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A Souslin tree from Cohen reals

Definition

The club principle &, also called Ostaszewski's club, says: There is
a sequence (A, | @ € w,lim(w)), with the following properties:
A, is a cofinal subset of o, and for every uncountable X C wy,
there are stationarily many o with A, C X.
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A Souslin tree from Cohen reals

Definition

The club principle &, also called Ostaszewski's club, says: There is
a sequence (A, | @ € w,lim(w)), with the following properties:
A, is a cofinal subset of o, and for every uncountable X C wy,
there are stationarily many o with A, C X.

Theorem, Miyamoto
If the club principle holds and cov(M) = R then there is a Souslin
tree.
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A Souslin tree from few meager sets

Theorem, Brendle 2006
If the club principle holds and cof(M) = X; then there is a Souslin
tree.

3/17



There are open cases in between

Theorem, M., 2008
The club principle and cov(M) = Ry < cof(M) = Rg is consistent
relative to ZFC.
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There are open cases in between

Theorem, M., 2008

The club principle and cov(M) = Ry < cof(M) = Rg is consistent
relative to ZFC.

Examples are the Miller model and the Blass-Shelah model.
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Are there Souslin trees in these models?

Theorem, M., Shelah 2010

In the Miller model and in the Blass-Shelah model there are Souslin
trees.
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Are there Souslin trees in these models?

Theorem, M., Shelah 2010

In the Miller model and in the Blass-Shelah model there are Souslin
trees.

Proof: The reason is the preservation of Souslin trees. The
diamond principle holds after w; iteration steps. So there are
Souslin trees after w; steps of the iteration.
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Various reasons for preserving Souslin trees

The criteria are sufficient. There are three branches of theory.

6/17



Various reasons for preserving Souslin trees

The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic
completeness properties.

6/17



Various reasons for preserving Souslin trees

The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic
completeness properties.

Second branch of the theory: For linear creatures. No such
intermediate steps with games.

6/17



Various reasons for preserving Souslin trees

The criteria are sufficient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic
completeness properties.

Second branch of the theory: For linear creatures. No such
intermediate steps with games.

Third one: For nep forcings. Preserving w-many Cohen generics
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sense. However, it does not cover all the forcings from the second
case.
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Tree forcings that preserve Souslinness: Game-theoretic
completeness properties.

Second branch of the theory: For linear creatures. No such
intermediate steps with games.

Third one: For nep forcings. Preserving w-many Cohen generics
over many (not necessarily elementary) models is a sufficient
criterion. This is weaker than the game-theoretic criterion.
However, it is applicable only to forcings that are nep in a strong
sense. However, it does not cover all the forcings from the second
case.

Iteration issues. Preserving a Souslin tree is iterable.
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Souslin trees on wy

Definition
Let T'= (T, <r) be a tree of size w; with at most countable levels.
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Souslin trees on wy

Definition

Let T'= (T, <r) be a tree of size w; with at most countable levels.
T is a Souslin tree if it has no uncountable chain and no
uncountable antichain.

For convenience we write is such that [wa, wa + w) \ {0} being a
superset of the (1 + «)-th level and {0} being the zero-th level. We
require that the trees are pruned, i.e., for every node t on level o
for every B > « there is t/ >7 t on level 3. Moreover, every node
shall be a splitting node.
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Forcing with a Souslin tree

We conceive (T, <) as a forcing notion, the forcing for adding a
branch to a Souslin tree. The stronger condition is higher up in the
tree. The forcing notion is c.c.c., hence it is proper.
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Forcing with a Souslin tree

We conceive (T, <) as a forcing notion, the forcing for adding a
branch to a Souslin tree. The stronger condition is higher up in the
tree. The forcing notion is c.c.c., hence it is proper.

Let for 0 € wy, we let Y(6) = {t5 | n < vs} C Ts, s < w. Let

Y =H{Y(©) | 6§ €wi}. Let .¥ C [w1]* be stationary.

Definition

We say T' is (Y,.7)-proper iff Y C T and . C [w;]* and for every
sufficiently large x for every countable N < .77(x) with

{T,} C N and NNw; € ., d =sup(N Nw;) for every

teY (), T<,e:={s | s<rt}is (N,T) generic.
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An old characterisation of Souslinness

If every node of T is splitting and 7" has an uncountable chain then
T has an uncountable antichain. So an everywhere splitting tree T'
is Souslin iff it has no uncountable antichain. The latter is used in
the proof of the following:

Lemma
The following are equivalent:

(1) T is Souslin.

(2) T is (Y,.”)-proper for every stationary . C [w1]|* and for
every Y of the form | )5y T5, such that
W C {sup(a) | a € &} stationary.

(3) T is(Y,.”)-proper for some stationary . C |w1]* and for
someY of the form UdeW Ts, such that
W C {sup(a) | a € .S} stationary.
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Preserving generic branches and hence Souslinness

Definition

We say P is (T, Y,.7)-preserving iff the following holds: Let

# C wy be stationary. There is x € H(x), for every N < J(x)
with {z,Y,T,P,.} C N and p € PN N: if sup(N Nwy) =4,
NNw; €.7, and for every n < vs, {s | s < 3} is

(N, P, p)-generic, then there is ¢ >p p such that g is (IV, P)-generic
and

qlFp (Vn < y5)({s | s <p 3} is (N[Gp|, T)-generic).

10/17



Preserving generic branches and hence Souslinness

Definition

We say P is (T, Y,.7)-preserving iff the following holds: Let

# C wy be stationary. There is x € H(x), for every N < J(x)
with {z,Y,T,P,.} C N and p € PN N: if sup(N Nwy) =4,
NNw; €.7, and for every n < vs, {s | s < 3} is

(N, P, p)-generic, then there is ¢ >p p such that ¢ is (N, P)-generic
and

qlFp (Vn < y5)({s | s <p 3} is (N[Gp|, T)-generic).

Remark: If . and Y are large enough, this implies properness. We
use that P is (7,Y,.)-preserving for a stationary . and a set Y
containing all points of a stationary set of levels of the Souslin tree
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Preserving generic branches and hence Souslinness

Definition

We say P is (T, Y,.7)-preserving iff the following holds: Let

# C wy be stationary. There is x € H(x), for every N < J(x)
with {z,Y,T,P,.} C N and p € PN N: if sup(N Nwy) =4,
NNw; €.7, and for every n < vs, {s | s < 3} is

(N, P, p)-generic, then there is ¢ >p p such that ¢ is (N, P)-generic
and

qlFp (Vn < y5)({s | s <p 3} is (N[Gp|, T)-generic).

Remark: If . and Y are large enough, this implies properness. We
use that P is (7,Y,.)-preserving for a stationary . and a set Y
containing all points of a stationary set of levels of the Souslin tree
T and thus we get that P preserves that 7" is a Souslin tree.

“Qis (T,Y,.7)-preserving” is an iterable property.
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A completeness game

Definition

Let IP be a notion of forcing and p € P.

The game 0%(P, p) is played in w rounds. In round n, player COM
chooses an £,, € w ~. {0} and a sequence (p, ¢ | £ < {,) of
conditions p,, ¢ € P and then player INC plays (g, ¢ | n < w) such
that p,, ¢ < gpne. After w rounds, COM wins the game iff for every
infinite u C w there is ¢, > p such that

QU|F>(HOOH'E u)(ﬂé <:€n)(QnJ S g;»
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Using the game

Theorem

Assume a(*) = wy and ¥ C wy Is stationary. Let T be an w;-tree
and Y C T. If COM has a winning strategy in the game O?(P),
then P is (T,Y,.”)-preserving.
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Let P be the Miller forcing

Lemma
In the Miller forcing COM has a winning strategy in O*(P).
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Let P be the Miller forcing

Lemma
In the Miller forcing COM has a winning strategy in O*(P).

Example

In the Laver forcing COM does not have a winning strategy in
O%(PP). The existence of such a winning strategy implies that P is
almost w“-bounding. Nevertheless Laver forcing preserves Souslin
trees.
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Proof of the previous lemma: A strategy for COM

Let v C“Zw. We let dcl(v) ={n | k | n € v,k <lg(n)} be the
descending closure of v.
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Proof of the previous lemma: A strategy for COM

Let v C“Zw. We let dcl(v) ={n | k | n € v,k <lg(n)} be the
descending closure of v.

We describe a strategy st for COM in 02(PP, p).

On the side after the in the n-th move COM chooses a finite set of
nodes v, such the sequence (P, Gn, v, | n € w) has the following
properties
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A strategy for COM, Il

(0) fo=1, poo=p, 90,0 > Poo, vo={tr(qoo)}
(1) Formn >1, given v,_1, COM chooses ¢, = |v,—1| and for

N € vp_1, N = tr(gy ) for some n' <n, £ < £, he lets
m(n,n) =min{k | n°k € gy ¢ ~ dcl(v,—1)}-

Let {n} | ¢ < {,} enumerate v,_; and let 0} = tr(g, ¢).

Now COM chooses p,, o = q,[zg,m(m’n)].

INC pIays Adn. > Dne-

Now COM chooses his new helper:

Uy, = Up—1 U{tr(gnys) | £ < ¢y}, and the round is finished.
Indeed ¢, 11 = 2¢,, and ¢y = 1, but this is not important.

15/17



This is a winning strategy

The strategy st is a winning strategy for COM: Let u C w be
infinite. By induction on n € u we choose s, C v, N~ vp_1 . If

n = min(u), then s, C v, \ v,_1 is a singleton. For n > min(u),
let

Sn = Smax(unn) U

{77 € Un \ Un—1 | V= H1<E]LX{Q € Un | 0d 77} € smax(uﬂn)}'
Lastly we let

qu =10 | 3n€u)(Fn € sy)(e In)}
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Preserving Souslin trees for another reason

We compute with the norms in the linear creature case.
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Preserving Souslin trees for another reason

We compute with the norms in the linear creature case.

Lemma
Blass-Shelah forcing is (T,Y, .7 )-preserving.
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