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Ostaszewski's club
The main result

Using Axiom A and more properties
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The club principle

Definition

The club principle, &, is the following statement: There is some
(Aq | @ < wi,a limit) such that for every o, A, is cofinal in o and
for every uncountable X C w; there is an « such that A, C X.
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The club principle

Definition

The club principle, &, is the following statement: There is some
(Aq | @ < wi,a limit) such that for every o, A, is cofinal in o and
for every uncountable X C w; there is an « such that A, C X.

It is equivalent to say “there are stationarily many o instead of
“there is an o
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The club principle and CH

Devlin, 1977
&+ CH < .
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The club principle and CH

Devlin, 1977
&+ CH < .

Shelah, Baumgartner, 1970s, two models
& + —CH is consistent relative to ZFC.
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The club principle and cardinal characteristics

Truss, 1973
The club principle (indeed, already the stick) implies that
cov(M) = Ry or cov(N) = ;.
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Cichon’s diagramme

i
i

add(N) |<— add(M) <— cov(M) <—— non(N)

Figure: The club principle implies that the framed entry is N;.
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add(N) is indeed the only entry of this kind

Fuchino, Shelah, and Soukup, 1997

The club principle and cov(M) = k = 2% for a regular kK > Ny is
consistent relative to ZFC.
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add(N) is indeed the only entry of this kind

Fuchino, Shelah, and Soukup, 1997

The club principle and cov(M) = k = 2% for a regular kK > Ny is
consistent relative to ZFC.

Dzamonja and Shelah, 1999
The club principle and add(M) = Ry = 2¢ is consistent relative to
ZFC.
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add(N) is indeed the only entry of this kind

Fuchino, Shelah, and Soukup, 1997

The club principle and cov(M) = k = 2% for a regular kK > Ny is
consistent relative to ZFC.

Dzamonja and Shelah, 1999

The club principle and add(M) = Ry = 2¢ is consistent relative to
ZFC.

Brendle, 2006

The club principle and cov(N') = & for a regular k > Ny is
consistent relative to ZFC.
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Two cardinals

s is the splitting number.

b is the distributivity number.
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Two cardinals

s is the splitting number.

b is the distributivity number.

Question, Brendle, Hrusak

Is there a model of the club principle in which s or even b is larger
than N;7?
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Two cardinals

s is the splitting number.

b is the distributivity number.

Question, Brendle, Hrusak

Is there a model of the club principle in which s or even b is larger
than N;7?

In ZFC, b < s.
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The main result

Theorem

Any countable support iteration of Axiom A iterands of tree form or
of a linear form with the finiteness property for <,, over a ground
model of Jensen’s diamond yields a model of the club principle. In
particular, the club principle holds in the Laver model, the Miller
model, the Blass-Shelah model, the Mathias model, the Matet
model.
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The main result

Theorem

Any countable support iteration of Axiom A iterands of tree form or
of a linear form with the finiteness property for <,, over a ground
model of Jensen’s diamond yields a model of the club principle. In
particular, the club principle holds in the Laver model, the Miller
model, the Blass-Shelah model, the Mathias model, the Matet
model.

This was formerly known for the Sacks model.
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Corollaries

Theorem

The club principle together with ) = o is consistent relative to
ZFC.

Proof: Mathias forcing increases b.
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Corollaries

Theorem

The club principle together with ) = o is consistent relative to
ZFC.

Proof: Mathias forcing increases b.

Theorem
The club principle together with u < g is consistent relative to ZFC.

Proof: Matet forcing and Blass-Shelah forcing give u < g.
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Y w

Our work builds on Baumgartner and Laver's “Perfect Set Forcing”
and on Hru3ak's “Life in the Sacks Model”, which builds on work by
Steprans.
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Our work builds on Baumgartner and Laver's “Perfect Set Forcing”
and on Hru3ak's “Life in the Sacks Model”, which builds on work by
Steprans.

Definition

A notion of forcing (P, <p) satisfies Axiom A if there are relations
<n, N € w, with the following properties:

(1) p <o q implies p <p q,
(2) D §n+1 q implies P Sn q,

(3) if pp, <p, pny1 for n € w, then there is some ¢ € P such that
for all n, p, <, q,

(4) for every p € IP and every n and every antichain A in P there is
some q >, p such that {r € A | r [ q} is countable.
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< wy-properness is not enough

Example, joint work with Shelah

There is a < wy-proper forcing specialising all Aronszajn trees and
not adding reals and hence destroying the club principle.

12/33



< wy-properness is not enough

Example, joint work with Shelah

There is a < wy-proper forcing specialising all Aronszajn trees and
not adding reals and hence destroying the club principle.

However this forcing does not have the finiteness property.
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The finiteness property for <,,, for trees

Definition

We give a version for tree forcings: A notion of forcing (P, <p)
whose elements p are subsets of 2<% or in w<% has the finiteness
property for <,, iff there is a function f: P x w — w such that for

every n, p, ¢

p<nq if p<gqand
N f(p,n)! P =p 0 f(p,n) P,

In the case of 2<“ we can write 2/(»™) instead of f(p,n)/®™)
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The finiteness property for <,,, linear conditions

Definition
We give a version for forcings P whose conditions are of the form

p = (a,co,c1,...), with ¢; C [n;,n;+1) for some strictly increasing
sequence n;, i < w. Then (P, <p) has the finiteness property for

<,, iff there is a function f: P x w — w such that for every n, p, ¢:

p=(s,¢) <, q=(t,d)if
p<pqand
(sn f(p,n),con f(p,n),c1 N f(p,n),...)=
N f(p,n),do N f(p,n),di N f(p,n),...).
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Preparing fusion in very little steps

Definition

If p,g € Pg, F C 3, F finite, 71 € Fuw, we write ¢ > ) p iff
F={Go,...,0-}, i =(n(Bo),...,n(B)) and

(Vi <r)((q 1 Bi) Ik q(Bi) Zns,) a(5:))-

15/33



Tuples in conditions, strengthenings

Definition

Let p € Py, F ={fo,..., B} € [supp(p)]=* and

7= ((B0),---,0(8)), o(Bi) € k(B:)*P) or a(8;) C k(Bi) (in
the creature case), k = (k(B),...,k(B)) € Fw. By induction on
0 € F we define when (p [ &) | 3 is consistent with p and then we
define (p | &)(5). The first step in the induction is split into two
cases:
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Continuation of the definition

1. For tree forcings. We write for s € ki,
ps ={t €p | taVt > s} in the tree case. If p; is defined, i.e.,
if s € p, we say that s is consistent with p.

2. For linear forcings. For p = (a,co,c1,...), s C k, we let
ps = (a,coNs,c1 NS, ..y Cma1 NS, CmyCmt1 - . ) for
p=(a,¢) and a = sN(maxa+1) and s CaUcoU---Ucpy_1
for some m (or, in general, when s is in the set of possibilities
given by (a,co,...cm—1) for a more general creature forcing),
otherwise p; is undefined. If p, is defined we say that s is
consistent with p.
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Continuation of the definition, 2

Now we continue the induction: Suppose that (p [ &) | (B is
defined. If (p | &) | BIF “o(B) is consistent with p(3)", then we
say that & | (8 + 1) is consistent with p and we have the condition

(p &)1 B+ 1 defined by

o p(B) if 8¢ F;
(01 3)(5) = { N e
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Pinning down finite parts of names of conditions

Definition

Let F' be a finite subset of «. A condition p € P, is said to be
(F, k)-determined if Vo (5;) € ¥BDk(3;), i < r, either
d=(0(fo),-..,0(B)) is consistent with p or 35 € F so that
& | (F'N ) is consistent with p and (p [ &) [ B IFp, o(3) is not
consistent with p(3).
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Pinning down finite parts of names of conditions

Lemma

(Baumgartner and Laver) Let p € Po, I € [a]<* and 71 € Foy.
There is ¢ > () p and there is k:(p, Fi) = k such that qis
(F, k)-determined and F = {8y, ... 3,}, and for all i < r,
k(Bi) = f(p | Bi, ).
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Two important notions

Definition
Given an P,-name X for an uncountable subset of wy a condition
p€P,and F € [a]<* and m € Fw we let

Apmp, X)={vew | FqePu)(¢>rmprqlF-yeX)}
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Two important notions

Definition
Given an P,-name X for an uncountable subset of wy a condition
p€P,and F € [a]<* and m € Fw we let

Apmp, X)={vew | FqePu)(¢>rmprqlF-yeX)}

Definition
A condition p € P, is said to be (X, F',m)-good if p is
(F, k(F,p,m))-determined and Vg >p 5 p, [Arm(q, X)| = R
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Stepping up

Lemma
Ifp=(s,C) € M, X a M-name for an uncountable subset of w;

and let m € w. If p is (X, m)-good then there is ¢ € M, such that
q>m p and q is (X, m + 1)-good.
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Suppose that the lemma fails. We construct a sequence
(pn | m € w) with the following properties:

(1) pn €M, po=p = (s,0),
(2) Pn+1 >m Dns
(

3) pn = (s,Cp) and the (m + 1)-st element of C,, is k,, the
(m + 2)-nd element of C,, is £,

(4) [Am+1(pn, X)| < Ry
To do this, suppose that p,, has been chosen.
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Proof, part 2

At step n + 1 we find

Pnt1 Zm+1 Py = (s, {ci | i <m}U{l,} Urest) such that

| A1 (Prt1, X)| < Ry. Here ¢; is the i-th element of C. If this
were not possible then the lemma holds with p!, as desired
condition.

Now we have the countable set

A= U{Am+1 pn+1,X) | n € wh.
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We take p, = (s,{¢; | i<m}U{l, | n €w}). Since pis

(X, m)-good, and p,, >, p, the set A,,(p., X) is uncountable.

We choose v € A, (pw, X) ~ A. Then there is a p’ >, p,, such
that p' IF v € X. Let p' = (s,C"). The (m + 1)-st element of C’ is
¢y, for some n. So we have p’ >,,11 pni1. Then, however,

v € Am+1(Pn+1, X), which is impossible.

Similarly we can do for one Matet iterand.
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Stepping up for the iterated forcing

Definition

Let F ={fy < --- < [} and let for example

G={fo <ap<pf1<---<pfr} in increasing order. Let kefuw
and let '€ Gw. Then we write k <ra Ciff k(5;) < €(83;) for all

i <r and we write k <FrG 7 iff one inequality is strict or if G 2 F.
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Stepping up for the iterated forcing

Definition

Let F ={fy < --- < [} and let for example

G={fo <ap<pf1<---<pfr} in increasing order. Let kefuw
and let '€ Gw. Then we write k <ra Ciff k(5;) < €(83;) for all

i <r and we write k <FrG 7 iff one inequality is strict or if G 2 F.

Lemma

Let p € Py, let F' be finite subset of o, X be a P,-name for an
uncountable subset of wy, and let m € Fw and G D F, it € Cw,
m <pqg 0. Ifpis (X, F,m)-good then there is ¢ € P, such that
q>pmpandqis (X,G,1)-good.
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Translating IP,,,-names for subsets of w; into subsets of

H(wr)

Let P, be a countable support iteration of proper iterands of size at
most N;. So we assume CH in the ground model.

Lemma

Let N be a countable elementary submodel of H(x) that contains
P.. Then for every Po-name x € N for a real there is a name y,
that is hereditarily countable relative to every (N, P, )-generic p
and every (N, P,)-generic p forces © = y.
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Translating IP,,,-names for subsets of w; into subsets of

H(wr)

Let P, be a countable support iteration of proper iterands of size at
most N;. So we assume CH in the ground model.

Lemma

Let N be a countable elementary submodel of H(x) that contains
P.. Then for every Po-name x € N for a real there is a name y,
that is hereditarily countable relative to every (N, P, )-generic p
and every (N, P,)-generic p forces © = y.

Corollary

If x € N is a Py-name for a real then there is some hereditarily
countable y such that the set of conditions that force x =y Is
dense above conditions in N, i.e., (VYp € N)(3q¢ > p)(qIF x = y).
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The original diamond in the ground model

Lemma

Let P,,, be an iteration of Axiom A forcings that has the stepping
up property for goodness from the previous technical lemma.
Assume { in the ground model. There is a sequence

(Cs | 6 €lim(wy)) such that for every p € P,,, and every
P.,-name X for an uncountable subset of wy there are ¢ > p and
0 € lim(w) such that ¢ IF Cs C X.
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The original diamond in the ground model

Lemma

Let P,,, be an iteration of Axiom A forcings that has the stepping
up property for goodness from the previous technical lemma.
Assume { in the ground model. There is a sequence

(Cs | 6 €lim(wy)) such that for every p € P,,, and every
P.,-name X for an uncountable subset of wy there are ¢ > p and
0 € lim(w) such that ¢ IF Cs C X.

Remark: The club sequence (Cs | 6 € lim(wy)) is in the ground
model. By the reflection properties, it appears in P, for some
a < wa.
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Guessing what many elementary submodels see

Claim

(see Claim IV.4 in Hrusak's Life in the Sacks Model) Under <}, there
is a sequence (ps, As, M5 | § € lim(wy)) such thatif p e P,,, X a
P,,,-name for an uncountable subset of w; such that X C H(w;)
and C C [H(w2)]™ is a closed and unbounded set of countable
elementary submodels then there is an M € C and an 6 < w; such
that X, p,P, € M, « such that p € P, and X P,-name,
MﬂH(wl) = Ms, MsNwy =96, ps € Ms and X N Ms = As.
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Finding the club sequence in the ground model

According to the stepping up lemma we may construct a sequence

<Qia F;, 7, ki, B | 1€ w> such that

(1) F; C Fiq1, U; =90,

(2) i < Bi <6,

(3) q0 = ps.

(4) q; € PsN My is (F,,k) determined and k; = E(p,-,ﬂﬁ,-), wlog
71; can be the vector constant to 7, at least we need that
(VB € supp(p)) (lim;—, 71;(3) = o0),

zew

5) Qit1 >(Fyi,) G

6) ¢ is (As, F;,7i;)-good,

7) ¢;IF 5; € X and

8) ¢ IF Di N Ms # 0.
Finally set Cs = {0; | i <w}.

—~ A~~~

30/33



Putting things together

Corollary
If Jensen’s diamond holds in the ground model, then in the Sacks
model, in the Laver model, in den Miller model, in the Blass-Shelah

model, in the Matet-model and in the Mathias model the club
principle holds.
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Something different from c.s. iterations of proper iterands

with the No-c.c. is needed

In all our models there are Souslin trees.
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Something different from c.s. iterations of proper iterands

with the No-c.c. is needed

In all our models there are Souslin trees.

So this work does not help at all answering Juhasz' question.
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The last slide

Thank you for your attention.
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