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The classical splitting number

De�nition

I Let X,S ∈ [ω]ω. We say S splits X if both S ∩X and X r S
are in�nite.

I A subset S ⊆ [ω]ω is called a splitting family if any X ∈ [ω]ω

is split by a member of S .

I The splitting number, s, is the smallest cardinal of a splitting
family.

We state two very easy properties:

(1) If S splits X and X ⊆∗ X ′, then S splits X ′.

(2) If S ′ is a set of in�nite sets of natural numbers and |S ′| < s,
then given any in�nite set X, we �nd an X ′ ⊆ X that is not split
by S ′.
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Three upper bounds in the Cicho« diagramme

Proposition

s ≤ unif(M),unif(N ), d.

We recall the de�nitions:

De�nition
If I ⊆ P(ωω) is an ideal, we let unif(I) be the smallest size of a
set of reals that is not in I. We apply this to the ideal ofM of
meager sets and the ideal N of Lebesgue null sets.



Inequalities via Galois�Tukey connections

Proof: Suppose S is not a splitting family and this is witnessed by
X. Then

S ⊆ {A | X ⊆∗ A ∨X ⊆∗ Ac}.

For each k and each in�nite set Y , the set
{χA ∈ 2ω | A ∪ [0, k) ⊇ Y } ⊆ 2ω and the set
{χA | A ∩ [k,∞) ⊆ Y } ⊆ 2ω are both nowhere dense in 2ω and
both have measure 0.
For each increasing function f ∈ ωω we de�ne an interval partition
If = {In | n ∈ ω} such that for any k ∈ In, f(k) ∈ In ∪ In+1.
Then we let Sf = {I4n ∪ I4n+1 | n ∈ ω}. We let
nextX(n) = min(X ∩ [n,∞)). Now if nextX ≤∗ f then Sf splits
X. We let S = {Sf | f ∈ D}, where D is a ≤∗-dominating family.
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The distributivity number

De�nition
A family D ⊆ [ω]ω is called dense i� for any X ∈ [ω]ω there is an
D ∈ D such that D ⊆∗ X.

A family D ⊆ [ω]ω is called open, i� it is closed under almost
subsets.

h, the distributivity number, is the smallest size κ of a family
{Di | i < κ} of open dense sets whose intersection is empty.
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A lower bound

Proposition

cf(s) ≥ h.

Proof: We assume for a contradiction that cf(s) < h. Then there is
a splitting family S =

⋃
{Sα | α < cf(s)} such that |Sα| < s.

We let Dα be the set of sets that are not split by any member of
Sα. Using (1), (2), we see that Dα is open and dense. Since
cf(s) < h, there is an in�nite set X ∈

⋂
{Dα | α < cf(s)}. The

in�nite set X is not split by any element of S . Contradiction.
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A sharper upper bound

Theorem (M.)

s ≤ cf(d).

The proof is split into a couple of steps.

De�nition
A �lter F over ω is called nearly ultra i� there is a �nite-to-one
function f such that f(F) = {X | f−1[X] ∈ F} is an ultra�lter.

Lemma (Blass, M.)

Suppose that the �lter F is not nearly ultra, and let ω be

partitioned into �nite intervals In, n ∈ ω. Then there are sets D,

D′ ⊆ ω with the following properties:

1. Every set in F intersects both D and D′.

2. Each of D and D′ is a union of intervals In.

3. If In ⊆ D then In and its neighbours In±1 are disjoint from

D′ and vice versa.

Proof on the blackboard.
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Reduced powers of the form ((ω,<)ω/F)

De�nition
Let F be a non-principal �lter over ω. Then we have the directed
partial order (ωω/F ,≤F ) by letting

1. [f ]F = {g | {n | g(n) = f(n)} ∈ F},
2. ωω/F = {[f ]F | f ∈ ωω}
3. [f ]F ≤F [g]F i� {n | f(n) ≤ g(n)} ∈ F .

De�nition
We let d(F) be the smallest size of a ≤F -dominating set (this need
not be a dominating chain). It is also called the co�nality.
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Remarks on d(F)

d(F) = min{|D| | D ⊆ ωω | (∀f ∈ ωω)(∃g ∈ D)(f ≤F g)}.

I However, d(F) is not the true co�nality of ≤F in the sense of
pcf theory. The latter exists i� there is a co�nal chain.

I For example, if F is nearly ultra, then there is a co�nal chain.

I d(F) = d(f(F)) for any �nite-to-one f .

I F ⊆ F ′ implies d(F ′) ≤ d(F).
I d(F ∩ F ′) = max(d(F), d(F ′)).
I If u < d, then d is regular.
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An abstract upper bound

Theorem (Blass, M.)

If F is not nearly ultra then s ≤ d(F).

Proof on the blackboard.



There is such a �lter

Theorem (M.)

There is a �lter F that is not nearly ultra that has d(F) = cf(d).

Proof on the blackboard.

Corollary

s ≤ cf(d).
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The splitting number at regular uncountable cardinals



Focus on b and on s
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A matrix forcing

We remark that ℵ1 = s < b is consistent: Blow up the continuum
by many Hechler reals and then add ℵ1 random reals. The latter
form a small splitting family.

Also b = ℵ1 < s is relatively easy: The matrix of Blass and Shelah
can be used. For larger b we have to take extra care that there are
no small unbounded families.
For arbitrary regular values now explain Blass and Shelah's work
and a part of Brendle's and Fischer's work, focussing on
b = κ << s = λ for two regular uncountable cardinals (and leaving
out the part on mad families).
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Diagonalising many �lters

First some heuristics: Suppose |S | < κ and we want to show that
S is not a splitting family. We have to show that there is an X
such that for any S ∈ S , X ⊆∗ S or X ⊆∗ Sc. So any X that
diagonalises a �lter F that contains for each S ∈ S , S or its
complement, would serve as such an X. So a strategy is to show
that any small family S has an �lter F containing for each S, S or
Sc and that F lies �early� in the construction so that at a later
time F is diagonalised by forcing. If we do this in a linear iteration,
most likely we will end with a model of p = c = s = b = d = u.



Diagonalising a �lter

De�nition (Mathias�Prikry forcing)

I Let F be a non-principal �lter. Conditions in MF are pairs
(s,A), where s is a �nite subset of ω and A ∈ F and
max(s) < min(A).

I (t, B) ≤ (s,A) i�
t ⊇ s and
tr s ⊆ A and
B ⊆ A.

I We say t is permitted by (s,A) i� s ⊆ t ⊆ s ∪A.
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Complete suborders

De�nition
We write P ⊆ Q i� P ⊆ Q, p ≤P p

′ implies p ≤Q p
′.

Note that this implies that p ⊥Q p
′ implies p ⊥P p

′ for any
p, p′ ∈ P.

If in addition p ⊥P p
′ implies p ⊥Q p

′ the we write P ⊆ic Q.

We say P is a complete suborder of Q (short P l Q) i� P ⊆ic Q
and every maximal antichain of P is maximal in Q.

P l Q i� there is a reduction function from Q to P such that for
each q ∈ Q, p = redQ,P(q) is a reduction of q (with respect to P,
Q) i�

(∀p′ ≤P p)(p
′ ‖Q q).

We write p ‖ q for p 6⊥ q.
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A pair of models with an M -unbounded real g in der upper

model N

De�nition
Let M ⊆ N be models of set theory and g ∈ N ∩ ωω is such that
for all f ∈M ∩ ωω, N |= g 6≤∗ f , we say that (?M,N, g) holds.

Lemma (Blass and Shelah)

Let M ⊆ N be models of set theory and g ∈ ωω ∩N such that

(?M,N, g). In addition, let U be an ultra�lter in M . Then there is

an ultra�lter V ⊇ U in N such that

(1) every maximal antichain of MU which belongs to M is a

maximal antichain of MV in N , we write MU lM MV ,
(2) (?M [G], N [G], g) holds for any MV -generic G over N .



What can go wrong in the choice of V?

Recall: We say r is permitted by (s,X) if s ⊆ r ⊆ s ∪X.

A violation of MU lM MV : A maximal antichain C of MU and a
condition (t, A) ∈MV such that for any p ∈ C, no �nite set is
permitted by (t, A) and p. We say A is forbidden by t and C.

A violation of (?M [G], N [G], g): An MU -name
f
˜
= 〈(Wn, fn) | n ∈ ω〉 (meaning: p ∈Wn forces f

˜
(n) = fn(p))

and a condition (t, B) ∈MV such that for any n ∈ ω, for any
p ∈Wn, if fn(p) < g(n), then no �nite set is permitted by (t, B)
and p. We say B is forbidden by t and f

˜
.



A compactness argument

There is an ultra�lter that does not contain any forbidden set if no
Z ∈ U is covered by forbidden sets Ai, Bi, i < k, with witnesses
ai, Ci and bi, f

˜
.

Claim (To the lemma)

For every n ∈ ω there exists h(n) ∈ ω such that h(n) > n and

whenever the interval Z ∩ [n, h(n)) of Z is partitioned into 2k
pieces then at least one of the pieces P has both of the following

properties:

(i) For each i < k there is a �nite e ⊆ P such that ai ∪ e is

permitted by Ci,

(ii) For each i < k there is a �nite set e ⊆ P such that bi ∪ e is

permitted by some p ∈Wn such that fn(p) ≤ h(n).

Proof on the blackboard. Then back to the proof of the lemma.



A compactness argument

There is an ultra�lter that does not contain any forbidden set if no
Z ∈ U is covered by forbidden sets Ai, Bi, i < k, with witnesses
ai, Ci and bi, f

˜
.

Claim (To the lemma)

For every n ∈ ω there exists h(n) ∈ ω such that h(n) > n and

whenever the interval Z ∩ [n, h(n)) of Z is partitioned into 2k
pieces then at least one of the pieces P has both of the following

properties:

(i) For each i < k there is a �nite e ⊆ P such that ai ∪ e is

permitted by Ci,

(ii) For each i < k there is a �nite set e ⊆ P such that bi ∪ e is

permitted by some p ∈Wn such that fn(p) ≤ h(n).

Proof on the blackboard. Then back to the proof of the lemma.



More harmless forcings for (?M,N, g)

Lemma (Brendle and Fischer)

Let M ⊆ N be models of set theory P ∈M be a poset that that

P ⊆M and let G be a P-generic �lter over N (and hence over M).

If g ∈ N is such that (?M,N, g) holds then (?M [G], N [G], g)
holds.

Instructive to take P = DM , Hechler forcing in M .

For every canonical f
˜
∈M for a real and p ∈M ∩ P and k, ` ∈ ω

we have p M f
˜
(k) = ` i� p N f

˜
(k) = `.



Direct limits along rows and columns

Lemma
Let 〈P`,η,Q`,η | η < ξ〉, ` = 0, 1 be �nite support iterations such

that P0,η is a complete suborder of P1,η for all η < ξ. Then P0,ξ is

a complete suborder of P1,ξ.

This is an instance of correctness preserving. Let us introduce a
basic rectangle (or lozenge) and recall the notion of correctness
(Brendle, Mejía):



Correct diagrammes

Q1

Q0

l

::

P1 ∈M

lM
ff

P0 ∈M

lM
dd

l
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De�nition (Brendle)

For i = 0, 1 let Pi and Qi be posets When Pi lQi for i = 0, 1 and
P0 ≤ P1 and Q0 lQ1 we say that the diagramme 〈P0,P1,Q0,Q1〉
is correct if for each q ∈ Q0 and p1 ∈ P1 if both have a common
reduction in P0 then they are compatible in Q1.
An equivalent formulation is: Whenever p0 ∈ P0 is a reduction of
p1 ∈ P1 in the P0, P1-sense, then p0 is a reduction of p1 w.r.t. Q0,
Q1.



A successor step in a pattern of correct rectangles

Lemma (Brendle and Fischer)

Let P, Q be partial orders such that P is completely embedded into

Q. Let A
˜

be a P-name of a forcing notion, B
˜

be a Q-name for a

forcing notion such that Q  A
˜
⊆ic B

˜
and every maximal antichain

of A
˜

in V P is a maximal antichain of B
˜

in V Q, i.e. Q  A
˜
lV P B

˜
.

Then P ∗A
˜
lQ ∗B

˜
and 〈P,P ∗A

˜
,Q,Q ∗B

˜
〉 is a correct diagramme.



A matrix

De�nition (Blass and Shelah)

A matrix iteration of ccc posets is given by
〈Pα,ξ,Q

˜
α,ξ | ξ < (≤)λ, α ≤ κ〉 with the following conditions.

(1) The ground row (ξ-coordinate is 0):
Pκ,0 = fslimit〈Pα,0,R

˜
α | α < λ〉, and the sequence is a �nite

support iteration, each Pα,0 has the ccc.

(2) The α-th column for α ≤ κ:
Pα,λ = fslimit〈Pα,ξ,Q

˜
α,ξ | ξ < λ〉, and the sequence is a �nite

support iteration.

(3) Each rectangle of height 1 is correct: For all ξ < λ and
α < β ≤ κ Pβ,ξ  �Q

˜
α,ξ lV

Pα,ξ Q
˜
β,ξ and Q

˜
β,ξ is ccc�.

(4) For each ξ < λ, for each limit β ≤ κ, Pβ,ξ is the direct limit of
Pβ′,ξ, β

′ < β.
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Upwards limits and preservation of the unboundedness of g

Lemma (Brendle and Fischer)

Let 〈P`,η,Q`,η | η < ξ〉, ` = 0, 1 be �nite support iterations such

that P0,η is a complete suborder of Q`,η for all η < ξ. Let ξ be a

limit ordinal. If g ∈ V P1,0 ∩ ωω and (?V P0,η , V P1,η , g) holds for all

η < ξ then (?V P0,ξ , V P1,ξ , g).



An upwards limit, a diagramme

P0,η l
// g,P1,η

...
...

P0,ξ+2 = P1,ξ+1 ∗ DV
P0,ξ+1

l

OO

l
// g,P1,ξ+2 = P1,ξ+1 ∗ DV

P0,ξ+1

l

OO

P0,ξ+1 = P0,ξ ∗MU0,ξ

l

OO

l
// g,P1,ξ+1 = P1,ξ ∗MU1,ξ

l

OO

P0,ξ

l
OO

l
// g,P1,ξ

l
OO



The consistency of b = κ < s = λ = c via a ccc matrix

Let f : {η < λ | η even} → κ be a surjection such that for each
α < κ, f−1(α) is co�nal in λ. We de�ne a matrix

〈〈Pα,ζ | α ≤ κ, ζ ≤ λ〉, 〈Q
˜
α,ζ | α ≤ κ, ζ < λ〉〉

as follows by induction on ζ (and for a �xed ζ, by induction on α:



Induction on ζ ≤ λ and α ≤ κ

(1) Pα,0 = Fn<ω(α× ω, ω) adding a Cohen real gβ for β < α.

(2) if ζ = η+ 1 and ζ is odd then Pα,η  Q
˜
α,η = MU

˜
α,η and for all

α < β ≤ κ, Pβ,η  U
˜
α,η ⊆ U

˜
β,η and this is done and in the

main lemma that that for any β < α, (?V Pβ,ζ , V Pα,ζ , gβ).

(3) if ζ = η + 1 and ζ is even and α ≤ f(η) then Q
˜
α,η is the one

point forcing notion if α > f(η) then then

Pα,η  Q
˜
α,η = Hechler forcing in V Pf(η),η .

(4) If ζ ≤ λ is a limit then for all α ≤ κ, Pα,ζ is the �nite support
iteration of 〈Pα,η,Q

˜
α,η | η ≤ ζ〉. For each ξ < λ, for each limit

β ≤ κ, Pβ,ξ is the direct limit of Pβ′,ξ, β
′ < β.
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Good properties

Along the induction on ζ we prove:

(a) For ζ ≤ λ, ∀α < β ≤ κ, Pα,ζ l Pβ,ζ .
(b) ∀ζ ≤ λ, ∀α < κ, (?V Pα,ζ , V Pα+1,ζ , gα) holds.

(c) every p ∈ Pκ,ζ there is an α < κ such that p ∈ Pα,ζ .
(d) for every Pκ,ζ-name for a real f

˜
there is α < κ such that f

˜
is a

Pα,ζ-name.



Outline

Estimates in ZFC

Increasing the splitting number by forcing

The splitting number at regular uncountable cardinals



Generalisation

Let κ be a regular uncountable cardinal.

De�nition
s(κ) is the smallest size of a splitting family of subsets of κ. Here
splitting is meant in the κ-sense: S splits X i� X ∈ [κ]κ and S ∩X
and X r S both have cardinality κ.



Consistency strength beyond ZFC

Remark
s(κ) ≤ s(cf(κ)).

Theorem (Suzuki)

Let κ > ω be a regular cardinal. s(κ) ≥ κ i� κ is strongly

inaccessible.



Consistency strength beyond ZFC

Remark
s(κ) ≤ s(cf(κ)).

Theorem (Suzuki)

Let κ > ω be a regular cardinal. s(κ) ≥ κ i� κ is strongly

inaccessible.



More strength

Theorem (Suzuki)

Let κ > ω be a regular cardinal. sκ > κ i� κ is weakly compact.



A result in ZFC

De�nition
The generalised bounding number b(κ) is the smallest size of an
≤∗-unbounded family of functions from κ to κ. Here f ≤∗ g means

(∃α < κ)(∀β ∈ [α, κ))(f(β) ≤ g(β)).

Theorem (Raghavan, Shelah)

Let κ be a regular uncountable cardinal. s(κ) ≤ b(κ).
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The �lter D

De�nition
Let κ > ω be regular and suppose that there exists a cardinal λ
such that κ < λ < sκ. Fix a su�ciently large regular cardinal θ
(θ =

(
22

sκ
)+

will su�ce).
We show that there is no unbounded family of size ≤ λ.

Let M ≺ H(θ) be such that λ ⊂M and |M | = λ. M ∩ P(κ) is
not a splitting family. So there exists A∗ ∈ [κ]κ such that for all
x ∈M ∩ P(κ) either A∗ ⊂∗ (κr x) or A∗ ⊂∗ x.

D := {x ∈ P(κ) : A∗ ⊂∗ x}.
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A linear order

L = {[f ]D | f ∈ κκ ∩M}.

Let cα : κ→ κ be the function that is constantly α.

Lemma
The structure (L,<D) is a linear order. Moreover {[cα]D | α < κ}
has a least upper bound in L.



Linearity: D measures M ∩ [κ]κ.
The identity is an upper bound. Since D is ω-closed, there is least
upper bound.



A remnant of normality of D

De�nition
Fix a function f∗ ∈M ∩ κκ such that [f∗]D ∈ L is a least upper
bound of {[cα]D | α < κ}.

Lemma
If C ∈M is a club in κ, then f−1∗ [C] ∈ D.

f(α) = sup(C ∩ f∗(α)) would give a strictly smaller upper bound
otherwise.



Club combinatorics

Lemma
M ∩ κκ is bounded.

Key: f ∈ κκ. Then

Cf = {α < κ | α is closed under f}

is a club subset of κ.
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