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Filters on ω

Definition
A filter is a subset F ⊆P(ω) that is closed
– under finite intersections
– and supersets
– and does not contain the empty set.
A filter is called non-principal if it contains all cofinite sets.

An ultrafilter is a maximal filter.

The smallest non-principal filter is the filter of the cofinite sets, also called
the Fréchet filter.
If we waive the closure under intersections, then we get the notion of a
semifilter.
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Using topology and measure of 2ω

Y ⊆ ω has a characteristic function χY ∈ 2ω, χY (n) = 0 iff n 6∈ Y .
We identify a filter F on ω with the set of characteristic functions
{χY : Y ∈ F}.
2ω carries the usual topology, and there is the usual measure.
Then we may speak about meager filters, measurable filters, filters with the
Baire property.
Any non-principal filter with the Baire property is meager.
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Partial (pre) orders

Let f, g : ω → ω, and let F be a filter on ω.
We write f ≤F g iff {n : f(n) ≤ g(n)} ∈ F .

We write f ≤∗ g iff ∀∞nf(n) ≤ g(n).

Definition
Let b, the bounding number, be the smallest cardinal of an ≤∗-unbounded
subset of ωω.
Let b(F ), the bounding number of ≤F , be the smallest cardinal of an
≤F -unbounded subset of ωω.
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Dominating numbers

Definition
Let d, the dominating number, be the smallest cardinal of an
≤∗-dominating subset of ωω.
Let d(F ), the dominating number of ≤F , be the smallest cardinal of an
≤F -unbounded subset of ωω.
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Scales

Definition
A scale is a sequence 〈fα : α < d〉 that is ≤∗-increasing and dominating.

Scales exist iff b = d.

However, ≤U scales do always exist.
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Talagrand’s characterization of meager filters

For X ∈ [ω]ω let enX : ω → ω enumerate X increasingly: enX(n) = the
n+ 1-st element of X.

Theorem. Talagrand, 1984
The following are equivalent for any non-principal (semi)filter:

F is meager.

{enX : X ∈ F} is ≤∗-bounded.

(∃g ∈ ω↑ω)(∀X ∈ F )(∀∞i)(X ∩ [g(i), g(i+ 1)) 6= ∅).
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Mappings between filters

Definition
Let g : ω → ω be any function or be finite-to-one. We set

g(F ) = {X : g−1X ∈ F}.

g(F ) contains less information than F :

- F
�

��	

��������9
- g(F )
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Talagrand’s characterization revisited

For X ∈ [ω]ω let enX : ω → ω enumerate X increasingly: enX(n) = the
n+ 1-st element of X.

Theorem. Talagrand, 1984
The following are equivalent for every non-principal (semi)filter:

F is meager.

{enX : X ∈ F} is ≤∗-bounded.

(∃g ∈ ω↑ω)(∀X ∈ F )(∀∞i)(X ∩ [g(i), g(i+ 1)) 6= ∅)
The latter means: There is a finite-to-one function mapping F to the
Fréchet filter.
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Estimates for b(F )

b(F ) = b(g(F )) for every finite-to-one function g.
So every meager filter F has b(F ) = b.

The same holds for the dominating numbers.
b(U ) = d(U ) = cf(ωω,≤U ) for ultrafilters.
For F ⊆ G we have b(F ) ≤ b(G ) ≤ d(G ) ≤ d(F ).
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Groupwise density

Definition
G ⊆ [ω]ω is called groupwise dense if
∀〈πi : i < ω〉 ∈ ω↑ω∃A ∈ [ω]ω

⋃
i∈A[πi, πi+1) ∈ G and if G is closed under

almost subsets.

Definition
The groupwise density number, g, is the minimum number of groupwise
dense sets whose intersection is empty.

g ≤ cf(d). g is uncountable and regular.

Definition
When we replace “groupwise dense set” by “groupwise dense ideal” then we
get the groupwise density number for ideals, gf .
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More estimates for b(F )

Theorem, Blass and M., 1999
b(F ) ≥ gf if F is not meager.

νX(n) = min([n,∞) ∩X) is the next-function.
For f ∈ ωω, Gf = {X ∈ [ω]ω : νX >F f} is a groupwise dense ideal.

Theorem, M. and Shelah, 2006
b < g can be forced in a c.c.c. forcing.
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Meager and non-meager filters

Any Baire measurable filter is meager.
Ultrafilters are not meager.

Theorem. Szimon Plewik, 1987
The intersection of fewer than c ultrafilters is not meager.

Definition
A subset B ⊆ F is a base for F iff F = {Y : (∃X ∈ B)(Y ⊇ X)}

Theorem, Petr Simon
There is a non-meager filter generated by b sets.

Is every non-meager filter already close to an ultrafilter?
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The Rudin-Blass ordering

Definition
A filter F is Rudin-Blass/Rudin-Keisler less or equal a filter G (written
F ≤RB G /F ≤RK G ) iff there is a finite-to-one/arbitrary function
h : ω → ω such that h(F ) ⊆ h(G ).

If U is an ultrafilter, then also h(U ) is an ultrafilter. If h is finite-to-one
then h(U ) is a non-principal filter.

Definition
Two filters F and G are nearly coherent iff there is a finite-to-one function
h : ω → ω such that h(F ) ∪ h(G ) is a filter.
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Nearly maximal filters

However, h(U ) can be an ultrafilter even if U is not ultra.
Example: Take an ultrafilter U on the even numbers and look at
U ′ = {X ∪ odd numbers : X ∈ U }.

Definition
A filter F is called nearly maximal or nearly ultra if there is a finite-to-one
function h such that h(F ) is ultra.
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The filter dichotomy principle

Definition
The filter dichotomy principle says that every filter is either meager or
nearly ultra.

Theorem. Blass and Shelah, 1989
It is consistent relative to ZFC that every filter is either meager or almost
ultra.
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A strictly weaker principle

Definition
The principle near coherence of filters (NCF) says that any two (ultra)
filters are nearly coherent.

Theorem. Blass and Shelah, 1989
NCF is consistent.

Blass and Laflamme showed that NCF follows from the filter dichotomy:
Let U and V be two ultrafilters. Then U ∩ V is not meager and hence by
the filter dichotomy principle there is a finite-to-one f mapping it to an
ultrafilter. However, if f(U ∩ V ) is ultra, then
f(U ∩ V ) = f(U ) = f(V ).

Theorem. M. and Shelah, 2009
NCF does not imply the filter dichotomy principle.
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Theorem. M. and Shelah, 2009
NCF does not imply the filter dichotomy principle.
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Can g be large?

Definition
The character of an ultrafilter is the smallest size of a basis. The ultrafilter
number u is the smallest character of a non-principal ultrafilter.

b ≤ u in ZFC.

Theorem, Blass and Shelah, 1989
u < g is consistent.

Theorem, Blass and Laflamme, 1989
u < g implies the filter dichotomy principle.
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Sketch of proof

Fix a basis {Uα : α < u} of an ultrafilter with character u. Let F be a
non-meager filter. Then show that for α < u

Gα = {X ∈ [ω]ω : ∃F ∈ F (∀∞x < y ∈ X)([x, y)∩F 6= ∅ → [x, y)∩Uα 6= ∅)}

is groupwise dense.

The reverse direction is open.
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More upper bounds on g

Theorem, Shelah 2008
g ≤ b+.
gf ≤ b+.

Observation, Blass and M., 1999
g ≤ min{cf(ωω,≤U ) : U non-principal ultrafilter}.

Proof: b(F ) ≤ b(U ) = cf(ωω,≤U ) for any U ⊇ F .
Open whether the latter is bounded in ZFC by b+.
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Consequences of u < g onto cardinal characteristics

Theorem, Blass 1990
FD implies u = b and d = c.

Definition
s, the splitting number, is the smallest size of a set S such that for any
X ∈ [ω]ω there is S ∈ S such that X ∩ S and X r S are both infinite.

Theorem. Blass and M., 1999
s ≤ d(F ) · d(G ), F and G not nearly coherent.
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A new consequence of NCF

Definition
add(N ), the additivity of the Lebesgue null sets, is the smallest number of
Lebesgue null sets whose union is not a null set.

Theorem. M., new
NCF implies add(N ) = ℵ1.
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An extension of Cichoń’s diagram

u

��
r

��

��:
::

::
::

::
::

::
::

::
:

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO c

��
cov(N )

��

unif(M)

��

oo

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
cof(M)

��

oo cof(N )oo

��

b

��

b ∨ goo cf(d)

%%KKKKKKKKKKKKKKKKKKKKKKKKK
oo d

��

oo

add(N ) add(M)oo cov(M)oo unif(N )

��

oo

s
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Rapid filters

Definition. Mokobodzki
A filter F is called rapid if for every f : ω → ω there is a X ∈ F such that
∀n|X ∩ f(n)| ≤ n.

Any basis of a rapid filter has size at least d.
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Rapid filters

Theorem. Raisonnier, 1984
If add(N ) > ℵ1 then there is a rapid filter.

Proposition
Under NCF there is no rapid filter.

Proof: NCF implies that u < d. Hence every ultrafilter is mapped by a
suitable finite-to-one map to a finite-to-one image of the ultrafilter
witnessing u. So every ultrafilter has a finite-to-one image that is not rapid.
If a filter is rapid, then also all its finite-to-one images are rapid. There is a
rapid filter iff there is a rapid ultrafilter.
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Filters and semifilters

Question. Blass, 1989
Does the filter dichotomy principle imply u < g?

Theorem. M.,2001
u < gf is equivalent to the filter dichotomy principle. The filter dichotomy
implies gf = d.

Observation. M.,2001
If s ≥ gf then gf = g (and (FD iff u < g)).

So, s < gf , “in practice” ℵ1 = s = g = u < gf is asked.
Miller and Matet forcings keep s small. However, for ccc subforcings of
Matet forcings this is not known. Even the consisteny of b = g < gf is
open.
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Small dominating sets modulo large filters

Unpublished observation of Canjar 1987
u < d and not NCF is consistent.

Theorem. M., 2008
u < d and “there are infinitely many near coherence classes” is consistent.

Theorem. Banakh and Blass, 2006
If two filters G and F are not nearly coherent, then {νX : X ∈ B(G )} is
≤F -dominating.

Take G as a witness for u, and take F not nearly coherent to G . Then
necessarily F has character d.
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A coincidence or a theorem of ZFC?

Observation
In all known models of u < d we have u = b.

Theorem. M., 2008
Assume u < d. Then u = b iff there is an ultrafilter with character u that is
generated by a ⊆∗-descending chain.

Question
Is b < u < d consistent?
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