \mathscr{S} .
- ► The splitting number, s, is the smallest cardinal of a splitting family.

We state two very easy properties:

(1) If \mathscr{S} splits X and $X \subseteq^* X'$, then \mathscr{S} splits X'.

- ▶ Let $X, S \in [\omega]^{\omega}$. We say S splits X if both $S \cap X$ and $X \smallsetminus S$ are infinite.
- ▶ A subset $\mathscr{S} \subseteq [\omega]^{\omega}$ is called a splitting family if any $X \in [\omega]^{\omega}$ is split by a member of \mathscr{S} .
- ► The splitting number, s, is the smallest cardinal of a splitting family.

We state two very easy properties:

(1) If \mathscr{S} splits X and $X \subseteq^* X'$, then \mathscr{S} splits X'.

(2) If \mathscr{S}' is a set of infinite sets of natural numbers and $|\mathscr{S}'| < \mathfrak{s}$, then given any infinite set X, we find an $X' \subseteq X$ that is not split by \mathscr{S}' .

Proposition

 $\mathfrak{s} \leq \mathrm{unif}(\mathcal{M}), \mathrm{unif}(\mathcal{N}), \mathfrak{d}.$

We recall the definitions:

Definition

If $\mathcal{I} \subseteq \mathcal{P}(\omega^{\omega})$ is an ideal, we let $\operatorname{unif}(\mathcal{I})$ be the smallest size of a set of reals that is not in \mathcal{I} . We apply this to the ideal of \mathcal{M} of meager sets and the ideal \mathcal{N} of Lebesgue null sets.

Proof: Suppose ${\mathscr S}$ is not a splitting family and this is witnessed by X. Then

 $\mathscr{S} \subseteq \{A \ | \ X \subseteq^* A \lor X \subseteq^* A^c\}.$

Proof: Suppose ${\mathscr S}$ is not a splitting family and this is witnessed by X. Then

$$\mathscr{S} \subseteq \{A \mid X \subseteq^* A \lor X \subseteq^* A^c\}.$$

For each k and each infinite set Y, the set $\{\chi_A \in 2^{\omega} \mid A \cup [0,k) \supseteq Y\} \subseteq 2^{\omega}$ and the set $\{\chi_A \mid A \cap [k,\infty) \subseteq Y\} \subseteq 2^{\omega}$ are both nowhere dense in 2^{ω} and both have measure 0.

Proof: Suppose ${\mathscr S}$ is not a splitting family and this is witnessed by X. Then

$$\mathscr{S} \subseteq \{A \mid X \subseteq^* A \lor X \subseteq^* A^c\}.$$

For each k and each infinite set Y, the set $\{\chi_A \in 2^{\omega} \mid A \cup [0, k) \supseteq Y\} \subseteq 2^{\omega}$ and the set $\{\chi_A \mid A \cap [k, \infty) \subseteq Y\} \subseteq 2^{\omega}$ are both nowhere dense in 2^{ω} and both have measure 0. For each increasing function $f \in \omega^{\omega}$ we define an interval partition $\mathcal{I}_f = \{I_n \mid n \in \omega\}$ such that for any $k \in I_n$, $f(k) \in I_n \cup I_{n+1}$. Then we let $S_f = \{I_{4n} \cup I_{4n+1} \mid n \in \omega\}$. We let $\operatorname{next}_X(n) = \min(X \cap [n, \infty))$. Now if $\operatorname{next}_X \leq^* f$ then S_f splits X. We let $\mathscr{S} = \{S_f \mid f \in \mathscr{D}\}$, where \mathscr{D} is a \leq^* -dominating family.

A family $\mathscr{D} \subseteq [\omega]^{\omega}$ is called dense iff for any $X \in [\omega]^{\omega}$ there is an $D \in \mathscr{D}$ such that $D \subseteq^* X$.

A family $\mathscr{D} \subseteq [\omega]^\omega$ is called open, iff it is closed under almost subsets.

 \mathfrak{h} , the distributivity number, is the smallest size κ of a family $\{\mathscr{D}_i \mid i < \kappa\}$ of open dense sets whose intersection is empty.

A Hasse diagramme

 $\begin{array}{l} \text{Proposition}\\ \mathrm{cf}(\mathfrak{s}) \geq \mathfrak{h}. \end{array}$

Proposition

 $\operatorname{cf}(\mathfrak{s}) \geq \mathfrak{h}.$

Proof: We assume for a contradiction that $cf(\mathfrak{s}) < \mathfrak{h}$. Then there is a splitting family $\mathscr{S} = \bigcup \{\mathscr{S}_{\alpha} \mid \alpha < cf(\mathfrak{s})\}$ such that $|\mathscr{S}_{\alpha}| < \mathfrak{s}$. We let \mathscr{D}_{α} be the set of sets that are not split by any member of \mathscr{S}_{α} . Using (1), (2), we see that \mathscr{D}_{α} is open and dense. Since $cf(\mathfrak{s}) < \mathfrak{h}$, there is an infinite set $X \in \bigcap \{\mathscr{D}_{\alpha} \mid \alpha < cf(\mathfrak{s})\}$. The infinite set X is not split by any element of \mathscr{S} . Contradiction.

A sharper upper bound

Theorem (M.)

 $\mathfrak{s}\leq \mathrm{cf}(\mathfrak{d}).$

The proof is split into a couple of steps.

Theorem (M.)

 $\mathfrak{s}\leq \mathrm{cf}(\mathfrak{d}).$

The proof is split into a couple of steps.

Definition

A filter \mathcal{F} over ω is called nearly ultra iff there is a finite-to-one function f such that $f(\mathcal{F}) = \{X \mid f^{-1}[X] \in \mathcal{F}\}$ is an ultrafilter.

Theorem (M.)

 $\mathfrak{s} \leq \mathrm{cf}(\mathfrak{d}).$

The proof is split into a couple of steps.

Definition

A filter \mathcal{F} over ω is called nearly ultra iff there is a finite-to-one function f such that $f(\mathcal{F}) = \{X \mid f^{-1}[X] \in \mathcal{F}\}$ is an ultrafilter.

Lemma (Blass, M.)

Suppose that the filter \mathcal{F} is not nearly ultra, and let ω be partitioned into finite intervals I_n , $n \in \omega$. Then there are sets D, $D' \subseteq \omega$ with the following properties:

- 1. Every set in \mathcal{F} intersects both D and D'.
- 2. Each of D and D' is a union of intervals I_n .
- 3. If $I_n \subseteq D$ then I_n and its neighbours $I_{n\pm 1}$ are disjoint from D' and vice versa.

Proof on the blackboard.

Let \mathcal{F} be a non-principal filter over ω . Then we have the directed partial order $(\omega^{\omega}/\mathcal{F},\leq_{\mathcal{F}})$ by letting

1.
$$[f]_{\mathcal{F}} = \{g \mid \{n \mid g(n) = f(n)\} \in \mathcal{F}\},\$$

2.
$$\omega^{\omega}/\mathcal{F} = \{[f]_{\mathcal{F}} \mid f \in \omega^{\omega}\}$$

3.
$$[f]_{\mathcal{F}} \leq_{\mathcal{F}} [g]_{\mathcal{F}} \text{ iff } \{n \mid f(n) \leq g(n)\} \in \mathcal{F}.$$

Let \mathcal{F} be a non-principal filter over ω . Then we have the directed partial order $(\omega^{\omega}/\mathcal{F},\leq_{\mathcal{F}})$ by letting

1.
$$[f]_{\mathcal{F}} = \{g \mid \{n \mid g(n) = f(n)\} \in \mathcal{F}\},\$$

2.
$$\omega^{\omega}/\mathcal{F} = \{ [f]_{\mathcal{F}} \mid f \in \omega^{\omega} \}$$

3. $[f]_{\mathcal{F}} \leq_{\mathcal{F}} [g]_{\mathcal{F}} \text{ iff } \{n \mid f(n) \leq g(n)\} \in \mathcal{F}.$

Definition

We let $\mathfrak{d}(\mathcal{F})$ be the smallest size of a $\leq_{\mathcal{F}}$ -dominating set (this need not be a dominating chain). It is also called the cofinality.

► However, ∂(F) is not the true cofinality of ≤_F in the sense of pcf theory. The latter exists iff there is a cofinal chain.

- ► However, ∂(F) is not the true cofinality of ≤_F in the sense of pcf theory. The latter exists iff there is a cofinal chain.
- ► For example, if *F* is nearly ultra, then there is a cofinal chain.

- ► However, ∂(F) is not the true cofinality of ≤_F in the sense of pcf theory. The latter exists iff there is a cofinal chain.
- ► For example, if *F* is nearly ultra, then there is a cofinal chain.
- $\mathfrak{d}(\mathcal{F}) = \mathfrak{d}(f(\mathcal{F}))$ for any finite-to-one f.

- ► However, ∂(F) is not the true cofinality of ≤_F in the sense of pcf theory. The latter exists iff there is a cofinal chain.
- ► For example, if *F* is nearly ultra, then there is a cofinal chain.
- $\mathfrak{d}(\mathcal{F}) = \mathfrak{d}(f(\mathcal{F}))$ for any finite-to-one f.
- $\mathcal{F} \subseteq \mathcal{F}'$ implies $\mathfrak{d}(\mathcal{F}') \leq \mathfrak{d}(\mathcal{F})$.

- ► However, ∂(F) is not the true cofinality of ≤_F in the sense of pcf theory. The latter exists iff there is a cofinal chain.
- ► For example, if *F* is nearly ultra, then there is a cofinal chain.
- $\mathfrak{d}(\mathcal{F}) = \mathfrak{d}(f(\mathcal{F}))$ for any finite-to-one f.

•
$$\mathcal{F} \subseteq \mathcal{F}'$$
 implies $\mathfrak{d}(\mathcal{F}') \leq \mathfrak{d}(\mathcal{F})$.

$$\blacktriangleright \ \mathfrak{d}(\mathcal{F} \cap \mathcal{F}') = \max(\mathfrak{d}(\mathcal{F}), \mathfrak{d}(\mathcal{F}')).$$

- ► However, ∂(F) is not the true cofinality of ≤_F in the sense of pcf theory. The latter exists iff there is a cofinal chain.
- ► For example, if *F* is nearly ultra, then there is a cofinal chain.
- $\mathfrak{d}(\mathcal{F}) = \mathfrak{d}(f(\mathcal{F}))$ for any finite-to-one f.

•
$$\mathcal{F} \subseteq \mathcal{F}'$$
 implies $\mathfrak{d}(\mathcal{F}') \leq \mathfrak{d}(\mathcal{F})$.

- $\blacktriangleright \ \mathfrak{d}(\mathcal{F} \cap \mathcal{F}') = \max(\mathfrak{d}(\mathcal{F}), \mathfrak{d}(\mathcal{F}')).$
- If $u < \mathfrak{d}$, then \mathfrak{d} is regular.

Theorem (Blass, M.) If \mathcal{F} is not nearly ultra then $\mathfrak{s} \leq \mathfrak{d}(\mathcal{F})$.

Proof on the blackboard.

Theorem (M.)

There is a filter \mathcal{F} that is not nearly ultra that has $\mathfrak{d}(\mathcal{F}) = cf(\mathfrak{d})$.

Proof on the blackboard.

 $\begin{array}{l} \mbox{Corollary} \\ \mathfrak{s} \leq {\rm cf}(\mathfrak{d}). \end{array}$

Increasing the splitting number by forcing

The splitting number at regular uncountable cardinals

Focus on ${\mathfrak b}$ and on ${\mathfrak s}$

We remark that $\aleph_1 = \mathfrak{s} < \mathfrak{b}$ is consistent: Blow up the continuum by many Hechler reals and then add \aleph_1 random reals. The latter form a small splitting family.

We remark that $\aleph_1 = \mathfrak{s} < \mathfrak{b}$ is consistent: Blow up the continuum by many Hechler reals and then add \aleph_1 random reals. The latter form a small splitting family.

Also $\mathfrak{b} = \aleph_1 < \mathfrak{s}$ is relatively easy: The matrix of Blass and Shelah can be used. For larger \mathfrak{b} we have to take extra care that there are no small unbounded families.

For arbitrary regular values now explain Blass and Shelah's work and a part of Brendle's and Fischer's work, focussing on $\mathfrak{b} = \kappa \ll \mathfrak{s} = \lambda$ for two regular uncountable cardinals (and leaving out the part on mad families).
First some heuristics: Suppose $|\mathscr{S}| < \kappa$ and we want to show that \mathscr{S} is not a splitting family. We have to show that there is an X such that for any $S \in \mathscr{S}$, $X \subseteq^* S$ or $X \subseteq^* S^c$. So any X that diagonalises a filter \mathcal{F} that contains for each $S \in \mathscr{S}$, S or its complement, would serve as such an X. So a strategy is to show that any small family \mathscr{S} has an filter \mathcal{F} containing for each S, S or S^c and that \mathcal{F} lies "early" in the construction so that at a later time \mathcal{F} is diagonalised by forcing. If we do this in a linear iteration, most likely we will end with a model of $\mathfrak{p} = \mathfrak{c} = \mathfrak{s} = \mathfrak{b} = \mathfrak{d} = \mathfrak{u}$.

Definition (Mathias-Prikry forcing)

Let *F* be a non-principal filter. Conditions in M_{*F*} are pairs (s, A), where s is a finite subset of ω and A ∈ *F* and max(s) < min(A).</p>

Definition (Mathias-Prikry forcing)

Let *F* be a non-principal filter. Conditions in M_{*F*} are pairs (s, A), where s is a finite subset of ω and A ∈ *F* and max(s) < min(A).</p>

```
► (t, B) \leq (s, A) iff

t \supseteq s and

t \smallsetminus s \subseteq A and

B \subseteq A.
```

Definition (Mathias-Prikry forcing)

Let *F* be a non-principal filter. Conditions in M_{*F*} are pairs (s, A), where s is a finite subset of ω and A ∈ *F* and max(s) < min(A).</p>

•
$$(t,B) \leq (s,A)$$
 iff
 $t \supseteq s$ and
 $t \smallsetminus s \subseteq A$ and
 $B \subseteq A$.

• We say t is permitted by (s, A) iff $s \subseteq t \subseteq s \cup A$.

We write $\mathbb{P} \subseteq \mathbb{Q}$ iff $\mathbb{P} \subseteq \mathbb{Q}$, $p \leq_{\mathbb{P}} p'$ implies $p \leq_{\mathbb{Q}} p'$. Note that this implies that $p \perp_{\mathbb{Q}} p'$ implies $p \perp_{\mathbb{P}} p'$ for any $p, p' \in \mathbb{P}$.

We write $\mathbb{P} \subseteq \mathbb{Q}$ iff $\mathbb{P} \subseteq \mathbb{Q}$, $p \leq_{\mathbb{P}} p'$ implies $p \leq_{\mathbb{Q}} p'$. Note that this implies that $p \perp_{\mathbb{Q}} p'$ implies $p \perp_{\mathbb{P}} p'$ for any $p, p' \in \mathbb{P}$.

If in addition $p \perp_{\mathbb{P}} p'$ implies $p \perp_{\mathbb{Q}} p'$ the we write $\mathbb{P} \subseteq_{ic} \mathbb{Q}$.

We write $\mathbb{P} \subseteq \mathbb{Q}$ iff $\mathbb{P} \subseteq \mathbb{Q}$, $p \leq_{\mathbb{P}} p'$ implies $p \leq_{\mathbb{Q}} p'$. Note that this implies that $p \perp_{\mathbb{Q}} p'$ implies $p \perp_{\mathbb{P}} p'$ for any $p, p' \in \mathbb{P}$.

If in addition $p\perp_{\mathbb{P}} p'$ implies $p\perp_{\mathbb{Q}} p'$ the we write $\mathbb{P}\subseteq_{ic} \mathbb{Q}$.

We say \mathbb{P} is a complete suborder of \mathbb{Q} (short $\mathbb{P} < \mathbb{Q}$) iff $\mathbb{P} \subseteq_{ic} \mathbb{Q}$ and every maximal antichain of \mathbb{P} is maximal in \mathbb{Q} .

 $\mathbb{P} \leq \mathbb{Q}$ iff there is a reduction function from \mathbb{Q} to \mathbb{P} such that for each $q \in \mathbb{Q}$, $p = \operatorname{red}_{\mathbb{Q},\mathbb{P}}(q)$ is a reduction of q (with respect to \mathbb{P} , \mathbb{Q}) iff

 $(\forall p' \leq_{\mathbb{P}} p)(p' \parallel_{\mathbb{Q}} q).$

We write $p \parallel q$ for $p \not\perp q$.

We write $\mathbb{P} \subseteq \mathbb{Q}$ iff $\mathbb{P} \subseteq \mathbb{Q}$, $p \leq_{\mathbb{P}} p'$ implies $p \leq_{\mathbb{Q}} p'$. Note that this implies that $p \perp_{\mathbb{Q}} p'$ implies $p \perp_{\mathbb{P}} p'$ for any $p, p' \in \mathbb{P}$.

If in addition $p\perp_{\mathbb{P}} p'$ implies $p\perp_{\mathbb{Q}} p'$ the we write $\mathbb{P} \subseteq_{ic} \mathbb{Q}$.

We say \mathbb{P} is a complete suborder of \mathbb{Q} (short $\mathbb{P} \leq \mathbb{Q}$) iff $\mathbb{P} \subseteq_{ic} \mathbb{Q}$ and every maximal antichain of \mathbb{P} is maximal in \mathbb{Q} .

 $\mathbb{P} \leq \mathbb{Q}$ iff there is a reduction function from \mathbb{Q} to \mathbb{P} such that for each $q \in \mathbb{Q}$, $p = \operatorname{red}_{\mathbb{Q},\mathbb{P}}(q)$ is a reduction of q (with respect to \mathbb{P} , \mathbb{Q}) iff

 $(\forall p' \leq_{\mathbb{P}} p)(p' \parallel_{\mathbb{Q}} q).$

We write $p \parallel q$ for $p \not\perp q$.

Let $M \subseteq N$ be models of set theory and $g \in N \cap \omega^{\omega}$ is such that for all $f \in M \cap \omega^{\omega}$, $N \models g \not\leq^* f$, we say that $(\star M, N, g)$ holds.

Lemma (Blass and Shelah)

Let $M \subseteq N$ be models of set theory and $g \in \omega^{\omega} \cap N$ such that $(\star M, N, g)$. In addition, let \mathcal{U} be an ultrafilter in M. Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that

- (1) every maximal antichain of $\mathbb{M}_{\mathcal{U}}$ which belongs to M is a maximal antichain of $\mathbb{M}_{\mathcal{V}}$ in N, we write $\mathbb{M}_{\mathcal{U}} \leq_M \mathbb{M}_{\mathcal{V}}$,
- (2) $(\star M[G], N[G], g)$ holds for any $\mathbb{M}_{\mathcal{V}}$ -generic G over N.

Recall: We say r is permitted by (s, X) if $s \subseteq r \subseteq s \cup X$.

A violation of $\mathbb{M}_{\mathcal{U}} \leq_M \mathbb{M}_{\mathcal{V}}$: A maximal antichain C of $\mathbb{M}_{\mathcal{U}}$ and a condition $(t, A) \in \mathbb{M}_{\mathcal{V}}$ such that for any $p \in C$, no finite set is permitted by (t, A) and p. We say A is forbidden by t and C.

A violation of $(\star M[G], N[G], g)$: An $\mathbb{M}_{\mathcal{U}}$ -name $f = \langle (W_n, f_n) \mid n \in \omega \rangle$ (meaning: $p \in W_n$ forces $f(n) = f_n(p)$) and a condition $(t, B) \in \mathbb{M}_{\mathcal{V}}$ such that for any $n \in \omega$, for any $p \in W_n$, if $f_n(p) < g(n)$, then no finite set is permitted by (t, B)and p. We say B is forbidden by t and f. There is an ultrafilter that does not contain any forbidden set if no $Z \in \mathcal{U}$ is covered by forbidden sets A_i , B_i , i < k, with witnesses a_i , C_i and b_i , \underline{f} .

There is an ultrafilter that does not contain any forbidden set if no $Z \in \mathcal{U}$ is covered by forbidden sets A_i , B_i , i < k, with witnesses a_i , C_i and b_i , \underline{f} .

Claim (To the lemma)

For every $n \in \omega$ there exists $h(n) \in \omega$ such that h(n) > n and whenever the interval $Z \cap [n, h(n))$ of Z is partitioned into 2kpieces then at least one of the pieces P has both of the following properties:

- (i) For each i < k there is a finite $e \subseteq P$ such that $a_i \cup e$ is permitted by C_i ,
- (ii) For each i < k there is a finite set $e \subseteq P$ such that $b_i \cup e$ is permitted by some $p \in W_n$ such that $f_n(p) \le h(n)$.

Proof on the blackboard. Then back to the proof of the lemma.

Lemma (Brendle and Fischer)

Let $M \subseteq N$ be models of set theory $\mathbb{P} \in M$ be a poset that that $\mathbb{P} \subseteq M$ and let G be a \mathbb{P} -generic filter over N (and hence over M). If $g \in N$ is such that $(\star M, N, g)$ holds then $(\star M[G], N[G], g)$ holds.

Instructive to take $\mathbb{P} = \mathbb{D}^M$, Hechler forcing in M.

For every canonical $\tilde{f} \in M$ for a real and $p \in M \cap \mathbb{P}$ and $k, \ell \in \omega$ we have $p \Vdash_M \tilde{f}(k) = \ell$ iff $p \Vdash_N \tilde{f}(k) = \ell$.

Lemma

Let $\langle \mathbb{P}_{\ell,\eta}, \mathbb{Q}_{\ell,\eta} \mid \eta < \xi \rangle$, $\ell = 0, 1$ be finite support iterations such that $\mathbb{P}_{0,\eta}$ is a complete suborder of $\mathbb{P}_{1,\eta}$ for all $\eta < \xi$. Then $\mathbb{P}_{0,\xi}$ is a complete suborder of $\mathbb{P}_{1,\xi}$.

This is an instance of correctness preserving. Let us introduce a basic rectangle (or lozenge) and recall the notion of correctness (Brendle, Mejía):

Correct diagrammes

Definition (Brendle)

For i = 0, 1 let \mathbb{P}_i and \mathbb{Q}_i be posets When $\mathbb{P}_i < \mathbb{Q}_i$ for i = 0, 1 and $\mathbb{P}_0 \leq \mathbb{P}_1$ and $\mathbb{Q}_0 < \mathbb{Q}_1$ we say that the diagramme $\langle \mathbb{P}_0, \mathbb{P}_1, \mathbb{Q}_0, \mathbb{Q}_1 \rangle$ is correct if for each $q \in \mathbb{Q}_0$ and $p_1 \in \mathbb{P}_1$ if both have a common reduction in \mathbb{P}_0 then they are compatible in \mathbb{Q}_1 . An equivalent formulation is: Whenever $p_0 \in \mathbb{P}_0$ is a reduction of $p_1 \in \mathbb{P}_1$ in the \mathbb{P}_0 , \mathbb{P}_1 -sense, then p_0 is a reduction of p_1 w.r.t. \mathbb{Q}_0 , \mathbb{Q}_1 .

Lemma (Brendle and Fischer)

Let \mathbb{P} , \mathbb{Q} be partial orders such that \mathbb{P} is completely embedded into \mathbb{Q} . Let \mathbb{A} be a \mathbb{P} -name of a forcing notion, \mathbb{B} be a \mathbb{Q} -name for a forcing notion such that $\mathbb{Q} \Vdash \mathbb{A} \subseteq_{ic} \mathbb{B}$ and every maximal antichain of \mathbb{A} in $V^{\mathbb{P}}$ is a maximal antichain of \mathbb{B} in $V^{\mathbb{Q}}$, i.e. $\mathbb{Q} \Vdash \mathbb{A} \leq_{V^{\mathbb{P}}} \mathbb{B}$. Then $\mathbb{P} * \mathbb{A} < \mathbb{Q} * \mathbb{B}$ and $\langle \mathbb{P}, \mathbb{P} * \mathbb{A}, \mathbb{Q}, \mathbb{Q} * \mathbb{B} \rangle$ is a correct diagramme.

Definition (Blass and Shelah)

A matrix iteration of ccc posets is given by
⟨ℙ_{α,ξ}, ℚ_{α,ξ} | ξ < (≤)λ, α ≤ κ⟩ with the following conditions.
(1) The ground row (ξ-coordinate is 0):
ℙ_{κ,0} = fslimit⟨ℙ_{α,0}, ℝ_α | α < λ⟩, and the sequence is a finite support iteration, each ℙ_{α,0} has the ccc.

- (2) The α -th column for $\alpha \leq \kappa$: $\mathbb{P}_{\alpha,\lambda} = \mathrm{fslimit} \langle \mathbb{P}_{\alpha,\xi}, \mathbb{Q}_{\alpha,\xi} \mid \xi < \lambda \rangle$, and the sequence is a finite support iteration.
- (3) Each rectangle of height 1 is correct: For all $\xi < \lambda$ and $\alpha < \beta \leq \kappa \mathbb{P}_{\beta,\xi} \Vdash "\mathbb{Q}_{\alpha,\xi} \lessdot_{V^{\mathbb{P}_{\alpha,\xi}}} \mathbb{Q}_{\beta,\xi}$ and $\mathbb{Q}_{\beta,\xi}$ is ccc".
- (4) For each $\xi < \lambda$, for each limit $\beta \leq \kappa$, $\mathbb{P}_{\beta,\xi}$ is the direct limit of $\mathbb{P}_{\beta',\xi}, \ \beta' < \beta$.

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

 $s_{\kappa,\zeta}$

Lemma (Brendle and Fischer)

Let $\langle \mathbb{P}_{\ell,\eta}, \mathbb{Q}_{\ell,\eta} \mid \eta < \xi \rangle$, $\ell = 0, 1$ be finite support iterations such that $\mathbb{P}_{0,\eta}$ is a complete suborder of $\mathbb{Q}_{\ell,\eta}$ for all $\eta < \xi$. Let ξ be a limit ordinal. If $g \in V^{\mathbb{P}_{1,0}} \cap \omega^{\omega}$ and $(\star V^{\mathbb{P}_{0,\eta}}, V^{\mathbb{P}_{1,\eta}}, g)$ holds for all $\eta < \xi$ then $(\star V^{\mathbb{P}_{0,\xi}}, V^{\mathbb{P}_{1,\xi}}, g)$.
An upwards limit, a diagramme

Let $f: \{\eta < \lambda \mid \eta \text{ even}\} \to \kappa$ be a surjection such that for each $\alpha < \kappa$, $f^{-1}(\alpha)$ is cofinal in λ . We define a matrix

$$\langle \langle \mathbb{P}_{\alpha,\zeta} \mid \alpha \leq \kappa, \zeta \leq \lambda \rangle, \langle \mathbb{Q}_{\alpha,\zeta} \mid \alpha \leq \kappa, \zeta < \lambda \rangle \rangle$$

as follows by induction on ζ (and for a fixed ζ , by induction on α :

(1)
$$\mathbb{P}_{\alpha,0} = \operatorname{Fn}_{<\omega}(\alpha \times \omega, \omega)$$
 adding a Cohen real g_{β} for $\beta < \alpha$.

(3) if
$$\zeta = \eta + 1$$
 and ζ is even and $\alpha \leq f(\eta)$ then $\mathbb{Q}_{\alpha,\eta}$ is the one point forcing notion if $\alpha > f(\eta)$ then then

$$\mathbb{P}_{\alpha,\eta} \Vdash \mathbb{Q}_{\alpha,\eta} =$$
Hechler forcing in $V^{\mathbb{P}_{f(\eta),\eta}}$.

(3) if
$$\zeta = \eta + 1$$
 and ζ is even and $\alpha \leq f(\eta)$ then $\mathbb{Q}_{\alpha,\eta}$ is the one point forcing notion if $\alpha > f(\eta)$ then then

$$\mathbb{P}_{\alpha,\eta} \Vdash \mathbb{Q}_{\alpha,\eta} =$$
Hechler forcing in $V^{\mathbb{P}_{f(\eta),\eta}}$.

(4) If $\zeta \leq \lambda$ is a limit then for all $\alpha \leq \kappa$, $\mathbb{P}_{\alpha,\zeta}$ is the finite support iteration of $\langle \mathbb{P}_{\alpha,\eta}, \mathbb{Q}_{\alpha,\eta} \mid \eta \leq \zeta \rangle$. For each $\xi < \lambda$, for each limit $\beta \leq \kappa$, $\mathbb{P}_{\beta,\xi}$ is the direct limit of $\mathbb{P}_{\beta',\xi}$, $\beta' < \beta$.

Along the induction on ζ we prove:

(a) For
$$\zeta \leq \lambda$$
, $\forall \alpha < \beta \leq \kappa$, $\mathbb{P}_{\alpha,\zeta} \lessdot \mathbb{P}_{\beta,\zeta}$.

(b)
$$\forall \zeta \leq \lambda$$
, $\forall lpha < \kappa$, $(\star V^{\mathbb{P}_{lpha,\zeta}}, V^{\mathbb{P}_{lpha+1,\zeta}}, g_{lpha})$ holds.

(c) every
$$p \in \mathbb{P}_{\kappa,\zeta}$$
 there is an $\alpha < \kappa$ such that $p \in \mathbb{P}_{\alpha,\zeta}$.

(d) for every $\mathbb{P}_{\kappa,\zeta}$ -name for a real \tilde{f} there is $\alpha < \kappa$ such that \tilde{f} is a $\mathbb{P}_{\alpha,\zeta}$ -name.

Estimates in ZFC

Increasing the splitting number by forcing

The splitting number at regular uncountable cardinals

Let κ be a regular uncountable cardinal.

Definition

 $\mathfrak{s}(\kappa)$ is the smallest size of a splitting family of subsets of κ . Here splitting is meant in the κ -sense: S splits X iff $X \in [\kappa]^{\kappa}$ and $S \cap X$ and $X \smallsetminus S$ both have cardinality κ .

 $\begin{array}{l} \mathsf{Remark} \\ \mathfrak{s}(\kappa) \leq \mathfrak{s}(\mathrm{cf}(\kappa)). \end{array}$

Remark

 $\mathfrak{s}(\kappa) \leq \mathfrak{s}(\mathrm{cf}(\kappa)).$

Theorem (Suzuki)

Let $\kappa > \omega$ be a regular cardinal. $\mathfrak{s}(\kappa) \ge \kappa$ iff κ is strongly inaccessible.

Theorem (Suzuki)

Let $\kappa > \omega$ be a regular cardinal. $\mathfrak{s}_{\kappa} > \kappa$ iff κ is weakly compact.

The generalised bounding number $\mathfrak{b}(\kappa)$ is the smallest size of an \leq^* -unbounded family of functions from κ to κ . Here $f \leq^* g$ means

 $(\exists \alpha < \kappa) (\forall \beta \in [\alpha, \kappa)) (f(\beta) \le g(\beta)).$

The generalised bounding number $\mathfrak{b}(\kappa)$ is the smallest size of an \leq^* -unbounded family of functions from κ to κ . Here $f \leq^* g$ means

$$(\exists \alpha < \kappa) (\forall \beta \in [\alpha, \kappa)) (f(\beta) \le g(\beta)).$$

Theorem (Raghavan, Shelah)

Let κ be a regular uncountable cardinal. $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa)$.

Let $\kappa > \omega$ be regular and suppose that there exists a cardinal λ such that $\kappa < \lambda < \mathfrak{s}_{\kappa}$. Fix a sufficiently large regular cardinal θ $(\theta = (2^{2^{\mathfrak{s}_{\kappa}}})^+$ will suffice).

We show that there is no unbounded family of size $\leq \lambda$.

Let $\kappa > \omega$ be regular and suppose that there exists a cardinal λ such that $\kappa < \lambda < \mathfrak{s}_{\kappa}$. Fix a sufficiently large regular cardinal θ $(\theta = (2^{2^{\mathfrak{s}_{\kappa}}})^+$ will suffice).

We show that there is no unbounded family of size $\leq \lambda$.

Let $M \prec H(\theta)$ be such that $\lambda \subset M$ and $|M| = \lambda$. $M \cap \mathcal{P}(\kappa)$ is not a splitting family. So there exists $A_* \in [\kappa]^{\kappa}$ such that for all $x \in M \cap \mathcal{P}(\kappa)$ either $A_* \subset^* (\kappa \smallsetminus x)$ or $A_* \subset^* x$.

$$D := \{ x \in \mathcal{P}(\kappa) : A_* \subset^* x \}.$$

$$L = \{ [f]_D \mid f \in {}^{\kappa} \kappa \cap M \}.$$

Let $c_{\alpha} \colon \kappa \to \kappa$ be the function that is constantly α .

Lemma

The structure $(L, <_D)$ is a linear order. Moreover $\{[c_\alpha]_D \mid \alpha < \kappa\}$ has a least upper bound in L.

Fix a function $f_* \in M \cap \kappa^{\kappa}$ such that $[f_*]_D \in L$ is a least upper bound of $\{[c_{\alpha}]_D \mid \alpha < \kappa\}$.

Lemma

If $C \in M$ is a club in κ , then $f_*^{-1}[C] \in D$.

 $f(\alpha) = \sup(C \cap f_*(\alpha))$ would give a strictly smaller upper bound otherwise.

Lemma

 $M\cap\kappa^{\kappa}$ is bounded.

Key: $f \in \kappa^{\kappa}$. Then

$$C_f = \{ \alpha < \kappa \mid \alpha \text{ is closed under } f \}$$

is a club subset of κ .