Many countable support iterations of proper forcings preserve Souslin trees

Heike Mildenberger and Saharon Shelah

Universität Freiburg, Mathematisches Institut, Abteilung für Logik http://home.mathematik.uni-freiburg.de/mildenberger

Oberwolfach, 14.1.2011

1/17

The club principle \clubsuit , also called Ostaszewski's club, says: There is a sequence $\langle A_{\alpha} \mid \alpha \in \omega, \lim(\alpha) \rangle$, with the following properties: A_{α} is a cofinal subset of α , and for every uncountable $X \subseteq \omega_1$, there are stationarily many α with $A_{\alpha} \subseteq X$.

The club principle \clubsuit , also called Ostaszewski's club, says: There is a sequence $\langle A_{\alpha} \mid \alpha \in \omega, \lim(\alpha) \rangle$, with the following properties: A_{α} is a cofinal subset of α , and for every uncountable $X \subseteq \omega_1$, there are stationarily many α with $A_{\alpha} \subseteq X$.

Theorem, Miyamoto

If the club principle holds and $\mathrm{cov}(\mathcal{M})=\aleph_2$ then there is a Souslin tree.

Theorem, Brendle 2006

If the club principle holds and $\mathrm{cof}(\mathcal{M})=leph_1$ then there is a Souslin tree.

Theorem, M., 2008

The club principle and $cov(\mathcal{M}) = \aleph_1 < cof(\mathcal{M}) = \aleph_2$ is consistent relative to ZFC.

Theorem, M., 2008

The club principle and $cov(\mathcal{M}) = \aleph_1 < cof(\mathcal{M}) = \aleph_2$ is consistent relative to ZFC.

Examples are the Miller model and the Blass-Shelah model.

Theorem, M., Shelah 2010

In the Miller model and in the Blass-Shelah model there are Souslin trees.

Theorem, M., Shelah 2010

In the Miller model and in the Blass-Shelah model there are Souslin trees.

Proof: The reason is the preservation of Souslin trees. The diamond principle holds after ω_1 iteration steps. So there are Souslin trees after ω_1 steps of the iteration.

Various reasons for preserving Souslin trees

The criteria are sufficient. There are three branches of theory.

Various reasons for preserving Souslin trees

The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic completeness properties.

The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic completeness properties.

Second branch of the theory: For linear creatures. No such intermediate steps with games.

The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic completeness properties.

Second branch of the theory: For linear creatures. No such intermediate steps with games.

Third one: For nep forcings. Preserving ω -many Cohen generics over many (not necessarily elementary) models is a sufficient criterion. This is weaker than the game-theoretic criterion. However, it is applicable only to forcings that are nep in a strong sense. However, it does not cover all the forcings from the second case. The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic completeness properties.

Second branch of the theory: For linear creatures. No such intermediate steps with games.

Third one: For nep forcings. Preserving ω -many Cohen generics over many (not necessarily elementary) models is a sufficient criterion. This is weaker than the game-theoretic criterion. However, it is applicable only to forcings that are nep in a strong sense. However, it does not cover all the forcings from the second case.

Iteration issues. Preserving a Souslin tree is iterable.

Let $T = (T, <_T)$ be a tree of size ω_1 with at most countable levels.

Let $T = (T, <_T)$ be a tree of size ω_1 with at most countable levels. T is a Souslin tree if it has no uncountable chain and no uncountable antichain.

Let $T = (T, <_T)$ be a tree of size ω_1 with at most countable levels. T is a Souslin tree if it has no uncountable chain and no uncountable antichain.

For convenience we write is such that $[\omega\alpha, \omega\alpha + \omega) \smallsetminus \{0\}$ being a superset of the $(1 + \alpha)$ -th level and $\{0\}$ being the zero-th level. We require that the trees are pruned, i.e., for every node t on level α for every $\beta > \alpha$ there is $t' >_T t$ on level β . Moreover, every node shall be a splitting node.

We conceive $(T, <_T)$ as a forcing notion, the forcing for adding a branch to a Souslin tree. The stronger condition is higher up in the tree. The forcing notion is c.c.c., hence it is proper.

We conceive $(T, <_T)$ as a forcing notion, the forcing for adding a branch to a Souslin tree. The stronger condition is higher up in the tree. The forcing notion is c.c.c., hence it is proper.

Let for $\delta \in \omega_1$, we let $Y(\delta) = \{t_n^{\delta} \mid n < \gamma_{\delta}\} \subseteq T_{\delta}, \ \gamma_{\delta} \leq \omega$. Let $Y = \bigcup \{Y(\delta) \mid \delta \in \omega_1\}$. Let $\mathscr{S} \subseteq [\omega_1]^{\omega}$ be stationary.

We conceive $(T, <_T)$ as a forcing notion, the forcing for adding a branch to a Souslin tree. The stronger condition is higher up in the tree. The forcing notion is c.c.c., hence it is proper.

Let for $\delta \in \omega_1$, we let $Y(\delta) = \{t_n^{\delta} \mid n < \gamma_{\delta}\} \subseteq T_{\delta}, \ \gamma_{\delta} \leq \omega$. Let $Y = \bigcup\{Y(\delta) \mid \delta \in \omega_1\}$. Let $\mathscr{S} \subseteq [\omega_1]^{\omega}$ be stationary.

Definition

We say T is (Y, \mathscr{S}) -proper iff $Y \subseteq T$ and $\mathscr{S} \subseteq [\omega_1]^{\omega}$ and for every sufficiently large χ for every countable $N \prec \mathscr{H}(\chi)$ with $\{T, \mathscr{S}\} \subset N$ and $N \cap \omega_1 \in \mathscr{S}$, $\delta = \sup(N \cap \omega_1)$ for every $t \in Y(\delta)$, $T_{\leq_T t} := \{s \mid s \leq_T t\}$ is (N, T) generic.

If every node of T is splitting and T has an uncountable chain then T has an uncountable antichain. So an everywhere splitting tree T is Souslin iff it has no uncountable antichain. The latter is used in the proof of the following:

Lemma

The following are equivalent:

- (1) T is Souslin.
- (2) T is (Y, \mathscr{S}) -proper for every stationary $\mathscr{S} \subseteq [\omega_1]^{\omega}$ and for every Y of the form $\bigcup_{\delta \in W} T_{\delta}$, such that $W \subseteq \{\sup(a) \mid a \in \mathscr{S}\}$ stationary.
- (3) T is (Y, \mathscr{S}) -proper for some stationary $\mathscr{S} \subseteq [\omega_1]^{\omega}$ and for some Y of the form $\bigcup_{\delta \in W} T_{\delta}$, such that $W \subseteq \{\sup(a) \mid a \in \mathscr{S}\}$ stationary.

We say \mathbb{P} is (T, Y, \mathscr{S}) -preserving iff the following holds: Let $\mathscr{S} \subseteq \omega_1$ be stationary. There is $x \in H(\chi)$, for every $N \prec \mathscr{H}(\chi)$ with $\{x, Y, T, \mathbb{P}, \mathscr{S}\} \subseteq N$ and $p \in \mathbb{P} \cap N$: if $\sup(N \cap \omega_1) = \delta$, $N \cap \omega_1 \in \mathscr{S}$, and for every $n < \gamma_{\delta}$, $\{s \mid s <_T t_n^{\delta}\}$ is (N, \mathbb{P}, p) -generic, then there is $q \geq_{\mathbb{P}} p$ such that q is (N, \mathbb{P}) -generic and

$$q \Vdash_{\mathbb{P}} (\forall n < \gamma_{\delta})(\{s \ | \ s <_{T} t_{n}^{\delta}\} \text{ is } (N[\mathbf{G}_{\underline{\mathbb{P}}}], T) \text{-generic}).$$

We say \mathbb{P} is (T, Y, \mathscr{S}) -preserving iff the following holds: Let $\mathscr{S} \subseteq \omega_1$ be stationary. There is $x \in H(\chi)$, for every $N \prec \mathscr{H}(\chi)$ with $\{x, Y, T, \mathbb{P}, \mathscr{S}\} \subseteq N$ and $p \in \mathbb{P} \cap N$: if $\sup(N \cap \omega_1) = \delta$, $N \cap \omega_1 \in \mathscr{S}$, and for every $n < \gamma_{\delta}$, $\{s \mid s <_T t_n^{\delta}\}$ is (N, \mathbb{P}, p) -generic, then there is $q \geq_{\mathbb{P}} p$ such that q is (N, \mathbb{P}) -generic and

$$q \Vdash_{\mathbb{P}} (\forall n < \gamma_{\delta})(\{s \ | \ s <_{T} t_{n}^{\delta}\} \text{ is } (N[\mathbf{G}_{\mathbb{P}}], T)\text{-generic}).$$

Remark: If \mathscr{S} and Y are large enough, this implies properness. We use that \mathbb{P} is (T, Y, \mathscr{S}) -preserving for a stationary \mathscr{S} and a set Y containing all points of a stationary set of levels of the Souslin tree T and thus we get that \mathbb{P} preserves that T is a Souslin tree.

We say \mathbb{P} is (T, Y, \mathscr{S}) -preserving iff the following holds: Let $\mathscr{S} \subseteq \omega_1$ be stationary. There is $x \in H(\chi)$, for every $N \prec \mathscr{H}(\chi)$ with $\{x, Y, T, \mathbb{P}, \mathscr{S}\} \subseteq N$ and $p \in \mathbb{P} \cap N$: if $\sup(N \cap \omega_1) = \delta$, $N \cap \omega_1 \in \mathscr{S}$, and for every $n < \gamma_{\delta}$, $\{s \mid s <_T t_n^{\delta}\}$ is (N, \mathbb{P}, p) -generic, then there is $q \geq_{\mathbb{P}} p$ such that q is (N, \mathbb{P}) -generic and

$$q \Vdash_{\mathbb{P}} (\forall n < \gamma_{\delta})(\{s \ | \ s <_{T} t_{n}^{\delta}\} \text{ is } (N[\mathbf{G}_{\mathbb{P}}], T)\text{-generic}).$$

Remark: If \mathscr{S} and Y are large enough, this implies properness. We use that \mathbb{P} is (T, Y, \mathscr{S}) -preserving for a stationary \mathscr{S} and a set Y containing all points of a stationary set of levels of the Souslin tree T and thus we get that \mathbb{P} preserves that T is a Souslin tree.

" \mathbb{Q} is (T, Y, \mathscr{S}) -preserving" is an iterable property.

Let \mathbb{P} be a notion of forcing and $p \in \mathbb{P}$.

The game $\partial^2(\mathbb{P}, p)$ is played in ω rounds. In round n, player COM chooses an $\ell_n \in \omega \setminus \{0\}$ and a sequence $\langle p_{n,\ell} \mid \ell < \ell_n \rangle$ of conditions $p_{n,\ell} \in \mathbb{P}$ and then player INC plays $\langle q_{n,\ell} \mid n < \omega \rangle$ such that $p_{n,\ell} \leq q_{n,\ell}$. After ω rounds, COM wins the game iff for every infinite $u \subseteq \omega$ there is $q_u \geq p$ such that

$$q_u \Vdash (\exists^{\infty} n \in u) (\exists \ell < \ell_n) (q_{n,\ell} \in \mathbf{G}).$$

11/17

Theorem

Assume $\alpha(*) = \omega_1$ and $\mathscr{S} \subseteq \omega_1$ is stationary. Let T be an ω_1 -tree and $Y \subseteq T$. If COM has a winning strategy in the game $\partial^2(\mathbb{P})$, then \mathbb{P} is (T, Y, \mathscr{S}) -preserving.

Lemma

In the Miller forcing COM has a winning strategy in $\partial^2(\mathbb{P})$.

Lemma

In the Miller forcing COM has a winning strategy in $\partial^2(\mathbb{P})$.

Example

In the Laver forcing COM does not have a winning strategy in $\partial^2(\mathbb{P})$. The existence of such a winning strategy implies that \mathbb{P} is almost ω^{ω} -bounding. Nevertheless Laver forcing preserves Souslin trees.

Let $v \subseteq {}^{\omega >}\omega$. We let $\operatorname{dcl}(v) = \{\eta \upharpoonright k \mid \eta \in v, k < \operatorname{lg}(\eta)\}$ be the descending closure of v.

Let $v \subseteq {}^{\omega>}\omega$. We let $\operatorname{dcl}(v) = \{\eta \upharpoonright k \mid \eta \in v, k < \operatorname{lg}(\eta)\}$ be the descending closure of v. We describe a strategy st for COM in $\partial^2(\mathbb{P}, p)$. Let $v \subseteq {}^{\omega >} \omega$. We let $\operatorname{dcl}(v) = \{\eta \upharpoonright k \mid \eta \in v, k < \operatorname{lg}(\eta)\}$ be the descending closure of v. We describe a strategy st for COM in $\partial^2(\mathbb{P}, p)$. On the side after the in the *n*-th move COM chooses a finite set of nodes v_n such the sequence $\langle \bar{p}_n, \bar{q}_n, v_n \mid n \in \omega \rangle$ has the following properties

(0)
$$\ell_0 = 1$$
, $p_{0,0} = p$, $q_{0,0} \ge p_{0,0}$, $v_0 = \{ \operatorname{tr}(q_{0,0}) \}$.
(1) For $n \ge 1$, given v_{n-1} , COM chooses $\ell_n = |v_{n-1}|$ and for $\eta \in v_{n-1}$, $\eta = \operatorname{tr}(q_{n',\ell})$ for some $n' < n$, $\ell < \ell_{n'}$ he lets

$$m(\eta, n) = \min\{k \mid \eta k \in q_{n',\ell} \smallsetminus \operatorname{dcl}(v_{n-1})\}.$$

Let $\{\eta_{\ell}^n \mid \ell < \ell_n\}$ enumerate v_{n-1} and let $\eta_{\ell}^n = \operatorname{tr}(q_{n',\ell'})$. Now COM chooses $p_{n,\ell} = q_{n',\ell'}^{[\eta_{\ell}^n \cdot m(\eta_{\ell},n)]}$.

- (2) INC plays $q_{n,\ell} \ge p_{n,\ell}$.
- (3) Now COM chooses his new helper: $v_n = v_{n-1} \cup \{ \operatorname{tr}(q_{n,\ell}) \mid \ell < \ell_n \}$, and the round is finished. Indeed $\ell_{n+1} = 2\ell_n$ and $\ell_0 = 1$, but this is not important.

The strategy st is a winning strategy for COM: Let $u \subseteq \omega$ be infinite. By induction on $n \in u$ we choose $s_n \subseteq v_n \smallsetminus v_{n-1}$. If $n = \min(u)$, then $s_n \subseteq v_n \smallsetminus v_{n-1}$ is a singleton. For $n > \min(u)$, let

$$s_n = s_{\max(u \cap n)} \cup \{\eta \in v_n \smallsetminus v_{n-1} \mid \nu = \max_{\triangleleft} \{\varrho \in v_n \mid \varrho \leq \eta\} \in s_{\max(u \cap n)} \}.$$

Lastly we let

$$q_u = \{ \varrho \ | \ (\exists n \in u) (\exists \eta \in s_n) (\varrho \trianglelefteq \eta) \}.$$

 We compute with the norms in the linear creature case.

We compute with the norms in the linear creature case.

Lemma Blass-Shelah forcing is (T, Y, \mathscr{S}) -preserving.