Near coherence of filters and filter dichotomy

Heike Mildenberger and Saharon Shelah

Neuvième atelier international de théorie des ensembles, Luminy, 2 au 6 octobre 2006

Outline

The definitions of FD and of NCF Is the implication an equivalence? The main result

Outline

- The filter dichotomy principle
- Near Coherence of Filters
- 2 Is the implication an equivalence?
- 3 The main result
 - A sketch of the proofs

The filter dichotomy principle Near Coherence of Filters

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

・ 同 ト ・ ヨ ト ・ ヨ

The filter dichotomy principle Near Coherence of Filters

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

・ 同 ト ・ ヨ ト ・ ヨ

The filter dichotomy principle Near Coherence of Filters

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

 $f(\mathscr{F})$ contains less information than \mathscr{F} :

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The filter dichotomy principle Near Coherence of Filters

The Rudin-Blass ordering

Definition

A filter \mathscr{F} is Rudin-Blass less or equal a filter \mathscr{G} (written $\mathscr{F} \leq_{RB} \mathscr{G}$) iff there is a finite-to-one function $f : \omega \to \omega$ such that $f(\mathscr{F}) \subseteq f(\mathscr{G})$.

/□ ▶ < 글 ▶ < 글

The filter dichotomy principle Near Coherence of Filters

The Rudin-Blass ordering

Definition

A filter \mathscr{F} is Rudin-Blass less or equal a filter \mathscr{G} (written $\mathscr{F} \leq_{RB} \mathscr{G}$) iff there is a finite-to-one function $f : \omega \to \omega$ such that $f(\mathscr{F}) \subseteq f(\mathscr{G})$.

If \mathscr{U} is an ultrafilter, then also $f(\mathscr{U})$ is an ultrafilter, so the ultrafilters are maximal elements.

伺下 イヨト イヨ

The filter dichotomy principle Near Coherence of Filters

The Rudin-Blass ordering

Definition

A filter \mathscr{F} is Rudin-Blass less or equal a filter \mathscr{G} (written $\mathscr{F} \leq_{RB} \mathscr{G}$) iff there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \subseteq f(\mathscr{G})$.

If \mathscr{U} is an ultrafilter, then also $f(\mathscr{U})$ is an ultrafilter, so the ultrafilters are maximal elements.

Are there more maximal elements?

.

The filter dichotomy principle Near Coherence of Filters

The Rudin-Blass ordering

Definition

A filter \mathscr{F} is Rudin-Blass less or equal a filter \mathscr{G} (written $\mathscr{F} \leq_{RB} \mathscr{G}$) iff there is a finite-to-one function $f : \omega \to \omega$ such that $f(\mathscr{F}) \subseteq f(\mathscr{G})$.

If \mathscr{U} is an ultrafilter, then also $f(\mathscr{U})$ is an ultrafilter, so the ultrafilters are maximal elements.

Are there more maximal elements?

Definition

A filter \mathscr{F} is called nearly ultra if there is a finite-to-one function f such that $f(\mathscr{F})$ is ultra.

< ロ > < 同 > < 回 > < 回 >

The filter dichotomy principle Near Coherence of Filters

FD

Example (Talagrand): A filter is meagre in 2^{ω} iff there is some finite-to-one f such that $f(\mathscr{F})$ is the Fréchet filter. The meagre filters are minimal.

A 10

→ 3 → 4 3

The filter dichotomy principle Near Coherence of Filters

FD

Example (Talagrand): A filter is meagre in 2^{ω} iff there is some finite-to-one f such that $f(\mathscr{F})$ is the Fréchet filter. The meagre filters are minimal.

Definition

The filter dichotomy principle (FD) says that every filter is either meagre or nearly ultra.

/□ ▶ < 글 ▶ < 글

The filter dichotomy principle Near Coherence of Filters

FD

Example (Talagrand): A filter is meagre in 2^{ω} iff there is some finite-to-one f such that $f(\mathscr{F})$ is the Fréchet filter. The meagre filters are minimal.

Definition

The filter dichotomy principle (FD) says that every filter is either meagre or nearly ultra.

Theorem, Blass and Shelah 1987

FD is consistent relative to ZFC.

- 4 同 ト 4 ヨ ト 4 ヨ ト

The filter dichotomy principle Near Coherence of Filters

NCF

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The filter dichotomy principle Near Coherence of Filters

NCF

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

Two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$.

/□ ▶ < 글 ▶ < 글

The filter dichotomy principle Near Coherence of Filters

NCF

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

Two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$.

Definition

The principle of near coherence of filters (NCF) says that any two filters are nearly coherent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathsf{FD} \Rightarrow \mathsf{NCF}$

Theorem. Blass, Shelah, 1987

NCF is consistent relative to ZFC.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

$\mathsf{FD} \Rightarrow \mathsf{NCF}$

Theorem. Blass, Shelah, 1987 NCF is consistent relative to ZFC.

Proof: Show $FD \Rightarrow NCF$.

Let two ultrafilters \mathscr{U} and \mathscr{V} be given. Then $\mathscr{U} \cap \mathscr{V}$ is not meagre: Plewik showed (see Blass' handbook article 9.12) that the intersection of fewer than \mathfrak{c} ultrafilters is not meagre. Hence by FD there is a finite-to-one function f such that $f(\mathscr{U} \cap \mathscr{V})$ is ultra. But then $f(\mathscr{U} \cap \mathscr{V}) = f(\mathscr{U}) = f(\mathscr{V})$.

伺 ト イ ヨ ト イ ヨ ト

$\mathsf{FD} \Rightarrow \mathsf{NCF}$

Theorem. Blass, Shelah, 1987 NCF is consistent relative to ZFC.

Proof: Show $FD \Rightarrow NCF$.

Let two ultrafilters \mathscr{U} and \mathscr{V} be given. Then $\mathscr{U} \cap \mathscr{V}$ is not meagre: Plewik showed (see Blass' handbook article 9.12) that the intersection of fewer than \mathfrak{c} ultrafilters is not meagre. Hence by FD there is a finite-to-one function f such that $f(\mathscr{U} \cap \mathscr{V})$ is ultra. But then $f(\mathscr{U} \cap \mathscr{V}) = f(\mathscr{U}) = f(\mathscr{V})$.

Question

Can we reverse this implication?

イロト イポト イヨト イヨト

A sketch of the proofs

$\mathsf{NCF} \not\Rightarrow \mathsf{FD}$

Theorem, Mi,Shelah, 2006 [894]

NCF and not FD relative to ZFC.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

A sketch of the proofs

Semifilter Trichotomy

A set $\mathscr{S} \subseteq [\omega]^{\aleph_0}$ that is closed under almost supersets is called a semifilter.

SFT says that each semifilter is either meager or mapped by a finite to-one function to an ultrafilter or to the whole $[\omega]^{\aleph_0}$. SFT implies FD and the reverse implication is open.

A sketch of the proofs

Semifilter Trichotomy

A set $\mathscr{S} \subseteq [\omega]^{\aleph_0}$ that is closed under almost supersets is called a semifilter.

SFT says that each semifilter is either meager or mapped by a finite to-one function to an ultrafilter or to the whole $[\omega]^{\aleph_0}$. SFT implies FD and the reverse implication is open.

Theorem, Mi, 2000

FD and $\mathfrak{s} > \mathfrak{u}$ implies $\mathfrak{u} < \mathfrak{g}$.

Theorem, Laflamme, 1999, Blass, Laflamme 1999 SFT and $\mathfrak{u} < \mathfrak{g}$ are equivalent.

・ 同 ト ・ ヨ ト ・ ヨ

A sketch of the proofs

P-points

Definition

An ultrafilter \mathscr{U} is a *P*-point if for any X_n , $n \in \omega$, such that $X_n \in \mathscr{U}$ there is some $X \in \mathscr{U}$ such that $X \subseteq^* X_n$ for all *n*. Such an X is called a pseudointersection of X_n , $n \in \omega$.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A sketch of the proofs

P-points

Definition

An ultrafilter \mathscr{U} is a *P*-point if for any X_n , $n \in \omega$, such that $X_n \in \mathscr{U}$ there is some $X \in \mathscr{U}$ such that $X \subseteq^* X_n$ for all *n*. Such an *X* is called a pseudointersection of X_n , $n \in \omega$.

We start with a ground model of CH. Under CH there is a *P*-point.

.

A sketch of the proofs

Preserving one *P*-point

First: we preserve only one arbitrary *P*-point $\mathscr{E} \in \mathbf{V}_0$ that will be fixed forever, and destroy many others.

Preserving one P-point

First: we preserve only one arbitrary P-point $\mathscr{E} \in V_0$ that will be fixed forever, and destroy many others.

A non-complete subforcing of Matet forcing will do this.

Definition

A condition in the Matet forcing is a $p = (a, \bar{c})$, such that a is a finite subset of ω and \bar{c} is an unmeshed sequence of finite subsets of $(\max(a), \omega)$. A stronger condition $q = (b, \bar{d})$ is gotten by taking as $b \setminus a$ some union of finitely many elements of \bar{c} , and dropping elements from the sequence \bar{c} such that infinitely members stay and merge finite blocks of adjacent members of the intermediate sequence to get \bar{d} . \bar{d} is called a condensation of \bar{c} .

ヘロン 人間と 人間と 人間と

A sketch of the proofs

Stable ordered-union ultrafilters

Let $FU(\bar{c})$ be the set all condensations of \bar{c} .

Definition

A filter \mathscr{F} on \mathbb{F} is said to be an ordered-union filter if it has a basis of sets of the form $FU(\overline{d})$ for $\overline{d} \in (\mathbb{F})^{\omega}$. An ordered-union filter is said to be stable if, whenever it contains $FU(\overline{d}_n)$ for $\overline{d}_n \in (\mathbb{F})^{\omega}$, $n < \omega$, then it also contains some $FU(\overline{e})$ for some \overline{e} that is almost a condensation of each \overline{d}_n .

A sketch of the proofs

Stable ordered-union ultrafilters

Let $FU(\bar{c})$ be the set all condensations of \bar{c} .

Definition

A filter \mathscr{F} on \mathbb{F} is said to be an ordered-union filter if it has a basis of sets of the form $FU(\overline{d})$ for $\overline{d} \in (\mathbb{F})^{\omega}$. An ordered-union filter is said to be stable if, whenever it contains $FU(\overline{d}_n)$ for $\overline{d}_n \in (\mathbb{F})^{\omega}$, $n < \omega$, then it also contains some $FU(\overline{e})$ for some \overline{e} that is almost a condensation of each \overline{d}_n .

Let \mathscr{U} be a stable ordered-union ultrafilter.

Definition

 $\mathbb{M}(\mathscr{U})$ contains the (a, \bar{c}) from \mathbb{M} such that $\bar{c} \in \mathscr{U}$. The forcing partial order is inherited from \mathbb{M} .

A sketch of the proofs

Definition

Let $\mathbb{F} = \mathscr{P}_{<\omega}(\omega)$. Let \mathscr{U} be an ordered-union ultrafilter on \mathbb{F} . The core of \mathscr{U} is the filter $\Phi(\mathscr{U})$ such that

$$X \in \Phi(\mathscr{U}) \text{ iff } (\exists FU(\overline{c}) \in \mathscr{U})(\bigcup_{n \in \omega} c_n \subseteq X).$$

If \mathscr{U} is ultra, then $\Phi(\mathscr{U})$ is not meager.

/□ ▶ < 글 ▶ < 글

A sketch of the proofs

${\mathscr U}$ that do not harm ${\mathscr V}$

Theorem

(Eisworth " \rightarrow " Theorem 4, " \leftarrow " Cor. 2.5, this direction works also with non-P ultrafilters.)

Let \mathscr{U} be a stable ordered-union ultrafilter on \mathbb{F} and let \mathscr{V} be a P-point. Iff $\mathscr{V} \geq_{RB} \Phi(\mathscr{U})$, then \mathscr{V} continues to generate an ultrafilter after we force with $\mathbb{M}(\mathscr{U})$ or with $\mathbb{Q}(\mathscr{U})$.

• • • • • • •

A sketch of the proofs

Locally Fréchet filters

Definition

 $\mathscr{F}^+ = \{ A \in [\omega]^{\aleph_0} : (\forall B \in \mathscr{F}) (B \cap A \in [\omega]^{\aleph_0}) \}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

A sketch of the proofs

Locally Fréchet filters

Definition

 $\mathscr{F}^+ = \{ A \in [\omega]^{\aleph_0} : (\forall B \in \mathscr{F}) (B \cap A \in [\omega]^{\aleph_0}) \}.$ For $A \in \mathscr{F}^+$ let $\mathscr{F} \upharpoonright A = \{ B \cap A : B \in \mathscr{F} \}.$

同 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

Locally Fréchet filters

Definition

$$\mathscr{F}^+ = \{ A \in [\omega]^{\aleph_0} : (\forall B \in \mathscr{F}) (B \cap A \in [\omega]^{\aleph_0}) \}.$$

For
$$A \in \mathscr{F}^+$$
 let $\mathscr{F} \upharpoonright A = \{B \cap A : B \in \mathscr{F}\}.$

 \mathscr{F} is locally Fréchet iff there is some $A \in \mathscr{F}^+$ such that

$$\mathscr{F} \upharpoonright A = \{B \subseteq A : A \smallsetminus B \text{ is finite}\}.$$

/□ ▶ < 글 ▶ < 글

A sketch of the proofs

Locally Fréchet filters

Definition

$$\mathscr{F}^+ = \{ A \in [\omega]^{\aleph_0} : (\forall B \in \mathscr{F}) (B \cap A \in [\omega]^{\aleph_0}) \}.$$

For $A \in \mathscr{F}^+$ let $\mathscr{F} \upharpoonright A = \{ B \cap A : B \in \mathscr{F} \}.$

 \mathscr{F} is locally Fréchet iff there is some $A \in \mathscr{F}^+$ such that

$$\mathscr{F} \upharpoonright A = \{B \subseteq A : A \smallsetminus B \text{ is finite}\}.$$

So A is no split by any member of \mathscr{F} .

→ < Ξ → <</p>

A sketch of the proofs

Locally Fréchet filters

Definition

$$\mathscr{F}^+ = \{A \in [\omega]^{\aleph_0} : (\forall B \in \mathscr{F})(B \cap A \in [\omega]^{\aleph_0})\}.$$

For $A \in \mathscr{F}^+$ let $\mathscr{F} \upharpoonright A = \{B \cap A : B \in \mathscr{F}\}.$

 \mathscr{F} is locally Fréchet iff there is some $A \in \mathscr{F}^+$ such that $\mathscr{F} \upharpoonright A = \{B \subseteq A : A \smallsetminus B \text{ is finite}\}.$

So A is no split by any member of \mathscr{F} .

Locally Fréchet filters are not nearly ultra. The reverse does not hold (as we shall see in the steps of cofinality ω_1).

< 同 > < 回 > < 回 >

A sketch of the proofs

The non-meagre non-nearly-ultra filter A

Second: We build up \mathscr{A} generated by $\{A_{\alpha} : \alpha \notin S_1^2\}$.

→ 3 → < 3</p>

A sketch of the proofs

The non-meagre non-nearly-ultra filter A

Second: We build up \mathscr{A} generated by $\{A_{\alpha} : \alpha \notin S_1^2\}$. In the steps $\alpha \in \aleph_2 \smallsetminus S_1^2$ we diagonalize its initial segments $\mathscr{A}_{\alpha} :=$ the filter generated in \mathbf{V}_{α} by $\{A_{\beta} : \beta < \alpha, \beta \notin S_1^2\}$ and let A_{α} be a subset of the complement of a diagonalization built from blocks.

A sketch of the proofs

The non-meagre non-nearly-ultra filter A

Second: We build up \mathscr{A} generated by $\{A_{\alpha} : \alpha \notin S_1^2\}$. In the steps $\alpha \in \aleph_2 \smallsetminus S_1^2$ we diagonalize its initial segments $\mathscr{A}_{\alpha} :=$ the filter generated in \mathbf{V}_{α} by $\{A_{\beta} : \beta < \alpha, \beta \notin S_1^2\}$ and let A_{α} be a subset of the complement of a diagonalization built from blocks. Then $\mathscr{A} = \mathscr{A}_{\omega_2}$ will be not meagre in the end.

A sketch of the proofs

A is not almost ultra

Also \mathscr{A} will be very far from being ultra, because at any time it contains a tree on 2^{\aleph_1} mutually non-nearly coherent core filters $\Phi(\mathscr{U})$ as supersets and at stages $\alpha \in \aleph_2 \smallsetminus S_1^2$ the filter \mathscr{A}_{α} is even locally Fréchet.

→ 3 → 4 3

A sketch of the proofs

A is not almost ultra

Also \mathscr{A} will be very far from being ultra, because at any time it contains a tree on 2^{\aleph_1} mutually non-nearly coherent core filters $\Phi(\mathscr{U})$ as supersets and at stages $\alpha \in \aleph_2 \smallsetminus S_1^2$ the filter \mathscr{A}_{α} is even locally Fréchet.

We strengthen the latter properties of \mathscr{A}_{α} to a property of every two stages $\beta < \gamma$, $\beta, \gamma \in \aleph_2 \smallsetminus S_1^2$ that is preserved in the iteration and that will allow us to work with stable ordered-union ultrafilters \mathscr{U} on $\mathbb{F} = [\omega]^{<\aleph_0}$ such that $\Phi(\mathscr{U}) \not\leq_{RB} \mathscr{E}$.

くほし くほし くほし

A sketch of the proofs

Getting NCF nevertheless

Third: We get NCF with help of a diamond and special iterands: We let $S_1^2 = \{ \alpha \in \aleph_2 : cf(\alpha) = \aleph_1 \}$. A diamond sequence on S_1^2 is a sequence $\langle S_\alpha : \alpha \in S_1^2 \rangle$ such that for all $X \subseteq \aleph_2$ the set $\{ \alpha \in S_1^2 : X \cap \alpha = S_\alpha \}$ is stationary. $\Diamond(S_1^2)$ says that there is a diamond sequence for S_1^2 .

• • • • • • •

A sketch of the proofs

Three tasks for \mathbb{Q}_{α} when $\alpha \in S_1^2$

The art is to find suitable iterands \mathbb{Q}_{α} for $\alpha \in S_1^2$: \mathbb{Q}_{α}

同 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

Three tasks for \mathbb{Q}_{α} when $\alpha \in S_1^2$

The art is to find suitable iterands \mathbb{Q}_{α} for $\alpha \in S_1^2$: \mathbb{Q}_{α}

• shall preserve \mathscr{E} ,

同 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

Three tasks for \mathbb{Q}_{α} when $\alpha \in S_1^2$

The art is to find suitable iterands \mathbb{Q}_{α} for $\alpha \in S_1^2$: \mathbb{Q}_{α}

- shall preserve 𝔅,
- \bullet shall make the ultrafilter handed down by the diamond to be nearly coherent to $\mathscr E$ and

伺 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

Three tasks for \mathbb{Q}_{α} when $\alpha \in S_1^2$

The art is to find suitable iterands \mathbb{Q}_{α} for $\alpha \in S_1^2$: \mathbb{Q}_{α}

- shall preserve *ℰ*,
- \bullet shall make the ultrafilter handed down by the diamond to be nearly coherent to $\mathscr E$ and
- shall diagonalize \mathscr{A}_{α} by adding an infinite set X_{α} .

伺 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

Three tasks for \mathbb{Q}_{α} when $\alpha \in S_1^2$

The art is to find suitable iterands \mathbb{Q}_{α} for $\alpha \in S_1^2$: \mathbb{Q}_{α}

- shall preserve *ℰ*,
- \bullet shall make the ultrafilter handed down by the diamond to be nearly coherent to $\mathscr E$ and
- shall diagonalize \mathscr{A}_{α} by adding an infinite set X_{α} .

So \mathscr{A}_{α} becomes by this procedure again locally Fréchet, and thus in the whole extension \mathscr{A} is not mapped by any finite-to-one function to an ultrafilter.

・ 同 ト ・ ヨ ト ・ ヨ ト

A sketch of the proofs

An iteration

We fix a diamond sequence $\langle S_{\alpha} : \alpha \in S_1^2 \rangle$. We also fix a *P*-point $\mathscr{E} \in \mathbf{V}$ that will be preserved throughout our iteration. Let f_{α} , $\alpha \in \aleph_2 \smallsetminus S_1^2$, be an enumeration of all \mathbb{P}_{\aleph_2} -names for finite-to-one functions, each appearing cofinally often. Let f_{α} be a \mathbb{P}_{α} -name. Since all \mathbb{Q}_{α} have size \aleph_1 and are proper, such an enumeration exists.

→ 3 → 4 3

A sketch of the proofs

An iteration

We fix a diamond sequence $\langle S_{\alpha} : \alpha \in S_1^2 \rangle$. We also fix a *P*-point $\mathscr{E} \in \mathbf{V}$ that will be preserved throughout our iteration. Let f_{α} , $\alpha \in \aleph_2 \smallsetminus S_1^2$, be an enumeration of all \mathbb{P}_{\aleph_2} -names for finite-to-one functions, each appearing cofinally often. Let f_{α} be a \mathbb{P}_{α} -name. Since all \mathbb{Q}_{α} have size \aleph_1 and are proper, such an enumeration exists.

We construct (carefully) by induction on $\alpha < \aleph_2$ a countable support iteration of proper forcings $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \aleph_2, \alpha \leq \aleph_2 \rangle$ and two sequences of names $\langle \underline{\mathcal{A}}_{\alpha} : \alpha \in \aleph_2 \smallsetminus S_1^2 \rangle$ and $\langle \underline{\mathcal{X}}_{\alpha} : \alpha \in S_1^2 \rangle$ such that

(人間) システレ イテレ

A sketch of the proofs

The desired properties

(P1) For all $\alpha < \aleph_2$, $\Vdash_{\mathbb{P}_{\alpha}} "\mathbb{Q}_{\alpha}$ is proper and of size \aleph_1 ".

→ 3 → < 3</p>

A sketch of the proofs

The desired properties

(P1) For all $\alpha < \aleph_2$, $\Vdash_{\mathbb{P}_{\alpha}}$ " \mathbb{Q}_{α} is proper and of size \aleph_1 ". (P2) For all $\alpha \leq \aleph_2$, $\Vdash_{\mathbb{P}_{\alpha}}$ "filter(\mathscr{E}) is ultra".

同 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

The desired properties

- (P1) For all $\alpha < \aleph_2$, $\Vdash_{\mathbb{P}_{\alpha}}$ " \mathbb{Q}_{α} is proper and of size \aleph_1 ".
- (P2) For all $\alpha \leq \aleph_2$, $\Vdash_{\mathbb{P}_{\alpha}}$ "filter(\mathscr{E}) is ultra".
- (P3) We write $A_{\alpha} = A_{\alpha}[G_{\alpha+1}]$. $\{A_{\beta} : \beta \in \alpha \smallsetminus S_1^2\}$ has the finite intersection property and for each $\alpha \notin S_1^2$, $f_{\alpha}(A_{\alpha}) \neq^* \omega$. We let $\mathscr{A}_{\alpha} = \text{filter}(\{A_{\beta} : \beta \in \alpha \smallsetminus S_1^2\})$. So A_{α} shows that $f_{\alpha}(\mathscr{A}_{\alpha+1})$ is not the Fréchet filter.

伺 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

... more properties

(P4) Let \mathscr{Q}_{α} be a \mathbb{P}_{α} -name for \mathscr{Q}_{α} . If $\alpha \in S_{1}^{2}$ and the S_{α} is a \mathbb{P}_{α} -name \mathscr{Q} for an ultrafilter in $V^{\mathbb{P}_{\alpha}}$, then $\Vdash_{\mathbb{P}_{\alpha+1}} \mathscr{D}$ and filter(\mathscr{E}) are nearly coherent, filter(\mathscr{E}) is ultra, and X_{α} diagonalises $\mathscr{Q}_{\alpha} \mathscr{D}$.

伺 ト イヨト イヨト

A sketch of the proofs

... more properties

(P4) Let \mathscr{Q}_{α} be a \mathbb{P}_{α} -name for \mathscr{Q}_{α} . If $\alpha \in S_{1}^{2}$ and the S_{α} is a \mathbb{P}_{α} -name \mathscr{Q} for an ultrafilter in $V^{\mathbb{P}_{\alpha}}$, then $\Vdash_{\mathbb{P}_{\alpha+1}} \mathscr{D}$ and filter(\mathscr{E}) are nearly coherent, filter(\mathscr{E}) is ultra, and X_{α} diagonalises $\mathscr{Q}_{\alpha} \mathscr{D}$.

(P5) For $\beta < \gamma \notin S_1^2$ we have $(\exists X \in [\omega]^{\aleph_0}) \mathscr{A}_{\beta} \upharpoonright X = \mathsf{CFF}_X$ and if $G_{\gamma} \subseteq \mathbb{P}_{\gamma}$ is generic over **V** and $G_{\beta} = \mathbb{P}_{\beta} \cap G_{\gamma}$ then

if
$$\mathbf{V}_{\beta} \models "(\bar{c}, \mathscr{R})$$
 is a witness over \mathscr{A}_{β} "
then $\mathbf{V}_{\gamma} \models "(\exists \bar{d})(\bar{c} \leq^* \bar{d} \land (\bar{d}, \mathscr{R})$ is a witness over $\mathscr{A}_{\gamma})$ ".

伺 ト イ ヨ ト イ ヨ ト

A sketch of the proofs

The properties in (P5)

Definition

We say (\bar{c}, \mathscr{R}) is a *witness over* \mathscr{A} when:

(a)
$$\mathscr{A}\subseteq [\omega]^{leph_0}$$
 ,

(b) $\bar{c} = \langle c_n : n < \omega \rangle$ is a pure member of $\mathbb Q$ or of $\mathbb M$,

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶