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Survey

Ostaszewski's club

The main result

Using Axiom A and more properties

2 / 33



The club principle

De�nition
The club principle, ♣, is the following statement: There is some

〈Aα | α < ω1, α limit〉 such that for every α, Aα is co�nal in α and

for every uncountable X ⊆ ω1 there is an α such that Aα ⊆ X.

It is equivalent to say �there are stationarily many α� instead of

�there is an α�.
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The club principle and CH

Devlin, 1977

♣+ CH⇔ ♦.

Shelah, Baumgartner, 1970s, two models

♣+ ¬CH is consistent relative to ZFC.
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The club principle and cardinal characteristics

Truss, 1973

The club principle (indeed, already the stick) implies that

cov(M) = ℵ1 or cov(N ) = ℵ1.
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Cicho«'s diagramme

cov(N )

��

non(M)

��

oo cof(M)

��

oo cof(N )oo

��

b

��

d

��

oo

add(N ) add(M)oo cov(M)oo non(N )oo

Figure: The club principle implies that the framed entry is ℵ1.
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add(N ) is indeed the only entry of this kind

Fuchino, Shelah, and Soukup, 1997

The club principle and cov(M) = κ = 2ω for a regular κ ≥ ℵ2 is

consistent relative to ZFC.

Dºamonja and Shelah, 1999

The club principle and add(M) = ℵ2 = 2ω is consistent relative to

ZFC.

Brendle, 2006

The club principle and cov(N ) = κ for a regular κ ≥ ℵ2 is

consistent relative to ZFC.

7 / 33



add(N ) is indeed the only entry of this kind

Fuchino, Shelah, and Soukup, 1997

The club principle and cov(M) = κ = 2ω for a regular κ ≥ ℵ2 is

consistent relative to ZFC.

Dºamonja and Shelah, 1999

The club principle and add(M) = ℵ2 = 2ω is consistent relative to

ZFC.

Brendle, 2006

The club principle and cov(N ) = κ for a regular κ ≥ ℵ2 is

consistent relative to ZFC.

7 / 33



add(N ) is indeed the only entry of this kind

Fuchino, Shelah, and Soukup, 1997

The club principle and cov(M) = κ = 2ω for a regular κ ≥ ℵ2 is

consistent relative to ZFC.

Dºamonja and Shelah, 1999

The club principle and add(M) = ℵ2 = 2ω is consistent relative to

ZFC.

Brendle, 2006

The club principle and cov(N ) = κ for a regular κ ≥ ℵ2 is

consistent relative to ZFC.

7 / 33



Two cardinals

s is the splitting number.

h is the distributivity number.

Question, Brendle, Hru²ák

Is there a model of the club principle in which s or even h is larger

than ℵ1?

In ZFC, h ≤ s.
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The main result

Theorem
Any countable support iteration of Axiom A iterands of tree form or

of a linear form with the �niteness property for ≤n over a ground

model of Jensen's diamond yields a model of the club principle. In

particular, the club principle holds in the Laver model, the Miller

model, the Blass-Shelah model, the Mathias model, the Matet

model.

This was formerly known for the Sacks model.
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Corollaries

Theorem
The club principle together with h = ℵ2 is consistent relative to

ZFC.

Proof: Mathias forcing increases h.

Theorem
The club principle together with u < g is consistent relative to ZFC.

Proof: Matet forcing and Blass-Shelah forcing give u < g.
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Axiom A

Our work builds on Baumgartner and Laver's �Perfect Set Forcing�

and on Hru²ák's �Life in the Sacks Model�, which builds on work by

Stepr	ans.

De�nition
A notion of forcing (P,≤P) satis�es Axiom A if there are relations

≤n, n ∈ ω, with the following properties:

(1) p ≤0 q implies p ≤P q,

(2) p ≤n+1 q implies p ≤n q,

(3) if pn ≤n pn+1 for n ∈ ω, then there is some q ∈ P such that

for all n, pn ≤n q,

(4) for every p ∈ P and every n and every antichain A in P there is

some q ≥n p such that {r ∈ A | r 6⊥ q} is countable.

11 / 33



Axiom A

Our work builds on Baumgartner and Laver's �Perfect Set Forcing�

and on Hru²ák's �Life in the Sacks Model�, which builds on work by

Stepr	ans.

De�nition
A notion of forcing (P,≤P) satis�es Axiom A if there are relations

≤n, n ∈ ω, with the following properties:

(1) p ≤0 q implies p ≤P q,

(2) p ≤n+1 q implies p ≤n q,

(3) if pn ≤n pn+1 for n ∈ ω, then there is some q ∈ P such that

for all n, pn ≤n q,

(4) for every p ∈ P and every n and every antichain A in P there is

some q ≥n p such that {r ∈ A | r 6⊥ q} is countable.

11 / 33



< ω1-properness is not enough

Example, joint work with Shelah

There is a < ω1-proper forcing specialising all Aronszajn trees and

not adding reals and hence destroying the club principle.

However this forcing does not have the �niteness property.
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The �niteness property for ≤n, for trees

De�nition
We give a version for tree forcings: A notion of forcing (P,≤P)
whose elements p are subsets of 2<ω or in ω<ω has the �niteness

property for ≤n i� there is a function f : P× ω → ω such that for

every n, p, q:

p ≤n q if p ≤ q and

q ∩ f(p, n)f(p,n) = p ∩ f(p, n)f(p,n).

In the case of 2<ω we can write 2f(p,n) instead of f(p, n)f(p,n).
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The �niteness property for ≤n, linear conditions

De�nition
We give a version for forcings P whose conditions are of the form

p = (a, c0, c1, . . . ), with ci ⊆ [ni, ni+1) for some strictly increasing

sequence ni, i < ω. Then (P,≤P) has the �niteness property for

≤n i� there is a function f : P× ω → ω such that for every n, p, q:

p = (s, c̄) ≤n q = (t, d̄) if

p ≤P q and

(s ∩ f(p, n), c0 ∩ f(p, n), c1 ∩ f(p, n), . . . ) =
(t ∩ f(p, n), d0 ∩ f(p, n), d1 ∩ f(p, n), . . . ).
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Preparing fusion in very little steps

De�nition
If p, q ∈ Pβ , F ⊆ β, F �nite, ~n ∈ F ω, we write q ≥(F,~n) p i�

F = {β0, . . . , βr}, ~n = (n(β0), . . . , n(βr)) and

(∀i ≤ r)((q � βi) 
 q(βi) ≥n(βi) q(βi)).
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Tuples in conditions, strengthenings

De�nition
Let p ∈ Pα, F = {β0, . . . , βr} ∈ [supp(p)]<ω and

~σ = (σ(β0), . . . , σ(βr)), σ(βi) ∈ k(βi)k(βi) or σ(βi) ⊆ k(βi) (in

the creature case), ~k = (k(β0), . . . , k(βr)) ∈ F ω. By induction on

β ∈ F we de�ne when (p � ~σ) � β is consistent with p and then we

de�ne (p � ~σ)(β). The �rst step in the induction is split into two

cases:
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Continuation of the de�nition

1. For tree forcings. We write for s ∈ kk,
ps = {t ∈ p | t / ∨t D s} in the tree case. If ps is de�ned, i.e.,

if s ∈ p, we say that s is consistent with p.

2. For linear forcings. For p = (a, c0, c1, . . . ), s ⊆ k, we let

ps = (a, c0 ∩ s, c1 ∩ s, . . . , cm−1 ∩ s, cm, cm+1 . . . ) for

p = (a, c̄) and a = s∩ (max a + 1) and s ⊆ a∪ c0 ∪ · · · ∪ cm−1

for some m (or, in general, when s is in the set of possibilities

given by (a, c0, . . . cm−1) for a more general creature forcing),

otherwise ps is unde�ned. If ps is de�ned we say that s is

consistent with p.

17 / 33



Continuation of the de�nition, 2

Now we continue the induction: Suppose that (p � ~σ) � β is

de�ned. If (p � ~σ) � β 
 �σ(β) is consistent with p(β)�, then we

say that ~σ � (β + 1) is consistent with p and we have the condition

(p � ~σ) � β + 1 de�ned by

(p � ~σ)(β) =
{

p(β) if β 6∈ F ;
p(β)σ(β) if β ∈ F.
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Pinning down �nite parts of names of conditions

De�nition
Let F be a �nite subset of α. A condition p ∈ Pα is said to be

(F,~k)-determined if ∀σ(βi) ∈ k(βi)k(βi), i ≤ r, either
~σ = (σ(β0), . . . , σ(βr)) is consistent with p or ∃β ∈ F so that

~σ � (F ∩ β) is consistent with p and (p � ~σ) � β 
Pβ
σ(β) is not

consistent with p(β).
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Pinning down �nite parts of names of conditions

Lemma
(Baumgartner and Laver) Let p ∈ Pα, F ∈ [α]<ω and ~n ∈ F ω.
There is q ≥(F,~n) p and there is ~k(p, F, ~n) = ~k such that q is

(F,~k)-determined and F = {β0, . . . βr}, and for all i ≤ r,
k(βi) ≥ f(p � βi, F, ~n).

20 / 33



Two important notions

De�nition
Given an Pα-name X

˜
for an uncountable subset of ω1 a condition

p ∈ Pα and F ∈ [α]<ω and ~m ∈ F ω we let

AF,~m(p, X
˜

) = {γ ∈ ω1 | (∃q ∈ Pα)(q ≥F,~m p ∧ q 
 γ ∈ X
˜

)}.

De�nition
A condition p ∈ Pα is said to be (X

˜
, F, ~m)-good if p is

(F,~k(F, p, ~m))-determined and ∀q ≥F,~m p, |AF,~m(q, X
˜

)| = ℵ1.
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Stepping up

Lemma
If p = (s, C) ∈ M, X

˜
a M-name for an uncountable subset of ω1

and let m ∈ ω. If p is (X
˜

,m)-good then there is q ∈ M, such that

q ≥m p and q is (X
˜

,m + 1)-good.
Skip proof
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Proof

Suppose that the lemma fails. We construct a sequence

〈pn | n ∈ ω〉 with the following properties:

(1) pn ∈ M, p0 = p = (s, C),

(2) pn+1 ≥m pn,

(3) pn = (s, Cn) and the (m + 1)-st element of Cn is kn, the

(m + 2)-nd element of Cn is `n,

(4) |Am+1(pn, X
˜

)| < ℵ1.

To do this, suppose that pn has been chosen.
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Proof, part 2

At step n + 1 we �nd

pn+1 ≥m+1 p′n = (s, {ci | i < m} ∪ {`n} ∪ rest) such that

|Am+1(pn+1, X
˜

)| < ℵ1. Here ci is the i-th element of C. If this

were not possible then the lemma holds with p′n as desired

condition.

Now we have the countable set

A =
⋃
{Am+1(pn+1, X

˜
) | n ∈ ω}.
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Proof, part 3

We take pω = (s, {ci | i < m} ∪ {`n | n ∈ ω}). Since p is

(X
˜

,m)-good, and pω ≥m p, the set Am(pω, X
˜

) is uncountable.

We choose γ ∈ Am(pω, X
˜

) r A. Then there is a p′ ≥m pω such

that p′ 
 γ ∈ X
˜
. Let p′ = (s, C ′). The (m + 1)-st element of C ′ is

`n for some n. So we have p′ ≥m+1 pn+1. Then, however,

γ ∈ Am+1(pn+1, X
˜

), which is impossible.

Similarly we can do for one Matet iterand.
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Stepping up for the iterated forcing

De�nition
Let F = {β0 < · · · < βr} and let for example

G = {β0 < α0 < β1 < · · · < βr}, in increasing order. Let ~k ∈ F ω
and let ~̀ ∈ Gω. Then we write ~k ≤F,G

~̀ i� k(βi) ≤ `(βi) for all

i ≤ r and we write ~k <F,G
~̀ i� one inequality is strict or if G ) F .

Lemma
Let p ∈ Pα, let F be �nite subset of α, X

˜
be a Pα-name for an

uncountable subset of ω1, and let ~m ∈ F ω and G ⊇ F , ~n ∈ Gω,
~m <F,G ~n. If p is (X

˜
, F, ~m)-good then there is q ∈ Pα such that

q >F,~m p and q is (X
˜

, G, ~n)-good.
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Translating Pω2
-names for subsets of ω1 into subsets of

H(ω1)

Let Pα be a countable support iteration of proper iterands of size at

most ℵ1. So we assume CH in the ground model.

Lemma
Let N be a countable elementary submodel of H(χ) that contains

Pα. Then for every Pα-name x ∈ N for a real there is a name y,
that is hereditarily countable relative to every (N, Pα)-generic p
and every (N, Pα)-generic p forces x = y.

Corollary

If x ∈ N is a Pα-name for a real then there is some hereditarily

countable y such that the set of conditions that force x = y is

dense above conditions in N , i.e., (∀p ∈ N)(∃q ≥ p)(q 
 x = y).
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The original diamond in the ground model

Lemma
Let Pω2 be an iteration of Axiom A forcings that has the stepping

up property for goodness from the previous technical lemma.

Assume ♦ in the ground model. There is a sequence

〈Cδ | δ ∈ lim(ω1)〉 such that for every p ∈ Pω2 and every

Pω2-name X
˜

for an uncountable subset of ω1 there are q ≥ p and

δ ∈ lim(ω1) such that q 
 Cδ ⊆ X
˜
.

Remark: The club sequence 〈Cδ | δ ∈ lim(ω1)〉 is in the ground

model. By the re�ection properties, it appears in Pα for some

α < ω2.
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Guessing what many elementary submodels see

Claim
(see Claim IV.4 in Hru²ák's Life in the Sacks Model) Under ♦, there
is a sequence 〈pδ, Aδ,Mδ | δ ∈ lim(ω1)〉 such that if p ∈ Pω2 , X

˜
a

Pω2-name for an uncountable subset of ω1 such that X
˜
⊆ H(ω1)

and C ⊆ [H(ω2)]ℵ0 is a closed and unbounded set of countable

elementary submodels then there is an M ∈ C and an δ < ω1 such

that X
˜

, p, Pα ∈ M , α such that p ∈ Pα and X
˜

Pα-name,

M ∩H(ω1) = Mδ, Mδ ∩ ω1 = δ, pδ ∈ Mδ and X
˜
∩Mδ = Aδ.
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Finding the club sequence in the ground model

According to the stepping up lemma we may construct a sequence

〈qi, Fi, ~ni,~ki, βi | i ∈ ω〉 such that

(1) Fi ⊆ Fi+1,
⋃

i∈ω Fi = δ,

(2) αi < βi < δ,

(3) q0 ≥ pδ,

(4) qi ∈ Pδ ∩Mδ is (Fi, ~ki) determined and ~ki = ~k(pi, Fi, ~ni), wlog
~ni can be the vector constant to i, at least we need that

(∀β ∈ supp(p))(limi→ω ~ni(β) = ∞),

(5) qi+1 >(Fi,~ni) qi,

(6) qi is (Aδ, Fi, ~ni)-good,

(7) qi 
 βi ∈ X
˜

and

(8) qi 
 Di ∩Mδ 6= ∅.
Finally set Cδ = {βi | i < ω}.
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Putting things together

Corollary

If Jensen's diamond holds in the ground model, then in the Sacks

model, in the Laver model, in den Miller model, in the Blass-Shelah

model, in the Matet-model and in the Mathias model the club

principle holds.
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Something di�erent from c.s. iterations of proper iterands

with the ℵ2-c.c. is needed

In all our models there are Souslin trees.

So this work does not help at all answering Juhász' question.
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The last slide

Thank you for your attention.
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