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On Fraisse's order type conjecture 
By RICHARD LAVER' 

Introduction 

Our results will be about the relation of embeddability between order 
types (isomorphism types of linearly ordered sets). If qp and * are order types, 
write 9 < * to mean that p is embeddable in * (i.e., if L and M are linearly 
ordered sets having type p and A, respectively, then there is a 1-1 order pre- 
serving function from L into M), and let p < V mean that p < e but * ? A. 
If a is an ordinal and {9p: 7 < a} is a set of order types, then {9r: y < a} is 
called a descending sequence if v < a op > qp,. A set {Ax: x E X} of order 
types is called an antichain if x # y m x L A;,. The Dushnik-Miller-Sierpinski 
construction [1], [11] provides an example of an infinite descending sequence 
of order types, as well as an infinite antichain of order types. The order types 
which they construct to get these examples are all subtypes of the real line 
of power 20o. 

In [2], Fraisse made conjectures to the effect that the embeddability 
relation is more well behaved in the case of countable order types. His main 
conjecture was 

every descending sequence of countable order types is finite, and every 
antichain of countable order types is finite. 
A few years later he extended this conjecture to apply to scattered order types 
of any cardinality (an order type 9 is said to be scattered if the order type of 
the rationals is not embeddable in p). 

Let OR be the class of all order types qp which satisfy the following con- 
dition: if L is a linearly ordered set of type q, then L can be written as the 
union of countably many subsets L,, L2, ..., Ln, ... such that each Li has 
scattered order type. FraYsse's conjecture will be a consequence of the follow- 
ing theorem, which is the main result of this paper. 

THEOREM. Every descending sequence of members of OR is finite, and 
every antichain of members of OR is finite. 

We will explain the proof of this theorem by giving a summary of the 
sections. We would like to acknowledge at this point the mathematical debt 

1 This paper is a slightly expanded version of the author's Ph.D. thesis, written at 
the University of California, Berkeley, in 1969. 
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which we owe to the deep methods and results of Nash-Williams' paper [8]. 
His theory of better-quasi-orderings will play a basic role in this paper, as 
will be seen. 

In ? 1, the theory of well-quasi-orderings (arbitrary sets and classes on 
which a transitive, reflexive relation is defined which has the "no infinite de- 
scending sequence, no infinite antichain" property) as well as the theory of 
better-quasi-orderings (well-quasi-orderings of a particularly well-behaved 
type) will be reviewed. It turns out that better-quasi-orderings are more 
natural than well-quasi-orderings in almost every respect. However, their 
definition might appear unintuitive at first, so we will spend some time trying 
to motivate it. 

In ? 2, Nash-Williams' infinite tree theorem will be stated, and we will 
indicate how to generalize it to allow the trees to have their nodes labelled by 
members of a better-quasi-ordered set. The proof of this generalized tree 
theorem will be the only place in this paper where familiarity with [8] will 
be assumed; the rest of the paper is self contained. 

In ? 3, we will state a well known theorem of Hausdorff which charac- 
terizes the class of scattered order types, and will then present work of Galvin 
characterizing the larger class DR. Galvin's results involve defining order 
types Can which act like ) at higher cardinalities (not to be confused with 
Hausdorff's )2,'S, which are generalizations of C is another direction). 

In ? 4 the main theorem will be proved. Originally the author proved 
Fraisse's conjecture by induction on Hausdorff's hierarchy. We are indebted 
to Fred Galvin for then suggesting the generalization to MR and showing us 
his characterization of OT (we would also like to thank him for many other 
interesting conversations). The present theorem will be done in that more 
general setting. To make the induction hypothesis go through it will be 
strengthened in two ways. First, we will show that OR is better-quasi-ordered 
under < rather than just well-quasi-ordered. For the other strengthening, 
define a Q-type to be (intuitively) an order type whose points are labelled by 
members of Q, and let Q9R be the collection of Q-types whose base types are 
in DR. An ordering on Q induces an ordering on QR in a natural way. Our 
strongest result is 

THEOREM. If Q is better-quasi-ordered, then Q9R is better-quasi-ordered. 

In the remainder of ? 4 we will show there are (up to equivalence) ki order 
types in 'TD of power ?lk. 

In ? 5 we will mention some applications and problems. 
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Notation will be that of standard set theory (with classes). a, fi, y, (3, k, X 

range over ordinals, where an ordinal is defined so that it is the set of all 
smaller ordinals; the class of ordinals will be denoted by On. Card is the class 
of cardinals (initial ordinals), Card X is the cardinality of X. If k is a cardinal 
then k+ is the least cardinal greater than k; a successor cardinal is one of the 
form k+. Cf (a), the cofinality of a, is the least f8 such that a is the limit of 
a fl-sequence of ordinals. A cardinal k is regular if cf (r) =k; RC is the 
class of infinite regular cardinals. Xc (Xma) is the collection of X-sequences of 
length a (< a) (this will be slightly modified in ? 4); members of Xa will be 
written in the form <X,>><a-. C(X) is the collection of subsets of X, more 
generally 9?P(X) = X, 9I-+l(X) - 9?(-a(X)) and 9?P(X) - U< < 9(X) for v a limit 
ordinal. 

1. wqo theory, basic bqo theory 

Abstracting from the embeddability relation between order types, define 
a quasi-order to be a reflexive, transitive relation. Throughout this paper, 
the letters Q and R will range over quasi-ordered sets and classes. Various 
quasi-ordered spaces will be defined; in each case we will use the symbol < 
(perhaps with subscripts) to denote the quasi-order under consideration. If 
q1, q2 E Q, write ql < q2 to mean ql < q2 but q2 ; q,, and write q, q2 to mean 
q1 _ q2 and q2 < q1. (All results could be done in terms of partial orderings 
(quasi-orderings where =_ ) instead of quasi-orderings; we elect not to do 
this since it would mean continually taking equivalence classes.) Whenever 
a subset Q1 of Q is defined, we assume that Q1 is quasi-ordered as a suborder- 
ing of Q. 

We turn now to the definition of well-quasi-ordering, giving two equiva- 
lent formulations. 

Q is well-quasi-ordered (wqo)df 

(i) for any sequence <qi>i<(,, of members of Q, 9i, j < (o: i < j and qj ? qj, 
equivalently, 

(ii) every descending sequence of members of Q is finite, and every anti- 
chain of members of Q is finite. 

Thus, in these terms, the first of the two theorems listed in the introduc- 
tion reads: the class OR is wqo under the embeddability relation. 

Well-quasi-orderings were first studied by Higman in [5], where the equiva- 
lence of the two definitions (immediate from Ramsey's theorem) was observed. 
If q E Q, let Qq ={r E Q: q S r}. From part (i) in the definition of wqo (which 
will be the version of wqo used from now on) we have immediately the following 

Induction principle for well-quasi-orderings: If a proposition F(Q) is true 
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of Q whenever it is true of each Qq, q E Q, and 1 is true of the empty (quasi- 
ordered) set, then ID(Q) holds for all wqo Q. 

Given arbitrary quasi-orderings Q, Q1, Q2, we now define quasi-orders on 
various spaces built up from them: Quasi-order the Cartesian product Q1 x Q2 
by the usual rule <q,, q2> < <r,, r2> df ql r, and q2 _ r2. If Q, fQ2 0 
then the disjoint quasi-order on Q1 U Q2 is defined by the rule q < r 9*i: 

q, r E Qi and q < r as members of Qi. Quasi-order Uaeon Qc by the rule 

<qp>p<3 ? <r.>.<2 ( )df there is a strictly increasing f: a A, such that 
qp ?< f( for each i < a. 
Finally, C(Q) is quasi-ordered in two ways. For X, Y c Q, define X <m Y 

*df f: X Y with X < f(x), all x E X, and X <1 Y*-*df in addition to the 
above, f is 1-1. 

We now list for interest the preservation theorems for wqo's which are 
known. In his original paper [5], Higman showed that if Q is wqo, then so is 
Q<w (and hence so is the set of finite subsets of Q, under either < or <?). 
This theorem was strengthened in one direction by Kruskal [6], who showed 
that if Q is wqo then so is the collection of finite trees whose nodes are labelled 
by elements of Q (the quasi-order on this space is defined in ? 2), and in an- 
other direction by Nash-Williams [7], who showed that if Q is wqo, then so is 
the subclass of Ue On Q" consisting of those sequences which have finite range. 

Note the finite character of these theorems. In the case of spaces built 
up from Q in an unrestricted infinite manner, the situation is different. We 
single out for this discussion what turns out to be the most natural such space, 
P(Q) under <m. In [10], Rado constructed a Q such that Q is wqo but C(Q) 
is not wqo. Working from Rado's counter-example (which will almost be given 
in the remarks below) Nash-Williams found a condition on quasi-ordered sets 
stronger than that of being well-quasi-ordered, namely that of being "better 
quasi-ordered" (bqo), which is preserved under passage from Q to CO(Q). The 
condition given for Q to be bqo is combinatorial, but it amounts to saying 
that 910(Q) is wqo, where 910(Q) is quasi-ordered by the natural extension 
< of the < m relation, defined as follows: for X E CP(Q), Y E 9P(Q) (the defini- 
tion is by induction on at, S < u), then X-< a Y df 

a = 0, fi 0, and X ? Y as elements of Q, or 
a = O.,8 > 0, and 3Y' E Y, X <a Y', or 
a > 0,6, > 0, and VX'G X 3 Y'C Y X' <=a Y'i 

Assume a Q is given such that 901(Q) is not wqo (to avoid a trivial notational 
problem, assume q e Q . q V $?fa+l(Q), 0 < a < o1). Accordingly, there is a 
sequence <Xi>i<O of members of 9)101(Q) such that whenever i < j, 
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xi :; xj X 

Set I, = {i: Xi V Q}. Observe now that it is possible to choose, for each m C I0 
and each n > m a set Xmn E Xm, such that whenever j e I( and i < j < k, 

Xi a, Xj, and, if i e I, Xij :;a Xj,. 
Now let I, = {<i, j>: Xij Q}, As above, there are sets Xij e Xij for all 
<i, j> E I, and all k > j, such that whenever i < j < k < 1 and <j, k> E I, 

Xi :;a Xji,1 and, if C II,, Xij $;A Xjk,, and, if <i, j> G I1, Xijk j;a Xjkl 

By continuing this process, the original bad sequence on 9Pwl(Q) is reduced to 
a bad array, of a certain kind, on Q. 

The following definitions of Nash-Williams should now appear more 
natural to the reader. A set B of strictly increasing finite sequences of non- 
negative integers is called a block just in case for every strictly increasing 
infinite sequence <si>i<,,, of non-negative integers there is an n < a with 
<Ksi>i~n e B. If t, u c B then write t < u to mean for some s0 < s1 < ... < Sn 
and some r, 0 < r < n, t = <si>o5i?, and u = <sj>15jn 

Q is better-quasi-ordered 4 "df for every block B and every f: B Q there 
are t, u e B with t < u and f(t) < f(u). 

In the application of bqo theory to order types we will need (besides the 
results on trees in ? 2) the following basic facts about bqo's, taken from [8] 
and collected into one theorem. 

THEOREM 1.1. [8]. 
(i) Q bqo Q wqo 
(ii) Q well ordered Q bqo 
(iii) Q = Q1 U Q2 and Q1, Q2 bqo Q bqo 
(iv) Q1, Q2 bqo Q1 x Q2 bqo 
(v) Q bqo Q`, bqo 
(vi) Q bqo - (Q) bqo (under both <?m and <1). 
The preservation properties (iii)-(v) remain true with "bqo" replaced by 

"wqo" (see [5], [6]); (vi) is the distinguishing feature of bqo's. 
We list another fact about bqo's which will be used; this one is an im- 

mediate consequence of the definition of bqo. 
Homomorphism property for bqo's: If Q is bqo, Q' c Q, and there is an 

order preserving function taking Q' onto R, then R is bqo. 

2. A generalization of the infinite tree theorem 

We turn now to the main theorem of [8]. A tree is a set T, partially 
ordered by a relation <?T, such that for each x e T, {y e T: y < T X} is well 
ordered by -T. If there is an x e T such that x ?T Y for all y e T, then T is 
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said to be rooted and x is called the root of T. Let T be the class of all trees 
T such that 

(i) T is rooted, and 
(ii) there are no paths in T of length > W. 

For T e T, x, y e T, let x n y be the glb of x and y in T. We quasi-order the 
class T by the following embeddability relation: for T1, T2 C X, 

T1 ? T2 4 )df there is a 1-1 function f: T1 - T2 such that for all x, y e T1, 
f(x n y) = f(x) n f(y) (i.e. if y and z are distinct immediate successors of x in 
T1, then f(y) and f(z) occur above distinct immediate successors of f(x) in T2). 
Nash-Williams' infinite tree theorem can now be stated. 

THEOREM 2.1. [8]. T is bqo. 
Actually, the condition that the trees be rooted is not demanded in [8]; 

the wider theorem (with respect to a suitable quasi-order) thus obtained is 
an immediate corollary of 2.1 and 1.1 (vi). We have only put the restriction 
in to simplify matters. As for condition (ii) in the definition of T, it automat- 
ically holds for all the trees in [8], since "tree" in that paper is taken to mean 
"graph with no cycles." 

We will need to generalize this theorem. Define a Q-tree to be a pair (T, 1) 
where T is a tree and 1: T V Q. l is intuitively a function which labels the 
nodes of T. Let FQ be the class of Q-trees (T, 1) such that T e T. Quasi-order 
,YQ by the following rule: if (T1, li), (T2, 12) C TQ, then 

(T1 Yl) ?< (T2, 12) * Odf T1 , <2 by a functionf such that for all x C T1, l1(x) < 
12(f(x)). 
For the proof of the next theorem, which generalizes 2.1, we assume familiarity 
with [8]. 

THEOREM 2.2. Q bqo - Q bqo. 
To avoid introducing a large amount of notation applicable to this theorem 

only, and because the basic idea of the generalization is straightforward, it 
will be proved in the following way. We will prove revised versions of [8, 
Lems. 29-32, 37]. (In addition, we will claim without proof that various other 
lemmas of that paper can be made to accommodate Q-trees without any diffi- 
culties.) It is left to the reader to verify that these revised lemmas, together 
with the rest of [8], do yield a proof of Theorem 2.2. 

For T7e T, let p(T) be the root node of T. If x E T, S(x) is the set of 
immediate successor nodes of x. If (Ty 1) E YQ and xe T, define br(T,lI (x) 
(abbreviated br (x); similar abbreviations will be made below) to be the Q-tree 
obtained from (T. 1) by restricting T to nodes > T X (br (x) is the branch of 
(Ty 1) with root node x). A branch X of (Ty 1) is said to be strict if and only 
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if X < (T. 1). 
For x e T, (T. 1) e TQ, we define 
J(x) = {br (y): y e S(x) and br (y) strict}, and 
K(x) = {y: y e S(x) and br(y) _ (T, 1)}. 

Let 

F(Tl)(X) = <J(x), Card (K(x)), 1(x)>. 

J(T,4)(X) is a member of the space (SP(TQ) x Card x Q); we quasi-order this 
space by the ordering induced from the natural ordering on the class of cardi- 
nals and the <1 ordering on 9P(TQ). 

We put 

E((Tj 1)) = {F(TI)(X): x c T} 

E((T, 1)) belongs to the space P(SP(9TQ) x Card x Q). We quasi-order this space 
by the ordering induced from the quasi-order on (9P(TQ) x Card x Q) by the 
<-m relation. 

The following replaces Lemma 29 of [8]. 
LEMMA 29'. ((Tc1, 11)) < E((T2, 12)) ) (T1, 11) < (T2, 12). 
PROOF. We will define a function f embedding (Ti, 11) into (T2, 12) by 

induction on T1. Suppose for each u <?T V in T1, f(u) has been defined such 
that there are sets K1(u) and K2(u) with K1(u) U K2(u) = K(f(u)) and 
Kl(u) n K2(u) = 0, and J(u) ? 1(J(f(u)) U {br (x): x e K1(u)}), and Card (K(u)) < 
Card (K2(W)); want to define f above v. Extend f to an embedding of the 
members of J(v) into distinct members of J(f(v)) U {br (x): x e Kl(v)}. Since 
Card (K(v)) < Card (K2(v)), it remains to be shown that for y e K(v), z e K2(v), 
we can pick an f(y) e br (z) satisfying the induction hypothesis. Pick a func- 
tion j embedding (T2, 12) into br (z). For some w e T2, 

r(T1, 11)(Y) <_ r(T2,12)? ( ) 

Let f(y) = j(w). Note that 11(y) < 12(w) < 12(f(y)). Define 

V = {v e J(w): j(v) e br(x) for some x e K(j(w))} . 

Now let K1(y) be 

{z e S(f(y)): j(V) >T2 z for some v e VI 
and let K2(y) = K(f(y)) - K1(y). We see from the nature of the embedding j 
that K1(y) and K2(y) are as desired. The induction step is now complete, and 
the f thus defined is an embedding of (Ti, 11) into (T2, 12), completing the lemma. 

(T. 1) e TQ is said to be descensionally infinite if and only if there is an 
infinite sequence x1 <T X2 <T X3 <T * of nodes of T such that br (xl) > 
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br (x2) > br (x3) > *.. ; otherwise (T, 1) is descensionally finite. Let 9iQ be the 
class of all descensionally finite members of FQ and let F(T, 1) be the set of 
descensionally finite branches of (T, 1). For x e T, define 

L(x) = {br(y): y e S(x) and br(y) e F(T, I)}, 
M(x) = {y: y e S(x) and br(y) X F(T, I)} . 

Let 

A(T,I)(X) = <L(x), Card (M(x)), 1(x)> . 

Finally, put 

q(DT,z)(X) = {A(T,l)(Y): X ?AT Y} 

$(T,I)(X) G 9(P(1TQ) x Cardinals x Q), which is quasi-ordered as in Lemma 29'. 
The next lemma replaces Lemmas 30-32 of [8]. We assume Q is bqo. 

LEMMA 32'. (T. 1) e TQ, F(T, 1) bqo - (T. 1) e iFQ. 

PROOF. It must be checked that the proof in [8] still holds in the presence 
of the new factor Q. Suppose (T, 1) ad ziQ. Pick any x e T, br (x) ad ziQ. Will 
show $(Tz)(X) > $(T, )(XI) for some XI >T x, br (x,) V J'Q (but then by continuing 
the process a descending sequence $(Tl,)( ) > (D(T,l)((X) > (D(T,1)(x,) > ... can 
be obtained; this contradicts the fact that, in view of Q bqo, the hypothesis, 
and 1.1 (ii), (iv), and (vi), 9(P(F(T, 1)) x Cardinals x Q) is bqo and hence 
wqo). Suppose there is no such xl. Clearly for all z >T X, (T, 1)(Z) ?< ((TZ)(), 

so by assumption $(Tz)(X) $(T, )(U) for all u T X such that br (u) X J'Q. Since 
br (x) X 9Q, we can pick a y > T X such that br (y) X JFQ and br (y) < br (x). But 
we now claim that br (x) < br (y), a contradiction. To establish this claim, 
construct an f embedding br (x) into br (y) in the following fashion. Pick a 
Z >-T Y such that A(T, 1)() < A (T,z)(Z), let f(x) = z and note that 1(x) < l(f (x)). 
Extend f to embed the members of L(x) into distinct members of L(z). For 
each v E M(x), w E M(z), (D(T,z)(v)- -(T )(W), so our initial assumption allows 
us to repeat this process indefinitely, yielding an embedding of br(x) into 
br(y). This contradiction gives the lemma. 

We have now reduced the theorem to the problem of showing iQ is bqo, 
since by Lemma 32', if FQ is bqo then TQ = TQ. If 4 c TQ, define Br('M) 
to be 

{br(T, I(x): (T, 1) e 4( and br(T, ) (x) < (T, 1)}. 

G1 is said to be well branched whenever Br (GU) is wqo, and 4( is closed just in 
case Br ('t) 5 1M. In [8], Lemmas 38-42 reduce the problem of showing 9T is 
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bqo to that of showing that every closed, well branched subset of XF is bqo. 
In fact, it can be checked that the same arguments yield the analogous reduc- 
tion for UQ here. 

The last place where visible changes are needed is Lemma 37. We replace 
it with the following paragraph. 

Suspose 1( is a well branched, closed subset of SFQ which is not bqo. Ac- 
cordingly there is a barrier B and a bad f: B - G1. By Lemma 29', Of is also 
bad. Therefore, by Lemma 26, there is a bad f': B2 , (P(al) x Card x Q) 
such that for all (s- t) e B2, f'(s- t) E 9(f(s)). We now apply Lemma 22 twice 
(once to Q, once to the cardinals) to get a barrier C c B2 and a bad f": C-P(4l), 
such that for all t E C, f"(t) = the first coordinate of f'(t). Since 41 is well 
branched, U,,c f"(t) is wqo, so, applying Lemma 28, a barrier D C B3 and a 
bad g: D- 4( are obtained such that for all (s-t - ) e D, g(s-t-u) is a branch 
of f(s) and g(s - t - u) < f(s). 

By Lemma 36, now, there is an f1 which "warily foreruns" f. Lemmas 
33-35 show that this process can be repeated indefinitely, which is impossible, 
demonstrating the falsity of the assumption above that 41 is not bqo. No 
changes are needed in Lemmas 33-36, as trees can be replaced by Q-trees 
without affecting the proofs. This concludes the proof of Theorem 2.2. 

We introduce now another, more natural, quasi-order on TQ, with the 
idea of working with it, instead of the quasi-order we have been considering, 
in ? 4. For (T1, li), (T2, 12) E TQ, we let 

(T1r 1l) <m (T2, 12) 4 >dl there is a strictly increasing function f: T1 - T2 
such that l1(x)< 12(f(x)) for all x E T1. 

This ordering is analogous to the <m relation on P(Q); it differs from the 
previously defined quasi-order on FQ in that the embedding function f need no 
longer be 1-1 and f may take distinct successors of x into nodes which occur 
above the same successor of f(x). We have now 

COROLLARY 2.3. Q bqo - FQ bqo under <m. 

PROOF. If (T1, 11) < (T2, 12), then clearly (T1, 11) <m (T2, 12), and the corol- 
lary follows from 2.2 and the homomorphism property. 

In concluding this section, we would like to mention the main theorem of 
Nash-Williams' more recent paper [9]: If Q is bqo, then so is Ucren QC. 

This is of course a strengthening of 1.1 (v). This result will come out 
below as a corollary to our main Theorem 4.8, when the order types under 
consideration are restricted to be ordinals. (We remark that our methods 
totally differ from the methods of [9].) 
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3. Order types; preliminaries, characterizations of S and ' 

The letters L, M, N are reserved for sets which are linearly ordered by 
relations - <H <,, respectively. Tp (L) is the order type (order isomor- 
phism type) of L. Variables A, X' A, 0 will range over order types. The fol- 
lowing embeddability relation between order types, which quasi-orders the 
class of order types, is the main object of study of this paper. 

For order types q' and A, 9 < * X ),, for tp (L) = A, tp (M) =, there is 
a strictly increasing function taking L into Ml. 
We assume familiarity with the notion of the sum p + e of order types 9 
and A. More generally, if L is a linearly ordered set and for each x E L, qPx 
is an order type, then define the ordered sum PXEL oX to be tp (M), where M 
is obtained from L by replacing each point x of L with an ordered set of type 
fez- Recall that the product go-+ of p and f is ZE ,I taxi where each 9x = q 

and tp (M) = A. If * is an order type (or 91 a collection of order types) then 
we will often express the fact that 9 = Ex e L go where tp (L) = * (tp (L) E si) 
by saying that p is a * sum (R sum) of the 99's. If a subset L' of a linearly 
ordered set L is specified, L' is assumed to be ordered as a subordering of L. 
If g = tp (L) then the converse of 9, written A*, is tp (M), where there is a 
bijectionf: L - Msuch that for all x, y E L, x <L y (-+f(x) Mf(y). If tp (L) = 
,a* for some a E On (ordinals will often be taken as order types), that L is 
conversely well ordered. If x, y E L and x <L y, denote as usual by (x, y) and 
[x, y] the open and closed intervals of L determined by x and y. The notation 
(Li, L2) will be used to denote a Dedekind cut of L. 

Let r be the order type of the rationals. An order type 9 is said to be 
scattered if and only if r :f 99. Let 3 denote the class of scattered order types. 
The first theorem of this section is Hausdorff's inductive classification of 3. 

THEOREM 3.1. (Hausdorff [41). 5 = UaeOn 6ai where 
050 =the set of order types {O, 1}, and for 8 > 0, 
Sip ={9: 9 is a well ordered or conversely well ordered sum of members 

of Ur< Sr} 
All results about scattered types will be proved essentially by induction 

on this hierarchy. In the following lemma we collect some simple, well known 
facts about order types which we will need. 

LEMMA 3.2. (i) A scattered sum of scattered types is scattered. 
(ii) If K G RC and K < S 97, then either K < tp (M) or for some y, 

x <qP1. 
(iii) If K G RC, X < K, L = U,< L7, and K < tp (L), then K < tp (L,) for 

some v. 
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(iv) IfK CRC, (pe,Card9?> ,then ?<9orx*?<9. 
PROOF. (i) is well-known, (ii) and (iii) are easily verified, and (iv) is a 

well-known consequence of 3.1. 
The larger class of order types DR mentioned in the introduction will now 

be considered. DR, the class of types which are the countable unions of scat- 
tered types, is defined formally as follows: 

(PC oil d whenever tp (L) = p, then there exist subsets L1, L2, *..., 
L ** .., 9 (n < ao) of L such that L = Un,<< L. and for each n, tp (Ln) E 3. 

Thus clearly 3 c OIt, r E OR, in fact any DR sum of members in 9R is itself 
in 91n, and for any cardinal I there are "K-dense" order types in DR. In the 
remainder of this section Galvin's characterization of Oil will be presented. 

We now define the order types , mentioned in the introduction. god will 
be defined if and only if a and ,8 are uncountable regular cardinals (considered 
in the construction below as order types) and max {a, /8} is a successor cardinal 
(a = 8 is allowed). Call <a, ,S> admissible if the above conditions hold. 

Given an admissible <a, /8>, it is convenient to choose first an auxiliary 
type ual. Suppose a = vi+,,8 = a+. Then uA y *5 -*. Now suppose a # v+ 
for all y (and hence a < /S, a is weakly inaccessible, and 8 = a+ for some a). 
Then uaP = ,xeM Taxi where tp (M) - a, each px < a*, and for each X < a 
there is some x with px > x* (this last condition is possible to satisfy since 
a < S). Finally, suppose 8 # a+ for all a. Then Uac (Upa)*. 

Day,9 now, will be tp (L), where L = Un< L. and the sets Lo C L, C* 
c L. c * * * are chosen as follows: 

(i) L4 is a linearly ordered set of type ap; 
(ii) L,?1 is obtained from L. by inserting into each empty interval (x, y) 

of L. a copy of 6al. 
The following theorem isolates the properties of 7 which will be needed, 

and shows that the non-uniqueness of the construction of a in the case that 
min {a, /8} is weakly inaccessible is unimportant inasmuch as the possible 
choices of god are all equivalent. Assume for this theorem that god = tp (L), 
where L = Un<, L. as above. 

THEOREM 3.3. [3]. (i) 7ad C 9Th 

(ii) a* ;4 rap,P IS r47ap 

(iii) If (x, y) is an interval of L, then tp (x, y) > a*, all a,, < a, and 
tp (x, y) > 80, all /S0 < K/. 

Conversely, if p # 0, 1, p = tp (M) and p and Msatisfy (i)-(iii) in place 
of 2ai and L (where a and /8 are taken to be arbitrary), then <a, /S> is admis- 
sible and 9 _ age 
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PROOF. (i) Clearly tp (L?+,) can be written 'Ex LPX where each 9$ is 
either 1 or up + 1. Since uva e 5, the result follows from 3.2 (i) by induction 
on n. 

(ii) We will show 8 f i and the case a* f i will be symmetric. 
Clearly,8 ;i~ Uo, so, using the sums given in (i) above, we obtain from 3.2 (ii) 
that fi ; tp (Lu) for each n, by induction on n. Since ,8 > a, it follows from 
3.2 (iii) that ,8 ; tp (L) = 72ap. 

(iii) Will show it for,8, and again a symmetric argument will hold for 
a*. Suppose y < 8 and (iii) holds for all a < K, and let an interval (x, y) of 
L be given. x, y E Lm, for some m, and lest r < tp (Lm) it is clear that the 
interval [x, yJ of Lm contains an empty (in Lm) subinterval (u, v). The L inter- 
val (x, y) thus embeds u,,p and hence all cardinals <S; hence cf (y) < tp (x, y). 
So can assume cf (y) < y; to see that y < tp (x, y), embed cf (y) into (x, y), 
express y as the cf (-) sum of smaller ordinals, and use the induction hypothesis 
to embed the smaller ordinals into the appropriate intervals. 

For the converse, we are given 9 and M, where by (i) we may take 
M = Une- <, Mn, each tp (Mn) C S. Will first show that <a, i8> is admissible. 
If ,6? say, were not regular, property (iii) could be used to map ,' (expressed 
as a cf (,S) sum of smaller ordinals) into A, contradicting (ii). Likewise 
a is regular. Since Card M> 1, repeated applications of (iii) yield (t, a)* < p, 

so a and ,8 must be uncountable. Now suppose max {a, i8} (=,S, say) is not a 
successor cardinal. By (iii) then, Card M > ,S, but since jS E RC and ,8 > Ao, 
Card Me > ,S' for some n. But now by 3.2 (iv) we must have tp (Mn) > 8 
or tp (Mn) > ,8* > a*, contradicting (ii). So <a, /8> is admissible. 

To show (p 72,! it suffices by symmetry to show that if Card N > 1 and 
N satisfies (iii), then ep < tp (N). To do this, we will show that if tp (N1) E 'S 
and tp (N1) satisfies (ii), then N, is embeddable in N by a function f such that 
for any Dekekind cut (N', N2) of N1 there is an interval (x, y) of N such that 

zE(x, ty), u E N', v E N' f(u) <, Nz <X f(v) X 

The proof is by induction on 3. Assume by 3.1 that tp (N1) is the, say, a sum 
of smaller types for which the claim holds, where we have a < tp (N). Clearly 
3 can be mapped into N satisfying thle Dedekind cut condition, and then the 
induction hypothesis can be used (every interval of N satisfies (iii)) to embed 
the smaller types into N in an appropriate manner, establishing the claim. 
Now, to embed M into N, first embed M0 into N so that the Dedekind cut con- 
dition holds, then extend this to a map M, U M1 into N satisfying the Dedekind 
cut condition (recall every interval of N satisfies (iii)), and so on, getting 
ep < tp (N) as desired. This completes the proof of Theorem 3.3. 
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Theorem 3.3, together with the final paragraph in its proof, gives 

COROLLARY 3.4. 9 < 72 G 9 C X, a* 6 9, ' :5 9. 

The sense in which Hausdorff's 3.1 can be generalized to OR is shown in 
part (ii) of the next theorem. Let 0,,p {9: 9 < )7B} 

THEOREM 3.5. [3]. (i) A 0Dp sum of members of O0p is itself in age; 
(ii) DaP = UL7<max{st} (0,p), where (a0g), = {0, 1}, 

and for a > 0, c E ( cp is an a* sum, for some ao < a, or a Ro sum, for 
some h8 <K , or an 'sco sum, for some <a0, flS> C On x On with <a,, flu> <? , fa>, 
of members of U,<, (@D~X 

PROOF. (i) Given tp (M) E ODp and 9x e 0,f for each x E M, we want to 
show E El 9x e ?Dp. It can be quickly seen from the previous theorem that 

(r2rp)2= )2, i.e., p Xe =9z -2, where each 9x = tp (L) = 2,p. Thus clearly 
EX 9x ? T a If 2a -< Exe M ,x then clearly either god < tp (M) or some 
interval of 7B (and hence , itself) is ? some TX. Both cases are ruled out, 
so we have xe L 9X < K27oos 

(ii) Let Cgo = Ur<rmaxcj } (@Jcg,)r If tp (L) < Abe then Card L < max {a, 8.}; 
consequently a CAg sum of members of C,,p is itself in (Gi. Since a0 < ac ,R < K 
and <ao0, '8> < <a, ,> respectively imply ac* E 0 9,8o e Op, and toro e Op by 
3.3, we have Cp c Op by part (i) of this theorem. Now suppose there is an 
L with tp(L)e ,D - Ca,. For x, yeL, x ?LY, we define 

x , y ,)tp ((x, y)) 
E aid . 

We also let x - x, and x - y 4 - y - x. Clearly is an equivalence relation 
which partitions L into intervals. Suppose X c L is an equivalence class. 
By picking sequences co-initial and cofinal with X, tp (X) can be written as 
the a* + So sum of types in Ca, for some ao0 < a, o < K. Since a* + Ro E eat, 
we obtain tp (X) C Ctp. Let L' be a subset of L obtained by picking one mem- 
ber out of each equivalence class. Claim each interval (u, v) of L' has type 
in , - Ca; otherwise, the interval (u, v) of L would be a CAt sum of members 
of CUB and would thus itself have type in Cat, contradicting the fact that u -$- v. 
Since tp (L') e ?D,, there must be an interval (x0, y0) of L' which fails to embed 
some a* for a0 < a, or some 8,f, for f0 < 9,9 by Theorem 3.3. Assume the 
latter case is true (the case ao < a will be symmetric) and that every interval 
(u, v) of L' embeds all 8, < 80. Now pick a0 < a to be the least ordinal 
a such that some subinterval (xl, y1) of (x0, y0) fails to embed a*. Recall 
tp (xl, y1) C JOp - Ca. Now tp (xl, y1), a0, and 8o clearly satisfy the hypothesis 
of the second half of 3.3 (in place of 9, a, /3) so <a0, /,8> is admissible 
and p =-tp (x, y1). But now, since <ao0, /30> < <a, 8>97,, e C; hence 
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tp (xl, y1) e C,. This contradiction gives the theorem. 

4. The main theorem 

We now define the Q-labelled order types mentioned in the introduction. 
For Q quasi-ordered, a Q-linear ordering is a pair (L, 1) where L is a linearly 
ordered set and 1 is a function from L into Q. Two Q-linear orderings (L1, l1) 
and (L2, 12) are called Q-isomorphic if and only if there is an order isomorphism 
h taking L1 onto L2 such that for all x e L1, Ql(x) = 12(h(x)). A Q-type is the 
Q-isomorphism type of a Q-linear ordering. As in the case of order types, 
tp (L, 1) is the Q-type of (L, 1). We will let variables J0, Z P, e range over 
Q-types. 

We quasi-order the class of Q-types by the following embeddability rela- 
tion, which is a natural extension of the one for order types: if JD = tp (L1, 11), 
T = tp (L2, 12), then 

D<T P d there is a strictly increasing f: L1 L2 with 11(x) < 1(f(x)) for 
all x e L1. 
If a Q-type 1D = tp (L, 1) then tp (L) is called the base of 1D and is written 
bs (I0). The ordered sum Ex L Ox of Q-types is the naturally obtained Q-type 
whose base is ExeL bs (tx). The Q-type with base 0 will itself be written 0; 
for q e Q, let 1q = tp ({x}, 1), where {x} is a one element linearly ordered set 
and 1(x) = q. 

If Q is a quasi-ordered set or class and cp is an order type, let Q(D(Q, Q-) 
be the collection of all Q types 1D such that bs(1') = cp (bs(1') < ,--). If 
9R is a collection of order types let Q9 {=': 1D e Q9 for some 9c e RI. 

To prove the main theorem (Q bqo - Qt bqo), a class XC(Q) c Q9'1 will 
first be defined, where XC(Q) is singled out because its members will turn out 
to be representable in a certain way by Q+-trees, for a certain Q+ m Q. 

If 1D is a Q-type, 6ft is a set of Q-types, and Kr is an infinite cardinal, then 
1D is called a (61t, ,c)-unbounded sum if and only if 1) can be written in the form 
ExeL (Dxg where tp (L) = iK, {I(x: x e L} = ft, and 

VxeL 3Yc L(Card Y = c and Vye Y Ox < I,). 

Similarly, if the same conditions hold except that tp (L) = K, then 1D is called 
a (4t, K*)-unbounded sum. 

We make a simple observation about these sums. 

LEMMA 4.1. Suppose a G RC, KC < a, (D is a (G1, K)-unbounded sum, T is a 
(M, a) unbounded sum (or 1 is a (61, K*)-unbounded sum, and T is a ('U, a*)- 
unbounded sum) and VO e qt 3X e T ) < ?. Then D ? T. 

PROOF. Let the unbounded sums be given by (D = Exe L (D X = EyM >P t; 
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we want to find a function h embedding 1D into P. Suppose h has been defined 
on an initial segment Ex<.o (Dx of $D and embeds that segment into an initial. 
segment .<,, t, of P. By assumption Jy1 e M DX0 <? NV1. By unboundedness, 
3Y2 >_-M o NYJ <- Ty2 Let h embed 1DxO into PTY2. Since a C RC and K < 6, for 
each y < K, a y limit of initial segments of T is itself an initial segment of 
P, so this process can be continued for each y < i to obtain an embedding of 
D into P. The argument is symmetric in the case of K*, 8* sums. 

Suppose Si is a set of Q-types and PIt c IRi for some A, i.e., T = tp(L, 1l 
where 1: L -R and tp (L) = p. We associate to PIt a Q-type P in the natural 
way, i.e., 

ExL 1(x). 

For Q an arbitrary quasi-ordered set, 1D is (Q. , qS)runiversal if and only 
if > e Qa-p, and whenever Tc e then T < (D. If $R (c QWI' and (D is 
(9Z, a, ,/)-universal for some a, ,S, then 4 will be called an (iZ, a, ,/)-shuflle. 

LEMMA 4.2. If (D is a (El, a, /S)-shuffle, PT a (a, y, ()-shu~fJe, <a, jS> ? 
K6, I>, and VZ e 30e 'O < ?), then D < P. 

PROOF. We have 7CY? < 7),. The lemma follows quickly from the definition 
of (M, ", 0)-universal and the fact that for (D,, P1, e&', , <P1 T- i1 < P1. 

We will now define a class XC(Q) cQ9Q1. UC(Q)= Ua0e nXJCa(Q), where 
JCO(Q)= {O} U {lq: q C Q}, and if a > 0, (D C ?Ca(Q) # for some qG C Up<a JC(Q) 
either 

(i) (D is a (ill, k) or a (ill, k*)-unbounded sum for some k C RC, or 
(ii) (D is a (611, a, ,/)-shuffle for some (admissible) <a, ,/>. 
If Q is a quasi-ordered set or class, we will choose a quasi-ordered class 

Q+ D Q in the following way. Add to Q new elements ak, bk, for each k C RC, 
and also elements cayp for each admissible pair <a,t ,> (passing first to an iso- 
morphic copy of Q if there are not enough new objects to choose from; it 
will be assumed below that this has not been necessary). Quasi-order Q+ as 
the disjoint union of the quasi-ordered sets Q, {ak: k C RC}, {bk: k C RC}, and 
{Cp: <a, /> admissible}, where 

ak < a,- bk < bk l k < X, and cai < c - <ac,> < <79, >. 

For T e Xi, recall that p( T) is the root of 5- and that for x e T, S(x) is the 
set of immediate successors of x. If Q is a quasi-ordered set, q e Q, and 93 c Q, 
let [q: $3] be a pair (T, 1) e ifQ such that l(p(T)) q and {br (x): x e S(p(T))}= $' 
(assume a convention whereby the trees in $ are disjoint in such a con- 
struction). For q e Q, let Jq be some one element tree, labelled by q. 

To each (D c C(Q) we assign, by induction on UC(Q), a T((D) c JQ+9 as 
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follows: 
(i) T(O) = the empty Q+-tree, and for q G Q, T(lq) = 1% 
(ii) Suppose T(T) has been defined for each T e Up< pC(Q), and 

(P C ,C(Q) - Up, XC(Q). There are then by definition sets Gft c Up< pC(Q) 
such that either 

(1) For some X G RC, 1D is a (Ct, X)-unbounded sum; or 
(2) For some X G RC, 1D is a (Ct, X*)-unbounded sum; or 
(3) For some admissible (-t, a), 1D is a (Ct, -, 3)-shuffle. 

To define T((I), pick some Ct as above. If Ct satisfies (1), let T((I)= 
[a,; {T(e): ec CUt}], if 6ft satisfies (2), let T(1D) = [bj; {T(O): e e CU}], and if t 
satisfies (3), let T(ID) = [crc; {T(e): e q q}]. 

The next theorem reduces the bqo question for XC(Q) to that for TQ+. 

THEOREM 4.3. If D C XC(Q), T c XpC(Q), and T((D) <m T(T), then ID < T. 
PROOF. Assume the theorem holds for all <a0, '6,> c On x On such that 

<a0, 6,'> < <a, s>. Let T(ID) = (T1, 11) and T(T) = (T2, 12) and let f: T, - T, 
be a < membedding of T(ID) into T(T). It can be assumed that f(p(Tl)) = p( T2) 
since otherwise the theorem holds by induction and the observation that if 
x c S(p(T2)), then br(T2,12) (X) =T(X) for some X c Ur<fp Cr(Q), X < T. 

Case 1. T(ID) is the empty tree, or for some q e Q, 1,(p(T1)) = q. The 
theorem is clear in the first case. If 11(p(T1)) = q, then 12(p(T2)) = r, where 
r e Q and r _ q,so I =1 < r = T. 

Case 2a. 11(p(T1)) = a5, some a C RC. Then 12(p(T2)) = ak for some kG RC, 
k > a. Also, 1D is a (Ct, 3)-unbounded sum and T is a (a1, k)-unbounded sum, 
where 

Ct = {e: for some x e S(p(T1)), T(9) = br(Tj 1,) (x)}, and 
10 = {X: for some y e S(p(T2)), T(X) = br(T2,12) (x)}. 

Clearly the function f yields a <m embedding of each br(x), x e S(p(T1)), into 
some br(y), y e S(p(T2)). By the induction hypothesis, then, 

voe Gu 3X e T ) < X. 
By 4.1, then, we have 1D < T. 

Case 2b. 1l(p(T7)) = ba, some 3 e RC. Then 12(p(T2)) = bk, some G eRC, 
k > 3, and the argument is symmetric to 2a. 

Case 3. 1l(p(Ti)) = cap, some admissible <a,S f>. Then 12(P(T2)) =C78 
where <a,c i> < <-Y, 3>. Thus, 1D is a (G11, a,S f)-shuffle and T is a (I1, y, 3)- 
shuffle, where Gft and T are as in case 2a. As before, the induction hypothesis 
gives VeG t 3Xe 1 ? <X. By4.2, then, D <'T. 

This completes the proof. 
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COROLLARY 4.4. Q bqo U C(Q) bqo. 
PROOF. We need to show that Q+ is bqo. {ak: k G RC} and {bk: k G RC} are 

bqo by 1.1 (ii), and {cap: <a, i5> admissible} is bqo by 1.1 (ii) and (iv), so Q+ is 
bqo by 1.1 (iii). Hence, by 2.3, TQ+ is bqo under <. From 4.3 and the 
homomorphism property, UC(Q) is bqo. 

The next theorem, which enables one to jump over the 77,,p's in the hier- 
archy 3.5 (ii), was first proved in the case of )y (i.e., (),1,)1 by Galvin and the 
author, independently. The generalization here to types )7,,p is due to Galvin. 

THEOREM 4.5. Suppose Q is wqo, and 1 C Qe as. Then 1D is a %),,p sum 
of types 1q, where q c Q, and (R, a., f3,)-universal types, where R C Q. 
<cv 180> < <a9 la>@ 

PROOF. By the induction principle for wqo sets we can assume the theorem 
is true whenever q e Q and Q is replaced by Qq (= {r e Q: q ff r}). We are given 
D? -' tp (L, 1). For y, z e L,y <L Z. write y - z to mean that for 

every subinterval (u, v) of (y, z), tp ((u, v), 1) is a 0,,p sum of types 1q, q C Q 
and (R. ao, iSo)-universal types, R c Q. <a0, 68> < <a, fl>. Putting also x - x 

and x y ( y - x, it is clear that is an equivalence relation which parti- 
tions L into intervals. Let x I be the equivalence class of x. Picking sequence 
co-initial and cofinal with I x yields I x I as a /* + a sum of lq's and subintervals 

(u, v) of {x I, where a* < a *, a3 < f by 3.3 (ii) (and thus -* + a e CDc). Since 
u - v for each such subinterval (un, v), tp (I x 1, 1) is itself a ?D0, sum of lq's and 
(R. a0, ,80)-universal types, by 3.5 (i). Therefore, if L itself is a single equiva- 
lence class, 1D is as desired. So suppose there are x, y e L, x -A y. Let I L I = 
{ Ix 1: x e L}, where I L I is linearly ordered by the rule I X ? I I Y lX < LY. 

Claim if (I x I Y ) is an interval of IL , then 

(i) tp (I x I y YY)--(a and 
(ii) Vq C Q 3z e L Iz C (I x y) and 1(z) > q. 
Proof of (i). Otherwise tp ( x, y ) e 0DCY which would give x - y by 3.5 

(ii). 

Proof of (ii). Otherwise for some r C Q, 

{l(Z): I Z I G (I X 1, I Y I)} C Qr 
but then by the induction hypothesis, {z: I z I C (I x I, l y {)} is part of one equiva- 
lence class, contradicting part (i) of the claim. Now we claim that 1D itself is 
(Q, a, 8)-universal (which will give the theorem). Given tp (M, 1') e cQ P 
since (7yp)2 =_ A there clearly is an embedding f: M L I such that for each 
xc M there is an interval (IyI Iy z) = {L{= of ILI with 

{X0: f(xo) C I L } = {x}, 
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where in addition the I L J.'s are disjoint. By part (ii) of the previous claim, 
it is clear that f gives rise to an embedding f': M-a L such that 1'(y) < ?(ny)) 
all y C M. Thus tp (M, 1') < 0, and (D is (Q, a, 8)-universal, completing 4.5. 

The next theorem, which reduces the bqo problem for Q9" to that for 
UC(Q), is the point in the proof where the necessity for using Q-types rather 
than just order types becomes apparent. We first prove a lemma. 

LEMMA 4.6. If X e XJCr(XK(Q)) (considering XC(Q) as quasi-ordered under 
the embeddability relation of Q9") then X c XC(Q). 

PROOF. By induction on Y. If -Y = 0 the result is clear. Suppose k C RC 
and X is a (61l, k)-unbounded sum, where 

qt C Upi<,r XP(X(Q)) 

Then - is a corresponding ({1i: Xi C 6f}, k) sum, which is clearly unbounded 
since X1 X2 X1 < X2. Each i C SC(Q) by the induction hypothesis and hence 
X C UC(Q). A symmetric argument applies if X is a (GI, k*)-unbounded sum. 
Finally, if X is a (611, 3, x)-shuffle for some qU c U<, pC(XC(Q)) and some a, 
it is not hard to see from the definition of (I1, a, x)-universal that - is a 
({Xi: Xi C q}, s, x)-shuffle. Again, each Xi e S(Q) by induction, so X C ZC(Q), 
and the lemma is shown. 

THEOREM 4.7. If Q is bqo, D es Q:5'lap, then 1) is a finite sum of members 
of JC(Q). 

PROOF. Assume the theorem holds for all <a0, i,5> e On x On such that 
<a0, I> < <a, f8>. We will first show the theorem under the assumption that 
(D e Waf. We are clearly done if (D e Q(1P2)o; assume that -r > 1, $D E QeOart 
and the theorem holds for all as < X. By 3.5 (ii), bs (F) is either a 80 sum 
(some ,o </3) or an a* sum (some a0 < a) or an 7)fip sum (some <a0, '> < <a, A>) 
of members of Ul<r (Oap)X3 

Case 1. bs (D) is a j9, sum. Suppose the theorem fails for (D. There exists, 
then, a least ordinal X such that for some e C Q'sAi';r, e is not a finite sum of 
XC(Q)'s but E can be written hazel E)-, where each E) is a finite sum of UX(Q)'s 
and tp (L) = X. Clearly X must be infinite. We claim now that X G RC. To 
see this, write e in the form 1yeM e8), where tp (M) c ef (X) and each ey is a 
<X sum of e_'s. By minimality of X, each EY must be a finite sum of XC(Q)'s; 
thus, by minimality of X again, ef (X) = x, establishing the claim. Now e is 
a X sum of finite sums of XK(Q)'s, so e can be written Eael, where each 
EY c CX(Q) and tp (L) =. We claim now that 
(*) ho E Lty, z e L(XO -AL Y -AL Z C ALu and O' < 

Suppose there is no such x0, i.e., for arbitrarily large y e L, 
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3z e L(y <L z and Vu C L(z ?L-U y u 

It follows then that we can choose an increasing sequence Y1 Yy2. *... y * 

(n < wt) of members of L such that 

rn < n ' yn e 
This, however, contradicts the fact (from the hypothesis and 4.4) that SC(Q) 
is bqo and hence wqo. Thus (*) holds, and so, since Ox> ' ez is a ({': x > x},)- 
unbounded sum, and since each O' e SC(Q), we have that E, Ope C SC(Q). Now 

IZ<XO Ot is a finite sum of XK(Q)'s by minimality of X, and thus e itself is a 
finite sum of XK(Q)'s, contradicting the initial assumption and giving Case 1. 

Case 2. bs (1') is an a* sum. The argument is symmetric to that of Case 1. 
Case 3. bs (F) is anyCaos sum. 1D is then an 7aoPo sum of finite sums of 

XC(Q)'s, by the induction hypothesis for IDOL. Upon collecting these sums, D 
becomes expressed as a certain p sum of XK(Q)'s, where, in view of (CaoBO)2-H obo 

we have g --Hobo Via this expression for (D we obtain a X such that 

X C (UJC(Q)) and X = qD . 

Now SC(Q) is bqo by 4.4, and bs (X) -o~o <an, i5o> < <a, iC>, so by the initial 
induction hypothesis, 

X Xo + X1 + + XI , 

where each XZ C XC(fC(Q)). By 4.6, each Xne SC(Q), and thus 

(D X X o + XI + + XI 

is as desired, completing Case 3, and giving the theorem in the case that 
(De Qap. 

Considering now the general case where (D C Q -P, we have by 4.5 that 
<D is a p sum, for some 9 e Tap, of lq's, q c Q, and (R, >, &)-universal types, 
R C Q. <Y1, a> < <a, sf>. Since every (R, -i, &)-universal type is clearly an 
SC(Q), (D is a 9 sum of XC(Q)'s. As in Case 3 above, this sum gives rise to a 
X C (XC(Q)) such that - (D. Since SC(Q) is bqo and bs (X) 9 C as we have 
by the first part of this theorem that X is a finite sum of XC(XC(Q))'s. Applying 
4.6 as in Case 3, we obtain that (D - is a finite sum of SX(Q)'s. This com- 
pletes the proof of 4.7. 

THEOREM 4.8. Q bqo Q91Q bqo. 
PROOF. If (D e Q0D then bs (0) < C, some a, E, by 3.4, so by 4.7 each 

(D C Q0'_ is a finite sum of members of SC(Q). Letting f: (UC(Q))<'- Qm' be 
defined by 

f (<Di>i-<n) (Di 9 
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f is a homomorphism whose range is thus Q911. By 4.4 and 1.1 (v), (UC(Q))'@ 
is bqo, so it follows from the homomorphism property that Q9" is bqo. 

Noting that 'D At, where A is some one element quasi-ordered (and 
hence better-quasi-ordered) set, we obtain 

COROLLARY 4.9. OR is bqo. 
The class SC(Q) was defined structurally for purposes of representation 

by Q+-trees. It turns out from 4.7 that, assuming Q is bqo, SC(Q) has a more 
familiar description. Call a Q-type (D additively indecomposable (AI) if D 
<>l + 0 implies _D < 0, or (D < _D,. 

COROLLARY 4.10. If Q is bqo then SC(Q) is the class of additively inde- 
composable members of Q0'1. 

PROOF. It is easy to verify that (t11, k) and (6Tt, k*)-unbounded sums, as 
well as (uk, a, 8)-shuffles, are always AI; thus every (D e SC(Q) is AI (where in 
fact the hypothesis that Q is bqo is not needed). We will omit the straight- 
forward proof of the converse, other than to say that it involves showing from 
4.7, by induction on 'Y, that if (D e XC(Q) is a (1t, k)-unbounded sum and 
3X e 611 X =, then (F is an (uk, a, ,8)-shuffle for some 9k c XC(Q), a, ,8. 

In the remainder of this section we will determine the number (up to 
equivalence) of types in DR of power k. For Q an arbitrary quasi-ordered set, 
qeQ, let Iq ={reQ: r q} and let jQ ={ qj: qeQ}. k will always be an 
infinite cardinal below. 

THEOREM 4.11. If Q is bqo, Card IQI < k, and 0 < a < k+, then 
Card IQa! < k. 

PROOF. Suppose the theorem holds for all a0 < a. Also assume in the 
case of a that the theorem holds for all Qq, q e Q, by the wqo induction princi- 
ple. Since Card I QP I < k for each , < a, Card I UB< QP I < k. a can clearly 
be assumed to be infinite, and we distinguish two cases. 

Case 1. a X RC. Since UB< QP is bqo by 4.8, the induction hypothesis 
gives 

Card I (U,< Q1)cf(a) I < k 

There is a natural homomorphism from (U<, Q~)cf(a) onto U, Q1, and it 
follows that CardI Qa ? < k. 

Case 2. a G RC. Given (F e QA, by 4.7 (F is of the form (F, + (F2, where 
(, e U,< Q~ and 0,2 e X(Q). Let Za = Qa n x(Q); the theorem reduces to 
showing Card IZaI < k. Now suppose Card IZ I > k. We claim there is a 
(F e Za such that 
(*) Card{IIT:TeZaand( FT} > k . 
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Suppose there is no such (D. There will then be a strictly increasing sequence 
<"r>r<k+ of members of Za, since if we are given <D>,<, for a < k, where 
71 < 72 -f K o2 by a cardinality argument there will be a J, such that 
y < a >, < (D,. By regularity of k+, now, there is a X < k+ with 

{q: 3- < k+ lq < or} = {q: 3 < X lq < or} - 

Since each (D. G Za, however, it follows from 4.1 that (D+,1 < (D, a contradic- 
tion, and the existence of a (D e Za satisfying (*) is established. Write (D = 
tp(L, 1), where tp(L) a a and l: L Q. If (D i P for PeZa, then by 4.1, 
3x EL l(x) P T. Since k+ E Rc there will be an x, E L and H c {II T: T E Za 
and (D % T} such that Card H > k and 

I T I e H - l(X0): T. 

But now 

I TjC H - T t (Q1 (zo)a I 
and, applying the wqo induction hypothesis, we get Card H ? Card I (Ql(xO))5 
k, a contradiction. This completes the proof of Theorem 4.11. 

From 4.11 it is immediate that if Q is bqo and Card IQI < k, then 
Card I j)(Q) < k, where $)(Q) can be taken as quasi-ordered either by <5 or 
by <1 

THEOREM 4.12. If <a, 1> is admissible, Q bqo, Card IQI < k and 
max {a, } ? k, then Card I Q56afi I < ki. 

PROOF. Assume the theorem holds for all <a,, /8o> < <a, if>. We will 
first show that for each '> < max {a, fl}, Card I Q I < k, by induction on 
7. If -' 0 it is clear. Letting 

a : = Ka*: o < a} U {/0: ,0 <Ia} U {2a0POi: <a0, I,0> < <a, I>}, 
we have by 3.5 that if (D C Q(I'ap)r, then (D can be written in the form A, where 

T G (QUa3< (PalP)3)a) 

Now QUa<r('Pa) is bqo by 4.8 and has power ?k (up to equivalence) by the 
9,M induction hypothesis and the fact that a < k, so for each 9 C C, 

Card I (QUI<r(@Dat)) j < k 

by 4.11 if P is an a* or a 80, and by the main induction hypothesis if 9 is an 
'p. Hence clearly, since Card (i : k, 

Card I (QUa<i(TaP)G)j < k 

and it follows that Card Q(@a <i ? k for each '>, implying in turn that 

CardI Q'@a ? k. 
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Turning now to the general case, if <D e Q5ap then by 4.5, $D is a A, sum 
of 1q's, q e Q, and (R, a0, lS.)-universal types, R C Q <a0, fS0> < <a, f>. Let 

U = (Q U (CP(Q) x a + 1 x f + 1)). 
J is quasi-ordered as a disjoint union of Q and (QP(Q) x a + 1 X f + 1), where 
the latter space is quasi-ordered by the ordering induced from the usual orders 
on a + 1, f8 + 1, and the <E order on SP(Q). From 4.1 and the above, it fol- 
lows that Q"a- is a certain homomorphic image of $33-. J3 is bqo by various 
parts of 1.1. Card I 9P(Q)I < k by the remark following 4.11, so it follows that 
Card ? 1 < k. Hence, by the A, part of this theorem Card j ?'VA I < k. It 
follows then that Card I Q j(-P < k, completing the proof. 

Letting DRW(k) (8(k)) be the set of order types in OR(S) which are of power 
k, we obtain 

COROLLARY 4.13. If Q is bqo, Card I Q I < k+, then 

Card I S(k) I = Card I en(k) I - Card I Q j(, I = Card I Q9(k) j = kI . 

PROOF. Card I S(k) I > k+ in view of the ordinals in 5(k). It is not hard to 
see that 9 C O1(k) 4 9 < Yk+k+, and the theorem then follows from 4.12. 

We would like to state without proof one further result on the structure 
of S and OR under embeddability. The dimension of a partially ordered set 
P (written dim P) is the least cardinal X such that P can be isomorphically 
embedded in the direct product of X linear orderings. In [12] it was men- 
tioned as an open question whether there exist partially ordered, well-quasi- 
ordered sets having uncountable dimension. The following theorem shows 
there are such sets of arbitrary dimension. 

THEOREM 4.14. dim I2(k) I= dim I RM I = k+. 

5. Conclusion 

The results in this paper are expected to be of help in getting a better 
understanding of the structure of the members of OR (especially the countable 
order types). Results of this nature have been proved recently; we will 
state two of them here (proofs will be given elsewhere). 

(1) If tp (L) = p e OR, then there is an n < o such that if L = Uj< Li 
for some r < w, then for some ?n-element set I c {O, 1, * , r}, 9 < 
tp (Ue I Li). 

(2) Let CO = the set of order types {0, 1} 

a= {R: R = 
E<<, pi or R = (Ci<W R)*, 

where each pi e Up<, C, and i < j -d< pj9}. 
Then for each countable scattered type A, q is strongly indecomposable 
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if and only if ( _r for some * C Ua<w,,,, 6,.2 (There is an analogous theorem 
characterizing the strongly indecomposable members of DR.) 

In addition to the problem of obtaining more detailed information about 
the order types in DR, there is of course the general problem of determining 
which classes of mathematical objects are wqo (or bqo) under naturally 
defined quasi-orders. Some examples of spaces for which the answer is not 
known are the class of all graphs, quasi-ordered by immersability (Nash- 
Williams [8], a generalized form of Vazsonyi's trivalent graph conjecture), 
the class of all graphs, quasi-ordered by homomorphic contraction (Mader), 
and the class of all trees which have countable limit levels, quasi-ordered by 
a natural extension of the ordering on T. 

Finally, the question arises as to how the order types outside of 'DR behave 
under embeddability. For instance, it is known that there are order types 
not in OR which do not embed any uncountable set of reals, and to which the 
Dushnik-Miller-Sierpinski construction, thus, does not apply. In some specific 
cases the answers are known to be independent of ZFC. 

UNIVERSITY OF CALIFORNIA, BERKELEY, AND 
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