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A Souslin tree from Cohen reals

De�nition
The club principle ♣, also called Ostaszewski's club, says: There is

a sequence 〈Aα | α ∈ ω, lim(α)〉, with the following properties:

Aα is a co�nal subset of α, and for every uncountable X ⊆ ω1,

there are stationarily many α with Aα ⊆ X.

Theorem, Miyamoto

If the club principle holds and cov(M) = ℵ2 then there is a Souslin

tree.
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A Souslin tree from few meager sets

Theorem, Brendle 2006

If the club principle holds and cof(M) = ℵ1 then there is a Souslin

tree.
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There are open cases in between

Theorem, M., 2008

The club principle and cov(M) = ℵ1 < cof(M) = ℵ2 is consistent

relative to ZFC.

Examples are the Miller model and the Blass-Shelah model.
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Are there Souslin trees in these models?

Theorem, M., Shelah 2010

In the Miller model and in the Blass-Shelah model there are Souslin

trees.

Proof: The reason is the preservation of Souslin trees. The

diamond principle holds after ω1 iteration steps. So there are

Souslin trees after ω1 steps of the iteration.
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Various reasons for preserving Souslin trees

The criteria are su�cient. There are three branches of theory.

Tree forcings that preserve Souslinness: Game-theoretic

completeness properties.

Second branch of the theory: For linear creatures. No such

intermediate steps with games.

Third one: For nep forcings. Preserving ω-many Cohen generics

over many (not necessarily elementary) models is a su�cient

criterion. This is weaker than the game-theoretic criterion.

However, it is applicable only to forcings that are nep in a strong

sense. However, it does not cover all the forcings from the second

case.

Iteration issues. Preserving a Souslin tree is iterable.
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Souslin trees on ω1

De�nition
Let T = (T,<T ) be a tree of size ω1 with at most countable levels.

T is a Souslin tree if it has no uncountable chain and no

uncountable antichain.

For convenience we write is such that [ωα, ωα+ ω) r {0} being a

superset of the (1 + α)-th level and {0} being the zero-th level. We

require that the trees are pruned, i.e., for every node t on level α
for every β > α there is t′ >T t on level β. Moreover, every node

shall be a splitting node.
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Forcing with a Souslin tree

We conceive (T,<T ) as a forcing notion, the forcing for adding a

branch to a Souslin tree. The stronger condition is higher up in the

tree. The forcing notion is c.c.c., hence it is proper.

Let for δ ∈ ω1, we let Y (δ) = {tδn | n < γδ} ⊆ Tδ, γδ ≤ ω. Let
Y =

⋃
{Y (δ) | δ ∈ ω1}. Let S ⊆ [ω1]

ω be stationary.

De�nition
We say T is (Y,S )-proper i� Y ⊆ T and S ⊆ [ω1]

ω and for every

su�ciently large χ for every countable N ≺H (χ) with

{T,S } ⊂ N and N ∩ ω1 ∈ S , δ = sup(N ∩ ω1) for every

t ∈ Y (δ), T<T t := {s | s <T t} is (N,T ) generic.
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An old characterisation of Souslinness

If every node of T is splitting and T has an uncountable chain then

T has an uncountable antichain. So an everywhere splitting tree T
is Souslin i� it has no uncountable antichain. The latter is used in

the proof of the following:

Lemma
The following are equivalent:

(1) T is Souslin.

(2) T is (Y,S )-proper for every stationary S ⊆ [ω1]
ω and for

every Y of the form
⋃
δ∈W Tδ, such that

W ⊆ {sup(a) | a ∈ S } stationary.
(3) T is (Y,S )-proper for some stationary S ⊆ [ω1]

ω and for

some Y of the form
⋃
δ∈W Tδ, such that

W ⊆ {sup(a) | a ∈ S } stationary.
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Preserving generic branches and hence Souslinness

De�nition
We say P is (T, Y,S )-preserving i� the following holds: Let

S ⊆ ω1 be stationary. There is x ∈ H(χ), for every N ≺H (χ)
with {x, Y, T,P,S } ⊆ N and p ∈ P ∩N : if sup(N ∩ ω1) = δ,
N ∩ ω1 ∈ S , and for every n < γδ, {s | s <T tδn} is
(N,P, p)-generic, then there is q ≥P p such that q is (N,P)-generic
and

q P (∀n < γδ)({s | s <T tδn} is (N [GP
˜

], T )-generic).

Remark: If S and Y are large enough, this implies properness. We

use that P is (T, Y,S )-preserving for a stationary S and a set Y
containing all points of a stationary set of levels of the Souslin tree

T and thus we get that P preserves that T is a Souslin tree.

�Q is (T, Y,S )-preserving� is an iterable property.

10 / 17



Preserving generic branches and hence Souslinness

De�nition
We say P is (T, Y,S )-preserving i� the following holds: Let

S ⊆ ω1 be stationary. There is x ∈ H(χ), for every N ≺H (χ)
with {x, Y, T,P,S } ⊆ N and p ∈ P ∩N : if sup(N ∩ ω1) = δ,
N ∩ ω1 ∈ S , and for every n < γδ, {s | s <T tδn} is
(N,P, p)-generic, then there is q ≥P p such that q is (N,P)-generic
and

q P (∀n < γδ)({s | s <T tδn} is (N [GP
˜

], T )-generic).

Remark: If S and Y are large enough, this implies properness. We

use that P is (T, Y,S )-preserving for a stationary S and a set Y
containing all points of a stationary set of levels of the Souslin tree

T and thus we get that P preserves that T is a Souslin tree.

�Q is (T, Y,S )-preserving� is an iterable property.

10 / 17



Preserving generic branches and hence Souslinness

De�nition
We say P is (T, Y,S )-preserving i� the following holds: Let

S ⊆ ω1 be stationary. There is x ∈ H(χ), for every N ≺H (χ)
with {x, Y, T,P,S } ⊆ N and p ∈ P ∩N : if sup(N ∩ ω1) = δ,
N ∩ ω1 ∈ S , and for every n < γδ, {s | s <T tδn} is
(N,P, p)-generic, then there is q ≥P p such that q is (N,P)-generic
and

q P (∀n < γδ)({s | s <T tδn} is (N [GP
˜

], T )-generic).

Remark: If S and Y are large enough, this implies properness. We

use that P is (T, Y,S )-preserving for a stationary S and a set Y
containing all points of a stationary set of levels of the Souslin tree

T and thus we get that P preserves that T is a Souslin tree.

�Q is (T, Y,S )-preserving� is an iterable property.

10 / 17



A completeness game

De�nition
Let P be a notion of forcing and p ∈ P.
The game a2(P, p) is played in ω rounds. In round n, player COM
chooses an `n ∈ ω r {0} and a sequence 〈pn,` | ` < `n〉 of
conditions pn,` ∈ P and then player INC plays 〈qn,` | n < ω〉 such
that pn,` ≤ qn,`. After ω rounds, COM wins the game i� for every

in�nite u ⊆ ω there is qu ≥ p such that

qu  (∃∞n ∈ u)(∃` < `n)(qn,` ∈ G
˜

).
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Using the game

Theorem
Assume α(∗) = ω1 and S ⊆ ω1 is stationary. Let T be an ω1-tree

and Y ⊆ T . If COM has a winning strategy in the game a2(P),
then P is (T, Y,S )-preserving.
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Let P be the Miller forcing

Lemma
In the Miller forcing COM has a winning strategy in a2(P).

Example

In the Laver forcing COM does not have a winning strategy in

a2(P). The existence of such a winning strategy implies that P is

almost ωω-bounding. Nevertheless Laver forcing preserves Souslin

trees.
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Proof of the previous lemma: A strategy for COM

Let v ⊆ ω>ω. We let dcl(v) = {η � k | η ∈ v, k < lg(η)} be the

descending closure of v.

We describe a strategy st for COM in a2(P, p).
On the side after the in the n-th move COM chooses a �nite set of

nodes vn such the sequence 〈p̄n, q̄n, vn | n ∈ ω〉 has the following

properties

14 / 17



Proof of the previous lemma: A strategy for COM

Let v ⊆ ω>ω. We let dcl(v) = {η � k | η ∈ v, k < lg(η)} be the

descending closure of v.
We describe a strategy st for COM in a2(P, p).

On the side after the in the n-th move COM chooses a �nite set of

nodes vn such the sequence 〈p̄n, q̄n, vn | n ∈ ω〉 has the following

properties

14 / 17



Proof of the previous lemma: A strategy for COM

Let v ⊆ ω>ω. We let dcl(v) = {η � k | η ∈ v, k < lg(η)} be the

descending closure of v.
We describe a strategy st for COM in a2(P, p).
On the side after the in the n-th move COM chooses a �nite set of

nodes vn such the sequence 〈p̄n, q̄n, vn | n ∈ ω〉 has the following

properties

14 / 17



A strategy for COM, II

(0) `0 = 1, p0,0 = p, q0,0 ≥ p0,0, v0 = {tr(q0,0)}.
(1) For n ≥ 1, given vn−1, COM chooses `n = |vn−1| and for

η ∈ vn−1, η = tr(qn′,`) for some n′ < n, ` < `n′ he lets

m(η, n) = min{k | η k̂ ∈ qn′,` r dcl(vn−1)}.

Let {ηn` | ` < `n} enumerate vn−1 and let ηn` = tr(qn′,`′).

Now COM chooses pn,` = q
[ηn` ˆm(η`,n)]

n′,`′ .

(2) INC plays qn,` ≥ pn,`.
(3) Now COM chooses his new helper:

vn = vn−1 ∪ {tr(qn,`) | ` < `n}, and the round is �nished.

Indeed `n+1 = 2`n and `0 = 1, but this is not important.
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This is a winning strategy

The strategy st is a winning strategy for COM: Let u ⊆ ω be

in�nite. By induction on n ∈ u we choose sn ⊆ vn r vn−1 . If

n = min(u), then sn ⊆ vn r vn−1 is a singleton. For n > min(u),
let

sn = smax(u∩n)∪
{η ∈ vn r vn−1 | ν = max

/
{% ∈ vn | % E η} ∈ smax(u∩n)}.

Lastly we let

qu = {% | (∃n ∈ u)(∃η ∈ sn)(% E η)}.
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Preserving Souslin trees for another reason

We compute with the norms in the linear creature case.

Lemma
Blass-Shelah forcing is (T, Y,S )-preserving.
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