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Also, in virtue of (3), Q can be expressed as
Q, = MZR—lf:A(uu)Jm(up’) etz dy, (6)
Taking r = a(z’ = 0,p" = atan (}6)) in (4) and (6) and substituting A = ua, we obtajn
F(0) = sec (36) f : A(A)J, (A tan (36)) dA. (1)
Calculating {0Q, /or — 0Q_[ér}, _ , from (4) and (5) and from (6),and using (2), we obtain
G(0) = sec’(16) f : AA(A)J,, (A tan (46))dA, (8)
which is the required result. It follows not necessarily from (7), but more generally

from the equivalence of (4), (5) and (6). This equivalence can clearly be utilized to
express other series in Legendre functions in terms of integrals of Bessel functions.
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Abstract. Let A be the set of all ascending finite sequences (with at least one term) of
positive integers. Let s,te 4. Write s <|¢ if there exist m,n,z,, ...,z, such that m < n
and, < ... < x,and sis 2y, ..., ,, and tis @,, 2, ..., ,. Call a subset S of 4 a P-block
if, for every infinite ascending sequence ,, Z,, ... of positive integers, there exists an m
such that z,, ..., x,, belongs to S. A quasi-ordered set @ (i.e. a set on which a reflexive
and transitive relation < is defined) is better-quasi-ordered if, for every P-block S and
every function f:S — @, there exist s,t€ S such that s < ¢ and f(s) < f(?). It is proved
that any set of (finite or infinite) trees is better-quasi-ordered if T; < T, means that the
tree 7T, is homeomorphic to a subtree of the tree T;. This establishes a conjecture of
J.B.Kruskal that, if 7,,7), ... is an infinite sequence of trees, then there exist ¢, j
such that i < jand T} < 7).

1. Introduction. A graph @ consists of two disjoint (finite or infinite) sets V(G),
E(Q), together with a relationship whereby with each element A of E(() we associate
either two distinct elements of V(@) which are said to be joined by A or a single element
of V(@) which is said to be joined to itself by A. The elements of V(G) are called
vertices of G and the elements of E(G) are called edges of G. A vertex £ and edge A of
@ are incident with each other if A joins £ to itself or to another vertex. The degree
of a vertex is the number of edges incident with it. We shall write

V(&) v B(Q) = Z(G).
G is finite if the set Z(G) is finite, and infinite otherwise. A finite sequence
gOaAbgla A2,§2, /\31 -"’/\na gn (l)

(where n > 0) is a path in G if &, ...,§, are vertices of G and A, ..., A, are distinct
edges of G and A, joins §;_; to &, for i = 1,...,n. Since n is allowed to be 0, a sequence
whose sole term is a vertex is counted as a path. The path (1) is strictifn >0and §,, ...,
are distinct. A path from £ to 7 is a path with first term £ and last term 7. The terms of a
path other than its first and last terms will be called mid-terms. G is a tree if V(@) + 2
and, for every element (£,7) of V(G)x V(G), there exists in G a unique path from £
to 7. The notations {x|#} and {x € X|%} will be used for ‘the set of all elements x such
that &’ and ‘the set of all elements z of the set X such that &%’ respectively (where &
is a statement specifying some restriction on «). If A, B are setsand C < Ax B and
£e A, then C ® £ will denote {§eB| (§,7)€C}. Such a set C may be thought of as a
many-valued function from 4 into B, mapping each £ € 4 into all the elements of COE.
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[However, the word ‘function’ is in this paper reserved for single-valued functions. ]
An immersion of a graph G in a graph H is a subset ' of Z(G) x Z(H) satisfying the
following conditions (i)-(iii).

(i) Forevery £e V(G), C © £ has just one element, which is a vertex of H.

(i) If e E(G) and A joins & to 5, then C' © Ais the set of mid-terms of a strict path
from the element of C' © £ to the element of C' © 7.

(iii) If («, ) and (f, ) both belong to C'and « # f,then a€ B(Q), fc E(G)and ye V(H).
An embedding of G in H is an immersion C' of G in H such that the sets C' © 4
associated with the elements o of Z(@) are disjoint (which, in view of (iii), is equivalent
to saying that there are not two distinct edges A, 4 of G'such that ¢ ® A, C © x have a
vertex of  in common). The purpose of this paper is to prove the following conjecture
of Kruskal ((2)):

TueoreM 1. If T\, T, ... is an infinite sequence of (finite or infinite) trees, there exist
i and j such that i < j and T, can be embedded in T;.

The conjecture that Theorem 1 is true for finite trees was made by Vazsonyi. Hig-
man ((1)) proved Theorem 1 for the case in which the 7, are finite and the degrees of
their vertices are bounded. The theorem was proved for finite trees in general, and
conjectured to be true without the restriction to finite trees, by Kruskal ((2)). A proof
for finite trees was also, subsequently but independently, obtained by Tarkowski,
and is briefly announced in (7). A shorter proof for finite trees was given by the author
((3)), and an extension of this result was obtained in (4).

Let us call a graph G 3-simple if no vertex of G' has degree greater than 3. Another
conjecture of Vézsonyi was that, for every infinite sequence G, @,, ... of 3-simple
graphs, there exist 7 and j such that ¢ < j and G, can be embedded in G;. In this con-
nexion, it is of interest to make the further conjecture that, for every infinite sequence
of graphs G4, G,, ..., there exist 7 and j such that i < j and G, can be immersed in G;.
For, if this conjecture is true, both Theorem 1 and Vazsonyi’s conjecture concerning
3-simple graphs are consequences of it, since it is easily seen that an immersion of G;in
(/; is necessarily an embedding if G, is 3-simple or if G; and G; are both trees.

In this paper, the word ‘set’ will (as in axiomatic set theory) mean a set with a
definite cardinal number, and such entities as ‘the collection of all trees’ will not be
referred to as ‘sets’. A set of sets will sometimes be called a class. In the interests
of clarity, we shall say that a set includes its elements and contains its subsets. We recall
that a function is a set f of ordered pairs such that, if (x,y) and (z, z) belong to f, then
y = z. The fact that a function is a set will play a significant role in the presentation
of our arguments. The domain Df of f is the set of elements « such that (z,y)ef for
some y and the ¢mage Im f of f is the set of elements y such that (z, y) e f for some x.
If (x,y) ef, we write y = f(x) or y = fr (whichever seems preferable). [ is a function
from the set A into the set B (in symbols, f: 4 - B) if Df = A and Imf < B. If «
is an ordinal number, X, will denote the set of non-zero ordinal numbers less than
1+a. (Thus X, = 2.) A sequence of length a on a set S may be defined to be a function
from X, into 8. The length of a sequence s will be denoted by I(s) (and will in this
paper usually be finite or w). The element s(r), where r e Ds = Xy, is called the rth term
of s. A sequence of finite length is a finite sequence, and a sequence of length w is an
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w-sequence. A finite sequence s of length n will be denoted by s(1), ..., s(n) or, in this
paper, more commonly by [s(1), ...,s(n)]. In particular, [«] is the sequence of length 1
with sole term z. Likewise, an w-sequence s will be denoted by s(1),s(2),... or
[s(1),s(2),...]. A sequence of length 0 will be denoted by []: it could, in fact, equally
well be denoted by @, since it is according to our definitions an empty set of ordered
pairs. For any sequence sand any a < I(s), the restriction of s to X, (which is a sequence
of length a) will be called a left-segment of s: if & < I(s), it is a strict left-segment. We
write s < ¢ for ‘s is a left-segment of £’ and s < <t for ‘s is a strict left-segment of ¢'.
If s is a finite sequence [x;,,,...,%,] and m < n, the sequence [Z,, .1, Tyiz, - Tpl
will be denoted by (,,s. We shall also write (s as 5. If sis an w-sequence [y, Zy, ...],
(o8 Will denote the w-sequence [2,,,1, ¥, 2, -], and ;s will denote ()s. The set of positive
integers will be denoted by P. A sequence s on P will be called ascending if U(s) = 1%
and s(i) < s(j) whenever i, je Ds and ¢ < j. (The latter condition is vacuously satisfied
if I(s) = 1.) The set of ascending finite sequences on a subset I of P will be denoted by
A(I), and the set of ascending sequences of length o on I by A,(I). [The letter A, when
not occurring in an expression of one of these forms, may be used also with meanings
unconnected with this definition.] In introducing spaces of ascending sequences and
the notation ¢ 4’ to describe them, we are using an idea due to Kruskal. If B < 4(P),
B will denote the set of elements = of P such that « is a term of at least one element of
B. In other words, B is the union of the images of the elements of B. B is a block if B
is an infinite subset of P and every element of 4,(B) has a left-segment belonging to B.
If S is a set, an S-function is a function f such that Df = A(P) and Imf < §. An
S-pattern is an S-function whose domain is a block. If s, e A(P), we write s <[t iff
there exists a w€ A(P)such that s < <wand? = ,u. [‘Hf’ stands for ‘if and only if”.]

A quasi-ordered (go) set is a set in which a reflexive and transitive relation < is
defined. The symbols @ and @' will always denote qo sets. If ¢;,¢,€Q and ¢, < ¢,,
we shall say that ¢, anticipates g,. S will denote the class of all subsets of @, and will
be considered as a qo set in which P, < P, iff every element of P, anticipates an element
of P, (where P,,P,e©Q). We shall write @ = €°Q, S¢ = &'Q and, in general,
GnQ = &(&"1Q) for every ne P. An w-sequence o on @ is good if there exist ¢,je P
such that ¢ < j and o(3) < o(j), and is bad if not. A @-function f is good if there exist
s,teDf such that s <]t and f(s) < f(t), and is bad if not. @ is well-quasi-ordered (wqo)
if every w-sequence on @ is good. @ is better-quasi-ordered (bqo) if every @Q-pattern is
good.

LevMA 1. Bvery bgo set is wqo.

Proof. Suppose that @ is bqo. Let o be an w-sequence on ¢. Let f be the @-pattern
such that Df = A,(P) and f([i]) = o(i) for every i€ P. Then f is good, and therefore o
is good.

Lemma 1 justifies the term ‘better-quasi-ordered’ in the sense of showing that it
describes a stronger property than ‘ well-quasi-ordered’. 1t in fact describes a strictly
stronger property, since examples of wqo sets that are not bqo have been constructed.

t This represents a slight departure from the convention of (5), where [] was counted as
ascending.
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(See, for example, Theorem 2 of (6).) Such examples tend, however, to have a somewhat
artificial character, and one is inclined to conjecture that most wqo sets which arise
in a reasonably ‘natural’ manner are likely to be bqo.

It can be shown that &"Q being wqo is equivalent to the set L*Q of (4) being wqo,
and that it is also equivalent to every Q-pattern with domain A, (P) being good.
(Theorem 3 of (¢), which constituted an important starting point for some of the
ideas in the present paper, introduces something which approximates to this last
condition in the case » = 2.) It also transpires that if, by a certain fairly natural ex-
tension of our definition of G2Q, we define &2Q for every ordinal a, then @ is bqo iff
©2Q is wqo for every ordinal a. To justify these statements would not be relevant here,
but it was from this point of view that the author was first led to study bqo sets.

The main result of this paper will be

THEOREM 2. Any set of trees is bgo under the quasi-ordering in which Ty < T, iff the
tree Ty can be embedded in the tree T,
Theorem 1 is an immediate consequence of Theorem 2 and Lemma 1.

2. An investigation leading to a lemma concerning the ‘sharp’ quasi-ordering on the
class of subsets of a wqo set.

Definitions. The cardinal number of a set A will be denoted by |4]. A function f
from a subset 4 of  into a subset B of  is weakly ascending if a < f(a) for every ac A.
If v is a cardinal number, A(v,Q) will denote the set of those elements of @ which
anticipate at least v elements of ¢). Clearly

A, Q) > A(W,Q) if v<v. 2)

We call v a Q-number if there is no v’ > v such that A, Q) = A(v', Q). The set of those
elements of @ which anticipate only finitely many elements of Q will be denoted by
Q*. If ¢;, ¢, are elements of @ such that ¢, < geand ¢, € q;, we write g, < g,. If v = N,
v+ willdenote X, ;.

LemMMA 2. Let v be an infinite cardinal number and A, B, C be subsets of @ such that
|[4| < v, |C] < v and each element of A anticipates at least v elements of B. Then there
exists a weakly ascending one-to-one function from A into B—C.

Proof. Suppose, first, that 4 is an infinite set. Let |4} = R,- Then we can write 4
in the form {a, |y < w,}, where a, + a;if y + §. Suppose that § < v, and that, for each
v < 6, we have selected an f(a,) € B—C. Then, since |C| < v and

[{f@)]v <8} <N, <V

and a, anticipates at least v clements of B, we can select an f(a,) € B— (C' u {fla)ly < &}
such that a, < f(a,). In this way, we can define f(a;) for every 0 < w, by transfinite
induction so that f is a weakly ascending one-to-one function from 4 into B— C.

If 4 is finite, an obvious, purely notational modification of the above argument is
needed.

Lemma 3. If Q is wqo, v is an infinite cardinal number and S is the set of those elements
of Q which anticipate less than v elements of Q, then |8] < ».
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Proof. Suppose that |S| > v. Forany g€ @, let M(q) be the set of elements of @ which
q anticipates. Select a gq,€S. Then S— M(q,) + @ since |M(q,)| < v < |8|, and so we
can select a g, 8 — M(q,). Since | M(q,) v M(q,)] < v < |S|, we can select a

q3€ S8 — (M (qy) v M(q,)),

and then likewise a g,e€S — (M(q,) v M(q,) v M(q;)) and so on. Since q;¢ M(q;) when
1 < j, the w-sequence [q,,qs, ...] is bad, which contradicts the hypothesis that @ is
w(qo.

Lemma 4. A(v,Q) + @ if and only if there is a Q-number greater than or equal to v.
Furthermore, if either of these equivalent conditions ts satisfied, then

AW, Q) = Alp, Q),

where p is the smallest Q-number greater than or equal to v.
Proof. If there is a @-number 7 > v,

AW, Q) 2 A1,Q) > M7+,Q) + A1, Q)

by (2) and the fact that 7 is a @-number. Therefore A(v,Q) + .

To complete the proof, we will now assume that A(v, @) + 2 and deduce that there is
a @-number greater than or equal to v and that A(v, @) = A(p, @) where p is the least
such @-number. Call a cardinal number v’ v-equivalent if A(y',Q) = A(v, Q). If V' is
v-equivalent, our hypothesis implies that A(v',Q) + @, which implies that 1" < |@|
since no element of @ can anticipate more than || elements of ¢. Therefore |Q| is
greater than or equal to all v-equivalent cardinals. It follows, since any set of cardinal
numbers is well-ordered, that there is a least cardinal p greater than or equal to all
v-equivalent cardinals. If ge A(v, @) and o is the number of elements of @ anticipated
by ¢, then ge A(v', @) for every v-equivalent »’, and therefore o > 1’ for every such
v, and therefore o > p by the definition of p, and therefore ge A(p,Q). Hence
A, Q) = Alp, Q). But p > v since v is v-equivalent, and therefore A(p,Q) < A(v, Q)
by (2). Therefore A(v, @) = A(p, Q). It follows that, if A(p, @) = A(p’,Q), then p’ is
v-equivalent and therefore less than or equal to p: hence p is a @-number. We have
seen that p > v, and p must in fact be the least ¢-number greater than or equal to
v since, if p” were a @-number such that v < p” < p, (2) and the fact that p” is a @-num-

beI‘ Would glve A(p”,Q) 4: A(p, Q) - A(p”, Q) - A(V, Q),
which is impossible since A(v, @) = A(p, Q).

Lemma 5. If v, v' are Q-numbers such that v < V', then A(v,Q) > A(V',Q) (in the
quasi-ordering of SQ).

Proof. By (2), A(v',Q) < A(v,Q) and therefore A(V',Q) < A(v,@). Moreover, if
A(v,Q) < A(', Q), it would follow that any element of A(v, @) anticipates an element of
A(v', @) which anticipates at least v’ elements of @, and therefore that

A, Q) = A(V,Q)
and therefore that A(v,Q) = A(v', @), which contradicts the hypothesis that v is a
@-number. Therefore A(v, @) £ A(V', @), and therefore A(v, @) > A(V', Q).
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LeMMA 6. If @ is wqo, there are only finitely many Q-numbers.

Proof. If our assertion is false, there exists an ascending infinite sequence v, < v, < ...
of @Q-numbers. Let A(v,,@) = R,. Then R, > R, > ... by Lemma 5. Hence, for each
positive integer 7, we can select an element r; of B; which does not anticipate any ele-
ment of B, ,. If i < j, then R; < R;,, and therefore r; anticipates an element of R, |,
and hence 7, would anticipate an element of R;,, if r; < r;. Therefore, when i < j,
r; does not anticipate r;, which contradicts the hypothesis that  is wqo.

LeMMA 7. Let Q be wqo and not equal to @*. Then there exists at least one infinite
Q-number. Futhermore, if vy, ...,v, are the infinite Q-numbers in ascending order and
AW, Q)= R; and R,—R,,, = N, for j <n and R, = N,, then N,, ..., N, are disjoint,
Q—-Q* = Nyu...uN, and |N;| < v, for each N,.

Proof. Since @ + Q—Q* = A(NR, @), it follows from Lemma 4 that there is at least
one infinite @Q-number and that A(R,, @) = A(vy, @), i.e. @—@* = R,. But, since
R, > ... © R, by (2), it follows that N, ..., N, are disjoint and that

MNvu...uN, =R, =Q—-Q*
Furthermore, if i < n, then A(v;+,@Q) = R, by Lemma 4 and therefore each element
of N, anticipates fewer than v; + elements of @, whence | N;| < v, by Lemma 3. Finally,
since A(v, +,Q) = @ by the first part of Lemma 4, every element of ¢ anticipates
fewer than v, + elements of @, whence |N,| < |@| < v, by Lemma 3.

Definitions. Let A, B be subsets of . Our definition of ‘4 < B’ amounts to saying
that A < B iff there exists a weakly ascending function from A4 into B. If there exists
a weakly ascending one-fo-one function from 4 into B, we shall write 4 < *B. Thus
< and < * are two quasi-orderings on the class of subsets of ¢. When this class of sub-
sets is regarded as being quasi-ordered by < *, it will be denoted by ©*@. (It will as
heretofore be denoted by ©¢ when it is regarded as being quasi-ordered by <.) The
class of finite subsets of @, when regarded as quasi-ordered by <*, will be denoted by
%#Q. The Cartesian product @ x @ of two qo sets will be quasi-ordered by the rule
that (5, 4}) < (92, ¢s) iff ¢; < g7 and ¢, < ¢;. The set of cardinal numbers less than or
equal to |@| will be denoted by C. The set of all ordered pairs (v, R) such that v is an
infinite Q-number and R = A(v, @) will be denoted by I1(Q). The set of all ordered pairs
of the form (1, {q}), where g € @* and {g} denotes the set whose sole element is ¢, will be
denoted by Q(Q); and E(Q) will denote I1(Q) v Q(Q).

Lemma 8. If Q is wgo, E(Q) € F¥#(Cp x ©Q).

Proof. If (v, R) e B(Q), it is clear from the definition of 5(¢)) that R € ©¢: furthermore,
either (v, R) € Q(Q), in which case v =1 = |R| < |@|, or (v, R)eI(®), in which case
vis a Q-number and therefore A(v,Q) + @ by Lemma 4 and therefore v < |@|. Hence
(v, RyeCy x ©Q. Thus E(Q) is a subset of O, x €@; and it is in fact a finite subset since
Q* and I1(Q) are finite sets by Lemmas 3 and 6, respectively. Therefore

E(Q) € F*(Co x ©Q).

(Of course, Z(Q) could equally well be regarded as an element of F(Cox &) or
F(Cy x ©*Q), say: the choice is simply a matter of convenience.)
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COROLLARY 8A. If Q is wqo and A < @, then E(A) e F*(Cp x SQ).

Explanation and Proof. A subset A of @ is of course itself quasi-ordered by the
quasi-ordering in @, or, more precisely, by the restriction of that quasi-ordering to
A. If Q is wqo, so is A, and therefore Z(A4) belongs by Lemma 8 to F*(C 4 x ©4),
which is a subset of F*(C, x SQ).

Lemma 9. If Q is wqo and A, A are subsets of Q such that E(4) < #E(A) (an the
quasi-ordering of F*(C,, x ©Q)), then there exists a weakly ascending one-to-one function
Sfrom A* into A.

Proof. Since E(A) < *E(A), there exists a weakly ascending one-to-one function f
from Z(A) into B(A). Write A* = A¥ u A¥, where f((1,{a})) belongs to Q(4) for
ae A¥ and to II(4) for ac A¥. Since f is weakly ascending and one-to-one, a weakly
ascending one-to-one function ¥ from A} into (4)* (< A) is clearly defined by the
relation (1, {{(a)}) = f((1, {a})) (where a € A¥). Moreover, if ae A¥, then

(1,{a})) = (B, A(¥,, 4))

for some infinite A-number 7,. Since f is weakly ascending, {a} < A(¥,, 4) and there-
fore a anticipates an element of A(¥,, 4) which anticipates at least 7, elements of A.
Therefore each element of A¥ anticipates at least &, elements of 4. Moreover, since
A* is finite by Lemma 3, A and Imy are both finite. Therefore there exists by
Lemma 2 a weakly ascending one-to-one function y from A¥ into 4 —Im3r. Clearly
¥ U y is a weakly ascending one-to-one function from 4* into 4.

LeMMA 10. If Q is wqo and A, A are subsets of Q such that E(A) < *E(A) (in the
quasi-ordering of F*(Cp x ©Q)), then A < * 4.

Proof. Let f be a weakly ascending function from E(4) into E(4). By Lemma 9,
there exists a weakly ascending one-to-one function ¢, from A* into 4. If 4 = 4%
it follows that 4 < * 4. If not, there exists by Lemma 7 at least one infinite A-number
(and by Lemma 6 there are only finitely many). Let vy, ..., v, be the infinite 4-numbers
in ascending order. Let A(v;,4) = R, and R;—R;,, = N; for j <n and R, = N,.
Let f((v;, R;)) = (;, R;). Then, since f is weakly ascending, v; < V; (which implies that
7, isinfinite) and R; < R,. Since 7;isinfinite, (v;, B;) € I1(4) and therefore B; = A(7;, 4).
Since R; < R, = A(7;, A), each element of R; anticipates an element of R, which anti-
cipates at least 7, (> ;) elements of 4 and therefore in particular each element of N,
anticipates at least v; elements of 4. Furthermore, by Lemma 7, |N;| < »; and by
Lemma 3 4* (and therefore also Im ¢,) is finite. Therefore, by » applications of Lemma
2, we can construct in succession weakly ascending one-to-one functions

¢y:N, > A-Tmg,, ¢o:N,—>A—(ImpyuImg,), ...,
¢ N, > A—(ImgyuImg,u,...,ulmg, ;).

Since N,,..., N, are by Lemma 7 disjoint sets with union 4 — 4%, ¢,ud,u...v ¢,
is a function from A into 4. Since the ¢, are by construction weakly ascending one-to-
one functions with disjoint images, ¢, v ... v ¢, is weakly ascending and one-to-one.
Hence 4 < * 4.




704 C.St. J. A. NasH-WILLIAMS

3. Some properties of barriers, arrays and bqo sets.
Definitions. An element s of A(P) is a subsequence of an element ¢ of A(P) if
Ims < Imt¢,

i.e. if every term of s is a term of ¢. If s is a subsequence of ¢ and s = ¢, we call s a
strict subsequence of t. If s,...,s,€ A(P), s,08,0...0s, will denote the element of
A(P) whose terms are precisely those integers which are terms of one or more of
815 ++>S,. A barrier is a block which does not include two sequences s,¢ such that s
is a strict subsequence of ¢. If B is a barrier, a finite sequence o on B will be called
ascending if I(o) > 1 and o(¢) Qo(¢+1) for 1 <4 < l(). (We regard the latter con-
dition as being vacuously satisfied if /(o) = 1.) We shall denote the set of ascending
sequences on B of length r by 4, (B) and the set of all ascending finite sequences on B
by A(B). If e A(B), a(o) will denote the element o(1)o(2)o...0a(l(a)) of A(P).
Br will denote the set of all sequences of the form a(o), where o€ 4,(B). B will mean
C, where C = Br. '

Lemma 11. If B is a barrier, no element of A(P)u A, (P) can have more than one left-
segment belonging to B.

Proof. 1f two elements s,t of B are left-segments of the same sequence, one of s, ¢
must be a subsequence of the other. But, since B is a barrier, neither of s, ¢ can be a
strict subsequence of the other, and therefore s = ¢.

CoroLLaRY 11A. If Bis a barrier, each element of A, (B) has a unique left-segment
belonging to B.

Lemma 12. If B is a barrier and se€ B, then there exists a t € B such that s < t.

Proof. Let u be any element of 4 ,(B) with s as a left-segment. Then, since B is a
block, 4u has a left-segment te B. Since s,te B, t cannot be a subsequence of s,
and therefore s <] t.

Lemma 13. Let D be a subset of A(P) and I be an infinite subset of P such that D < [
and every element of A,(I) has a left-segment which belongs to D. Then D = I and D is
a block.

Proof. Since every element of I is the first term of an element of 4 (/), which has a
left-segment in D, every element of I is the first term of an element of D. Therefore
I = D, and so, since D < I by hypothesis, D = I. Since D = I, the hypotheses of
Lemma 13 imply that D is an infinite set and that every element of A (D) has a left-
segmentin D).

Lemma 14. If B is a barrier and I is an infinite subset of B, then B ~ A(I) is a barrier.

Proof. Let B A(I) = D. Since B is a block, each element of A (I) has a left-
segment which belongs to B and hence (being a left-segment of an element of 4,(I))
to Bn A(I) = D. Moreover, it is obvious that D < I. Therefore D is a block by Lemma
13. Moreover D, being a subset of B, cannot include two sequences such that one is a
strict subsequence of the other, and must therefore be a barrier.

Lemma 15. If B is a barrier and r € P, then BT is a barrier.

Proof. Let ue A,(B). For each non-negative integer i, ,u has by Corollary 11A
a unique left-segment v; € B. Since B is a barrier, v, ; cannot be a strict subsequence of
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v; and therefore v; < v,,;. Hence [v,,,...,9, ,]€4,(B) and so u has a left-segment
40 ... 0v,_; belonging to Br. Thus every element of A, (B) has a left-segment in B".
Since obviously Br < B, it follows by Lemma 13 that B is a block. Suppose that
s,te Br and that s is a subsequence of t. Write s = a(c), t = a(r), where o, re 4,(B).
Then (,_»s = o(r)e B, ,_yt = 7(r) € B, and, since s is a subsequence of t, (,_ys is a sub-
sequence of ,_,,t. Hence, since B is a barrier, ,_ys = ,_p?. Since s is a subsequence of
tand_;s = (_yt, clearly s = ¢. Hence Br does not include two sequences such that one
is a strict subsequence of the other, and therefore B" is a barrier.

LemMa 16. If B is a barrier and o, 7€ A(B) and a(c) = a(1), then o = 7.

Proof. Let a(o) = a(t) = u, (o) = m, (1) = n. Since o€ A(B) and a(o) = u, clearly
o(1) < _pu for 1 < ¢ < m and o(m) = (,_pu: similarly 7(j) <¢_pu for 1< j < nand
(1) = (n_p%. Since (,,_yu = o(m)eB, ,,_yu = 7(n) € B, neither of these sequences can
be a strict subsequence of the other: therefore m = n. Furthermore, o(1) = 7(7) for
1 < ¢ < m by Lemma 11 and the fact that o(i), 7(¢) < ;_pu. Hence o = 1.

Definitions. 1f Bisa barrierand se Bu B2u B*u ..., the element of A(B) such that
s = a(c) will be denoted by a~(s, B), and the first term of o will be denoted by sAB.
These definitions are unambiguous by Lemma 16. In view of Lemma 11, sA.B can
also be characterized as the unique left-segment of s which belongs to B.

LemMA 17. If B is a barrier (B%)? = B3 and, for every se B3, (sAB*)AB = sAB.

Proof. If se B3, then s = touov for some [¢,u,v]€ Ay(B). Since ¢ Ju <], clearly
(tow) <] (wov) and hence (tou)o(uov)e(B2)?, i.e. se(B??> Conversely, if se(B??
we can write s = tou where [t, u]e Ay(B?) and ¢t = t, 0ty, = u, 0u, where

[y, to), [y, up] € Ao(B).

Then tg= ,t < u, u; <u and therefore ¢, = u, by Lemma 11 since t,, u, € B. Therefore
[y, £, ug] € A4(B) and ¢, 0,0, = tou = s, and so s€ B. Hence (B?)? = B°. Moreover,
if se B3, then (s A B2) A B and s A B are left-segments of s which belong to B and hence
are equal by Lemma 11.

Definitions. A Q-function f is perfect if f(s) < (t) for every pair s,¢ of elements of
Df such that s <{¢. A Q-array is a Q-function whose domain is a barrier. A subset T
of A(P) is thin if it does not include two sequences s,¢ such that s < <t. The second
component y of an ordered pair (x,y) will be denoted by c,(,y). The restriction of a
function f to a subset A of Df will be denoted by f|4.

We refer the reader to section 2 of (5) for the proof of the following lemma;:

Lemma 18. Let I be an infinite subset of P and {B, C} be a partition of a thin subset T
of A(I) into two disjoint subsets. Then there exists an infinite subset K of I such that
T ~ A(K) is contained either in B or in C.

LemMa 19. If f is a Q-array, Df contains a barrier B such that f|B is either bad or
perfect.

Proof. Write Df = D. For every seD?, write a~(s,D) = [s3,5,]. Let X be the
set of those se D2 for which f(s;) < f(s,) and Y be the set of those se D? for which
f(s1) € f(sy). By Lemma 15, D2 is thin; and obviously D? < A(D). Therefore there
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exists by Lemma 18 an infinite subset K of D such that D%~ A(K)is contained in X or
in Y. Write D n A(K) = B, which is a barrier by Lemma 14. For every pair s,¢
of elements of B such that s <] ¢, sote D2~ A(K) and therefore

f&)<fit) if D*nA(K)<= X and f(s) £f(t) if D2nAK)< Y.
Hence f| B is bad or perfect.

LemmA 20. Every block contains a barrier.

Proof. Let B be a block. Call an element s of B minimal if no strict left-segment of
s belongs to B. Let M be the set of minimal elements of B. Let X be the set of those
elements of M which have a strict subsequence belonging to M. Since M is clearly
thin, there exists by Lemma 18 an infinite subset K of B such that M n A(K) is con-
tained either in X orin M — X. Let ¢ be an element of minimum length in M ~n4(K).
If M~ A(K) < X, t has a strict subsequence » € M and, since te A(K), u belongs to
A(K) and therefore to M n A(K), which contradicts the minimality of I(t). Therefore
M~ A(K) € M - X, and so no element of M ~n A(K) has a strict subsequence belong-
ing to M n A(K). Since B is a block, every element of 4,(B) has a left-segment belong-
ing to B and therefore has a left-segment belonging to M. Therefore every element

of A,(K) has a left-segment belonging to M n A(K). Since obviously M n A(K) < K,
it follows by Lemma 13 that M ~ A(K) is a block. Hence M n A(K) is a barrier con-
tained in B.

LemMma 21. @ ¢s bgo iff every Q-array is good.

Proof. If Q is bqo, every @-pattern, and therefore a fortiori every @Q-array, is good.
If every @-array is good, then, for any @-pattern f, Df contains by Lemma 20 a barrier
B, and f|B, being a Q-array, must be good by hypothesis, and therefore f is good.
Hence @ is bqo.

We shall henceforward take Lemma 21, in place of the definition given in section 1,
as our characterization of bqo sets, since barriers will be more convenient to handle
than blocks.

Lemma 22. If Q vs bgo and f is a bad (@ x Q')-array, then there exists a bad Q'-array
g such that Dg < Df and g(s) = c,f(s) for every seDyg.

Proof. Write f(s) = (f1(s),fs(s)) for every se Df. By Lemma 19, there exists a barrier
B < Df such that f,|B is either bad or perfect. However, since @ is bqo, f,| B is good,
and therefore there exist s,te B such that s <] ¢ and f,(s) < f,(t). If f,| B were perfect,
we should also have f,(s) < f,(¢) and therefore f(s) < f(), contrary to the hypothesis
that fis bad. Therefore f,| B is bad, and is thus a g with the required properties.

CoroLLARY 22A. If Q and Q' are bgo, @ x Q' is bgo.

Definitions. If s, ¢ are sequences and I(s) is finite, st will denote the sequence defined
by the rule that st(a) = s(e) for 1 < a < I(s) and st(l(s) + ) = ¢(f) for 1 < f < 1+I(t).
The last term of a sequence se A(P) will be denoted by A(s). If S is a set and fis an
S-function, f will denote Df. Iff, g are & *@Q-functions such that Df = Dg and f(s) < g(s)
for every seDf, we shall write f/ g. An §*Q-array f is irreducibly bad if f is bad and
every bad §*Q-array g such that g/ f is a subset of f.
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Levma 23. Let f be a bad F*Q-array which is not irreducibly bad. Then there exists a
pair e, s such that e is a bad F* Q-array and e/ f and s € Df and De includes every element
of Df whose last term is less than or equal to A(s) and e(s) is strictly contained in f(s).

Proof. Since f is not irreducibly bad, there exists a bad F*Q-array g such that
g/ fand g ¢ f. Since Dg = Df and g & f, {teDyglg(t) + f(t)} is non-empty. Select an
element s of this set with A(s) as small as possible. Then seDf. Let L be the set of
elements of f less than or equal to A(s), and let I = §u L. We note that

Dy < A(g) < A(D)
and therefore Dg < Df n A(I). Define a function e:Df n A(I) > F*@ by the rules:
e(t) = g(t) if teDyg,
e(t) = ft) if te(Dfn A(l))—-Dyg.

Then e is an §*Q-array by Lemma 14, and e/ f since g2 f. If te Df and A(t) < As),
then te A(L) = A(I) and therefore te Df n A(I) = De. By the definition of s, seDyg
and g(s) % f(s), and therefore, since g Z f, g(s) is strictly contained in f(s), and therefore
e(s) is strictly contained in f(s). It remains to be proved that e is bad.

LemMa 23A.+ IfteDg and ueDe and ¢ < w and e(t) < * e(u), then ueDy.

Proof. Since fis bad, f(£) & * f(u). Since e Z f, e(u) < f(u) and therefore e(u) < * flu).
Hence f(t) ¢ *e(u). But e(f) <*e(u) by hypothesis. Therefore f(t) + e(t) = g(t), and
therefore, by the definition of s, A(f) > A(s). But, since 1<Ju, we can write w = v,
where all terms of v are greater than A(f). Hence all terms of » are greater than A(s),
i.e. none of them belong to L. But ve A() since ueDe <= A(I). Therefore ve A(g),
and hence, since teDyg, it follows that u = ,tve A(7). We can therefore select a
we A,(§) such that w < w. Since Dy is a barrier, w has a left-segment %' €Dg. Since
u, ' are left-segments of w and e De < Df and u’ € Dg < Df, it follows by Lemma 11
that 4 = «'. Therefore u e Dg.

To prove that e is bad, suppose now that ¢, u are any two elements of De such that
t <] . Then either (i) teDe—Dyg or (ii) ¢t € Dg. In Case (i), e(f) = f(¢) by the definition
of e and f(f) ¢ * e(w) by the argument in the first three sentences of the proof of
Lemma 23 A, and therefore e(t) < * e(u). In Case (ii), if e(t) < ¥ e(w), it would follow
from Lemma 23 A that ue Dg and hence (since g is bad) that e() = g(t) & *g(w) = e(w),
which is a contradiction; hence we may again infer that e(f) ¢ * e(u). Therefore eis bad.

LemMa 24. If f, is a bad §*Q-array, there exists an irreducibly bad F*Q-array f such
thatf 2 f,.

Proof. Select an s, € Df, with A(s,) as small as possible. Then select a bad &¥Q-array
f, such that f, Z f, and s, e Df, and, subject to these conditions, |f(s;)| is as small as
possible. (This selection is certainly possible since f, is a bad §* Q-array and f,Z f,
and s, e Df,.) Then select an s,€Df; — {s;} with A(s,) as small as possible. Then select a
bad {* Q-array f, such that f, 2 f, and s,,s,€ Df, and, subject to these requirements,

t In this paper, the designations ‘Lemma nA’, ‘Lemma nB’, etc., denote propositions in
which the hypotheses of Lemma n are assumed and the notation of the proof of Lemma » is
employed, and whose statement and proof constitute a part of the proof of Lemma 7.
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| f2(s2)| is as small as possible (which can be done since f, is a bad 3*@Q-array and
f1£f, and s;,5,€Df;). Then select an sye Df, —{s;, s,} with A(s;) as small as possible.
Then select a bad §*Q-array f; such that f,2 f, and s,, s,, s, € Df, and, subject to these
requirements, |fy(s;)| is as small as possible. Then select an s, Df,— {81, 85, 83} With
A(sy) as small as possible; and so on. Let f = {(s;,fi(s;) )| ieP}.

LEMMA 24A. If 0 <4 < j, thenf; L f;.

Proof. f; L f;since f,,, £ f, for each r and / is clearly reflexive and transitive.

Lemma 24B. If 1 < ¢ < §, then A(s;) < A(s i)

Proof. Df;_, = Df,_, by Lemma 24 A and therefore

s;€Df; 3 —{s1,--,81} S Dfy y—{s1, ... 84}

Therefore A(s;) > A(s;) by the manner of choice of s;.

Lemma 24C. s;eDf, for everyj > 1,7 > 0.

Proof. s;€Df;, Df;, 1, Dfj s, ... by the definitions of f;, fir1»-... Moreover, if ¢ < j,
then s;e Df; = Df; by Lemma 24 A.

LemMa 24D. fis an F*Q-array.

Proof. Since s,,s,, ... are all distinct by hypothesis, the definition of f implies that
it is an F*@-function with domain {s,,s,, ...}. Since Df is an infinite subset of A(P),
[ is an infinite subset of P. Let ue 4 o(f). Since Df = {s,,s,,...} < Df; by Lemma, 24C,
f <, and therefore ue A (f;) for every i. Hence, since Df, is a barrier, % has a left-
segment ;e Df; (¢ = 0,1,...). If i <j, then, since Df; < Df; by Lemma 24A, u;
and u; both belong to Df;, which is a barrier. Therefore u, = u; by Lemma 11. Hence

Ug = Uy = Uy =
Since s,, s,, ... are distinct ascending sequences, there exists a j such that A(s 8;) > A(ny),
which, by the manner of choice of s;, implies that uo€Df; 1 —{s),...,8; 41}. But
Uy =u; 1 €Df; ;

Therefore u, = s, for some 4 < j, and therefore u,e Df. Hence any ue 4,(f) has a left-
segment in Df. Finally, since by Lemma 24C s,,s,, ... all belong to Df,, which is a
barrier, no element of {s;, s,, ...} = Df can be a strict subsequence of another. Hence
Df is a barrier and so f is an %}#Q—array

Lemma 24E. If 1 <@ < j, then fi(s;) = f(s;).

Proof. f;is abad F*Q-array by deﬁmtlon and f;Z f;_;and sy, ...,s;€ Df; by Lemmas
24 A and 24C. But f; is by definition a bad F*@-array such that f, 2 f,_, and

8y, ..., 8,€Df;
and, subject to these requirements, |f;(s;)| is as small as possible. Therefore
lfj ’L)' lf'L ’L ’

But fy(s;) < fi(s;) by Lemma 24 A. Therefore f;(s;) = fi(s;) = f(s;)-

Lemma 24F. f£ f, for every i >

Proof. Df = {s;,5,,...} < Df; by Lemma 24C. Furthermore, f(s;) = fi(s;) < fi(s;)
if j >4 by Lemma 24A and f(s)) = f,(s;) < fy(s;) if j <1 by Lemma 24E hence
f(8) < fi(s) for every se Df.
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By Lemma 24D, f is an J*Q-array; and fZf, by Lemma 24F. Moreover,
Df = {s, 8y, ...} by the definition of f, and, if s; <] s;, then i < j by Lemma 24 B and

f f] <£ f] 9)—f

by Lemma 24 E and the badness of f;. Hence fis bad. Therefore, if f is not irreducibly
bad, there exists by Lemma 23 a pair ¢, s such that ¢ is a bad F*Q-array and e/ f
and se Df and De includes every element of Df whose last term is less than or equal to
A(s) and e(s) is strictly contained in f(s). Since seDf, s = s, for some r. Since De
includes every element of Df whose last term is less than or equal to A(s), it includes
81,...,8, by Lemma 24B. Since e/ f and f/£ f,_; by Lemma 24F, e~ f,_;. Hence ¢
isabad *Q-array suchthate/ f,_jands,,...,s,e Deand

les,)| < 1£(s))] = |fils,)]-

Since this contradicts the definition of f,, we infer that f must be irreducibly bad;
and Lemma 24 is proved.

Lemma 25. If f is a bad F*Q-array, there exists a bad Q-array ¢ such that D¢ < Df
and ¢(s)ef(s) for every se Dng

Proof. By Lemma 24, there exists an irreducibly bad F*@-array g such that g/ f.
Since g is bad, there is no seDg for which g(s) = @ (since, if there were, we could by
Lemma 12 select a te Dg such that s <|t and we should have g(s) = @ < * g(#)). There-
fore we can select a /(s) e g(s) for every se Dg. Write k(s) = g(s) — {{(s)} forevery se Dg:
this defines an F¥*@Q-array & with the same domain as g. By Lemma 19, Dg contains
a barrier B such that 4| B is either bad or perfect. However, if 2| B were bad, then, since
h|B £ gand g is irreducibly bad, it would follow that 2| B < g and hence that A(s) = g(s)
for every s € B, which by the definition of % is not so. Therefore h| B is perfect. It follows
that, if s,fe B and s <{ ¢, then A(s) < * k(¢); and therefore ¥(s) ¢ yr(t) since the relations
h(s) < ¥ h(t), Y(s) < Y(t) would together imply that g(s) < *g(t), whereas ¢ is bad.
It follows that y/|B is bad. Hence, if we write 1/r|B ¢, then ¢ is a bad @-array,
and (since g2 f) D¢ = B < Dg < Df and ¢(s) = (s)eg(s) < f(s) for every seDg.

LevMa 26. If f is a bad ©Q-array, there exists a bad Q-array ¢ such that D¢ = (Df)?
and ¢(s) € f(s ADf) for every se De.

Proof. If se(Df)? then s = wowv for some u, v e Df such that v <] v, and this clearly
implies that v = saDf and v = ,s. Since u <Jv and fis bad, f(u) € f(v),i.e

f(sADf) & f(x5)-

Hence, for every s € (Df)?, we can select an element ¢(s) of f(s A Df) which does not antici-
pate any element of f(,s), thus defining a function ¢: (Df)?2— @, which, by Lemma, 15,
is a Q-array. Suppose that s,te(Df)? and s <|¢. Then ,s <t and tADf <t and ¢ADf
and (in view of what was said in the first sentence of this proof) ,s belong to Df:
therefore ,s = tADf by Lemma 11. But ¢(¢) € f(t ADf) = f(45) and ¢(s) does not antici-
pate any element of f(,s) and therefore ¢(s) ¢ ¢(t). Hence ¢ is bad.

CoroLLARY 26 A. If Q is bgo, ©Q is bgc
45 Camb. Philos. 61, 3
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Lemma 27. Every well-ordered set s bgo.

Proof. Let W be a well-ordered set, and f be a W-array. By repeated application
of Lemma 12, we can find an infinite sequence s,,s,, ... of elements of Df such that
81 <I8p <] .... Since W is well-ordered, it cannot be the case that f(s;) > f(s,) > ..., and
therefore f is good.

Lemma 28. If @ is wqo and f is a bad S*Q-array, there exists a bad Q-array ¢ such
that D¢ = (Df)? and ¢(s) € f(s ADf) for every se Dg.

Proof. If u,veDf and u <Jv, then f(u) & *f(v) since f is bad, and therefore
Ef(u) € *Ef(v) by Lemma 10. By this remark and Corollary 8 A, the composition
Ef is a bad §*(Cy, x ©Q)-array with domain Df. Therefore, by Lemma 25, there
exists a bad (C, x ©@)-array  such that Dyy = Df and y(f) e Ef(¢) for every te Dyr. By
Lemma 27, C, is bqo, and therefore by Lemma 22 there exists a bad &@-array g such
that Dg < Dy < Df and g(t) = c,(t) for every teDg. By Lemma 26, there exists
a bad @-array ¢ such that D¢ = (Dg)? and ¢(s)eg(saDyg) for every se D¢. Since
D¢ = (Dg)* and Dg < Df, it follows that D¢ < (Df)? and that saDg = saDf for
every seD¢. Thus, if se D¢, ¢(s) eg(saDf) = ¢,y (s ADf). But, since

Y (s ADf)eE f(s ADf)

and since, by the definition of E, the second component of any element of Z(4) is a
subset of 4, it follows that c,i(sADf) < f(sADf) and hence that ¢(s) ef(s A Df).

CoroLLARY 28A. If Q is bgo, ©*Q is bgo.
Proof. If @ is bqo, it is also wqo by Lemma 1. Therefore there is no bad &*@-array

since the existence of a bad @*Q-array would by Lemma 28 entail the existence of a
bad @-array.

Note. An alternative method of obtaining Corollary 28 A might be to attempt to
prove, by an argument on the lines of that of section 4 of (5), that any set of (trans-
finite) sequences on a bqo set is bqo; but I have not yet fully explored this possibility.
An argument of this type would probably be complicated, but it might yield a variant
of Lemma 28 in which ¢ was not required to be wqo, thus avoiding certain complica-
tions which arise towards the end of section 4 (below) from the fact that certain lemmas
in that section are proved for ‘well-branched’ sets of trees only.

4. Proof of the bqo property for rooted trees. A rooted tree is a tree T' in which a vertex
ppis distinguished. We call p,. the root of T'. LetZ be a set, which we shall think of as
being fixed throughout this section, and let R be the set of all rooted trees 7' such that
Z(T)y = Z. Oy will for simplicity be denoted by C. If 7' is a rooted tree and

1€ V(T)—{py}
and ‘gm Ap §1, /129 (RS /\n’ gn

(where &, = pp, &, = 7) is the unique path from p, to 9 in 7', £,_, will be called the
predecessor of 5 and denoted by pre 5. We call 5 a successor of £ if £ is the predecessor
of 9. The set of successors of a vertex £ in a rooted tree 7' will be denoted by £7': we
further write {£} = £7°, £T = £T" and in general {7 = U{yT:ne LT} for every
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ne€ P, [The notation U{X :#} means ‘the union of all sets X such that#’; and a similar
notation will be used for intersections.] Thus £7' is the set of vertices { of 7" such that
£ is a term of the path from p, to { and exactly n edges intervene between £, { in this
path. The set 70 v ET1 U T2 u ... will be denoted by £7. A vertex { will be said to
be above & if {e£T». (Note that £ is above itself.) The branch of T at § (denoted by
br £) is the rooted tree U such that p; = £, V(U) = £T%, E(U) is the set of edges of 7'
joining pairs of elements of £7'», and each element of E(U) joins the same vertices in U
as in 7. If § = V(T), BrS will denote {br£|£e8}, i.e. a set of branches of 7. We
shall write BRV(T') = BT, i.e. BT is the set of all branches of 7', including 7' itself.

IfT, UeR, £e V(T) and ye V(U), a function f: £ V(U) is n-based if there exists
a one-to-one function ¢ from £7' into U such that f(§’) is above g(&’) for every £ € £7'.
A conveyance of T into U is a function ¢: V(T') - V(U) such that ¢|£T is c£-based for
every £e V(T). If T, U e®R, the statement that 7' < U will, for the purposes of this
section, mean that there exists a conveyance of 7 into U, and R (or any subset of N)
will be considered as being quasi-ordered by this definition. (Obviously every branch
of T' anticipates 7' in this quasi-ordering.) Two elements of a qo set are equivalent
if each anticipates the other. A strict branch of 7' is a branch of 7' which is inequivalent
to T, i.e. a branch U of 7' such that 7 ¢ U. The set of strict branches of 7' will be
denoted by ST. The set of vertices £ of 7' such that br £ is a strict branch of T (i.e. such
that T ¢ br &) will be denoted by S(7'), and the set of vertices £ of 7' such that br{
is equivalent to 7' (i.e. such that T < br§) will be denoted by R(T'): thus B(T), S(T')
are disjoint sets with union V(7). If TeR and e V(T'), I'n(§) will denote the ordered
pair (|€T ~ R(T)|, Br (§T ~n S(T))), and will be considered as an element of C x &*H.
O(T') will denote {T',,(§) | € V(T)}, and will be considered as an element of S(C' x &% 3),
so that, for instance, ‘@(T) < O(U)’ means that O(T) anticipates O(U) in &(C x S*H).

LemMA 29. If T, U eR and O(T) < O(U), then T < U.

Proof. Let W be the set of all elements (§,3) of V(T')x V(U) such that either
brf < bryor (£,9)e R(T) x R(U). Let W be the set of all elements (&, ) of V(T') x V(U)
such that W contains an 5-based function from &7 into V(U).

Lemma 29A. If (£,9)e W, then there exists a  above 3 in U such that (£,§)e W.

Proof. Since (§,%) e W, either (i) br§ < bry, or (ii) (£, ) e B(T) x B(U).

In case (i), there exists a conveyance ¢ of br§ into bry. If f = ¢|£7T, then fis c£-based.
Moreover, if a € T, then bra < br fa since ¢|aT"™ is a conveyance of bra into

brca = br fa,

and therefore (a,fa)e W. Hence f < W, and so (£, c£)e W. Since c£ is above 5 by the
definition of ¢, Lemma 29 A is proved in Case (i).
In case (ii), since ne R(U), there exists a conveyance d of U into br#. Since

o(T) < (1),
there exists a o€ V(U) such that I';(§) < I'y(o), which implies that
|7 n R(T)| < |oU n R(U)|

45-2
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and BR({T nS8(T)) < *BR(6U n8(U)). Hence there exists a one-to-one function
g:£T — oU such that geeocU n R(U) when aefT nR(T) and bra < brga when
aefT nS8(T). Let f={(a,dga)aefT}, which is a function from £7 into V(U).
Since g is one-to-one and d is a conveyance, f is clearly do-based. Let ce£T. Then
d|brga is a conveyance of brga into brdga = brfa, and therefore brga < brfa.
Thus, if x€ R(T), we have gae R(U) and therefore U < brga < brfo, which implies
that fae R(U) and hence that (o foc)eR T)x R(U) <« W, whilst if «eS(T), then
bra < brga < brfac and so once again («,fa)e W. Hence f = W, and so (§,do)e W.
Since do is above 7 by the definition of d, Lemma 29 A is proved in Case (ii) also.

Lemma 29B. If (£,9)e W, then W contains an n-based function from £T into V(U).

Proof. By the definition of W, W contains an 5-based function f from £7 intoV(U).
For each aefT, we can select by Lemma 29A a ga above fa such that (x,ga)e W.
This clearly defines an %-based function g:£7 — V(U) contained in W .

To complete the proof of Lemma 29, we construct a conveyance ¢ of 7 into U as
follows. Since (pp, py)e R(T) x R(U) = W, we can by Lemma 29 A select a ¢pp, e V(U)
such that (pg, $p,) € W. We may say that this defines ¢£ for every £ p,T9 in such a
way that (£, &) e W for every such £. Moreover, if ¢£ has been defined and (£, Pl e W
for every £€p,T™, then by Lemma 29B there exists for each £ep,T" a $&-based
function ¢, from £7 into V(U) such that y, = W. If, for each £ € p, T+, we write
P&’ = Ypre e &', then this defines ¢£” in such a way that (£, p&’) € W for every &’ € p, T+,
Itis clear that the function ¢ : V(T') - V(U) constructed in this manner isaconveyance.

Definitions. Let TeR. If U is a branch of T, we write U <*T or T >*U. If U
is a strict branch of 7', we write U <*T or T >*U. Thus U < T if U <*7T and
U<TitU<*T. T is descensionally infinite if there exists an w-sequence u on BT
such that »(1) >*u(2) >*.... If no such w-sequence exists, 7T is descensionally finite.
The set of descensionally finite branches of 7' will be denoted by F7'. I(T) will denote
the set of vertices £ of 7" such that br£ is descensionally infinite and F(7T') will denote
the set of vertices § of T such that br£ is descensionally finite. For any £e V(T),
Ap(£) will denote the element (|41 n I(T)|, Br (1 n F(T))) of O x G*R, and (T, §)
will denote the element {A,(7)|y € £T} of &(C x G*R).

LeMMA 30. Let T e and o be an element of 1(T) such that ®(T,0) < O(T,1) for
every Te T a I(T). Then bro < br7 for every Te o-T“’ nI(T).

Proof. Let W be the set of all elements (£,7) of o7T%x oT“ such that either
br& < bry or (§,1)eI(T) xI(T). Let W be the set of all elements (£,%) of a7 x ¢ T
such that W contains an 5-based function from £7 into oT.

Lemma 30A. If (§,7)e W, then there exists a { above y such that (£,)e W

Proof. Since (£,7)€ W, either (i) br& < bry or (i) (£,9) e I(T) x I(T).

In Case (i), there exists a conveyance c of br £ into bry. Iff = ¢|ET, then fis c£-based.
Moreover, if a € £T', then br a < br fu since c|a7" is a conveyance of br « into

brca = brfa,

and therefore (a,fa)e W. Hence f = W, and so (£,c£)e W. Since c¢f is above 5 by the
definition of ¢, Lemma 30 A is proved in Case (i).

e
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In Case (ii), since e o7 A I(T), ®(T,0) < D(T, ) by the hypothesis of Lemma 30.
Therefore the element A, (£) of ®(T, o) anticipates an element of ®(T,7), i.e. there
exists a {e T such that A,(§) < Ap({), which implies that

|67 ~ I(T)| < LT~ 1(T)]

and BR({T A F(T)) < #*BR({T ~n F(T)). Hence there exists a one-to-one function
g:£T - ¢T such that gaelT nI(T) when aefT ~nI(T) and bra < brga when
ae£T n F(T). These properties of g imply that (o, ga)e W whenever a€£T, i.e. that

g < W. Since g is clearly {-based, we have (§,{)e W and Lemma 30A is proved in
Case (ii) also.

Lemma 30B. If (£,7)e W, then W contains an y-based function from ET into oT.

Proof. By the definition of W, W contains an 7-based function f from £7' into
oT°. For each a € £T, we can select by Lemma 30 A a ga above fa such that (o, gx) € w.
This clearly defines an 7-based function g:£7T - o7 contained in W.

Let Te 0T% A I(T). We shall construct a conveyance ¢ of br o into br7 as follows.
Since (0, 7)€ (6T n I(T)) x (¢T* n I(T)) < W,
we can by Lemma 30 A select a o above 7 such that (o, go)e W. We may say that
this defines @£ for every £ € oT° in such a way that (£, ¢£)e W for every such §. More-
over, if ¢£ has been defined and (£, ¢£)e W for every £e T, then by Lemma 30B
there exists for each £ecT" a ¢&-based function ¥, from T into o1 such that
= W. If, for each £’ € oT"+1, we write ¢£’ = Vprer&’s then this defines ¢£’ in such a
way that (£, &') e W for every £’ e o1, Tt is clear that the function ¢:0T% - 7T
constructed in this manner is a conveyance of br o into br7; and hence bro < br7.

Lemma 31. If T eR and o € [(T), then there exists a 7€ 7T n I(T') such that

T, 1) < DT, 0).

Proof. Since ael(T), bro is descensionally infinite. Therefore there exists an
infinite sequence o, d,, ... of vertices of bro such that bro, >*bro, >*.... Since
bro, >*bro, >*..., it follows that o,eI(T) and therefore that o,ecT“n I(T).
But bro ¢ bro, since bro, < bro; < bro. Therefore, by Lemma 30, there is a
re€0T? n I[(T) such that ®(T,a) £ O(T,7). But ®(7,7) < ®(T, o) since

O(T,7) <« (T, 0).
Therefore ®(7,1) < O(T, 7).

Levmma 32. If T e R and FT is bqo, then T' is descensionally finite.

Proof. Write p, = ;. Suppose that T is descensionally infinite. Then o, e /(T'),
and therefore by Lemma 31 there is a 0y€ 0, T n I(T') such that ®(T', o) < O(T', 0y).
By Lemma 31 again, there is a o3¢ 0,T% n I(T) such that ®(T, ;) < O(T, 0p). Con-
tinuing in this manner, we construct an infinite descending chain

OT,0,) > O(T,0,) > ... (3)
of elements of S(C x S*FT'). But, since FT is bqo, G(C x S*FT) is bqo by Lemma
27 and Corollaries 22A, 26 A and 28A, and hence is wqo by Lemma 1. Therefore

O(T,0;) < O(T, 7;) for some 1, j such that 7 < j. Since this contradicts (3), T must be
descensionally finite.
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Definitions. The set of descensionally finite elements of ®t will be denoted by R,.
If 1 = &R, SU will denote U{ST":T'e U}. 1 is well-branched if S11 is wqo. W is closed if
BT < 1l for every T'ell. An R-function f will be said to forerun an R-function g if
g < f and, for every te Dy, either te Df and g(t) = f(t) or ¢ has a strict left-segment s
such that s e Df and ¢(¢) < *f(s). We shall say that f warily foreruns g if f foreruns ¢
and there is an se Df — Dg such that § includes all elements of f less than or equal to
A(s).

Let & be an ordinal number. If there exists an ordinal v such that § = y+1, we
shall write y = §— 1. If v does not exist and & # 0, § is a lumit ordinal. If J is a limit

ordinal and 8, is a set for every a < 4, liminf S, will denote U N S, i.e. the set to
a—>8 a<8asp<s

which an element  belongs iff there is an & < & such that €S, whenever & < f < 4.
LemMmA 33. Let « be a limit ordinal, and let an R-function fg be given for every f < k
wn such a way that

) Sy foreruns fy for every f < x,
(ii) fz = liminff, for every limit ordinal f < k.
a—f

Then f, foreruns f, whenever y < € < k.

Proof. We shall consider a fixed y ( < ) and prove the required result by transfinite
induction on ¢. Since f, clearly foreruns itself, the result is true for € = y. Suppose
that v < ¢ <« and that f, foreruns f; whenever y < 8 < e. We will deduce that f,
foreruns f, by considering two cases.

(a) Suppose that ¢ is not a limit ordinal. Then f, , foreruns f, by (i) and f, foreruns
fe—1 by the inductive hypothesis. Therefore f, = f,_; < f,. Let uweDf,. Then, since f,_,
foreruns f,, » has a left-segment fe Df,_; such that either { = » and f,_,(t) = f.(u) or
t < <wu and f_,(t) >*f(u); and, since f, foreruns f, ;, ¢ has a left-segment seDf,
such that either s =1f and f,(s) = f._;(¢) or s < <t and f (s) >*f._;(t). It follows
from these properties of £ and s that s is a left-segment of  belonging to Df, such that
either s = w and f,(s) = f.(u) or s < <u and fy(s)_> *f.(u). Hence f, foreruns f,.

(b) Suppose that € is a limit ordinal. Let nef,. Then » is a term of some u € Df..
Since (u,f.(u)) €f. = liminff,, there is a § such that vy < § < e and (u, f,()) €fs. There-

fore uweDf; and therefore nef;, which by the inductive hypothesis is contained in
f,- Hencef, < f,. Furthermore, if € Df,, there exists as above a § such that y < § < ¢
and (u,f,(u))ef;. Hence ueDf; and fy(u) = f,(u). Therefore, by the inductive hypo-
thesis, either weDf, and f,(u) = fy(u) = f.(u) or u has a strict left-segment seDf,
such that f,(s) > *fy(u) = f.(u). Hence f, foreruns f,, and the proof of Lemma 33 is
completed.

Lemma 34. Let k be a limit ordinal, and let a bad Ry-array f4 be given for every f < «
wm such a way that

(1) [z warily foreruns fg_, for every f < «,
(1) fz = lminff, for every limit ordinal § < k.
a—f

Let f, denote liminff,. Then f is a bad Ry-array. Furthermore, the sets Df, (a < k) are

A—>K

all distinct.

e
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Proof. Tf (s, T)ef., then, by the definition of f,, (s, T)ef, = A(P) xR, for some
¢ < k. Hence f. < A(P)xR,. If (s,T), (s,T")ef,, then, by the definition of f,, there
exists an € < k such that (s,7), (s,7") both belong to f,, and therefore, since f, is a
function, 7 = T". Hence f, is an R,-function, and therefore, by Lemma 33, f, foreruns
f. whenever y < ¢ < k. Therefore

fyof. (y<e<x). (+)

Moreover, if seDf., then (s,f.(s))ef. =liminff,  and therefore there is a {(s) <«

such that (s,f(s)) ef, for {(s) < # <k, i.e.

seDfy, f(s)=Ffols) for L(s) <0 <k (5)
LeMMA 34A. If y < ¢ < k and weDf,, then u has a unique left-segment in Df,.
Proof. Since f, foreruns f, (by Lemma 33), » has a left-segment in Df,, which is
unique by Lemma 11.

Lemma 34B. If y < ¢ < k and ueDf, —Df, ., then u¢Df,.

Proof. If u belonged to Df., then by Lemma 34A « would have a left-segment
teDf,,;and t would have a left-segment seDf . Since s would then be a subsequence of
u and both « and s would belong to Df,, it would follow (since Df, is a barrier) that
u = s and hence that w = teDf, , contrary to hypothesis.

We can now prove the last sentence in the statement of Lemma 34. For,ify < e <k,
there exists by (i) an se Df, —Df, ;. By Lemma 34 B, s¢Df,, and hence Df, + Df..

LemMa 34C. If y < ¢ <k, seDf,, teDf, and s <t, then either s =t and f,(s) = f.(¢)
ors < <tandfs) >*f(t)

Proof. Since f, foreruns f, (by Lemma 33), # has a left-segment s'eDf, such that
either s’ = tandf,(s") = f(t)ors’ < <tandf,(s’) > *f(t). By Lemma 34A,s=5¢"

LemMa 34D. If 0 is a limit ordinal and 0 < k, every element of A (N{f,: % < 6}) hasa
left-segment in Dfy.

Proof. Let ue A,(N{f,:« < 6}). Then, for any a < 6, ue 4,(f,) and so has, by Corol-
lary 11 A, a unique left-segment u,eDf,. If y < € < 6, u, has by Lemma 34A a left-
segment u,,€Df,, and, since u,, is a left-segment of u which belongs to Df,,
u, = u,, <u. Hence u, <wu, whenever y <¢ < 0. It follows that either there is a
8 such that u; = u, whenever ¢ < ¢ < 6 or there is an infinite ascending sequence
¢ < <y < ... of ordinals less than 6§ such that u; < <u, < <%, <<.... But
the latter alternative would by Lemma 34C imply that f(u,) > *fy(u,) >*..., which
is impossible since fy(u,) belongs to 3, and so is descensionally finite. Therefore ¢
exists, and, since u; = u, for & < € < 6, it follows from Lemma 34C that fy(u;) = f.(«,)
for 8 < € < 0, so that (u;, f5(us)) = (%, f.(,))ef, for & < € < 0, and therefore

(ua:fa(ua)) €lim inffa = f()r
a—0

and therefore u ;e Df,. Hence u has a left-segment in Dfy, and Lemma 34 D is proved.

CoroLLARY 34DA. If 0 is a limit ordinal and 6 < k and either fy or N{f, o < 6} is
an infinite set, then fy = N{f,:a < 0} and Df, is a block.
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Proof. By (4),fy < N{f,:« < 6}. From this fact and the hypothesis that one of these
two sets is infinite, it follows that N{f,:a < 6} is infinite. By Lemma 34D, every ele-
ment of 4,(N{f,:a < 6}) has a left-segment in Df,. Therefore, by Lemma 13,

fﬂ = n{f—a:a < 0}
and Df, is a block.

CororrarY 34 DB. If 0 is a limit ordinal and 6 < «, then f, = N{f,:a < 6}.

Proof. In this case f, is by the hypotheses of Lemma 34 an R,y-array: therefore f,
isinfinite and Corollary 34 DA applies.

Lemma 34E. N{f,:a < «} is an infinite set.

Proof. Suppose that N{f,:o < k}is finite. Let L be the set of those positive integers
which are less than or equal to at least one element of this intersection. Then L is also
a finite set. Therefore, since f—y is an infinite set, f}, — L is non-empty for every y < k.
Write y(0) = 0. Let m, be the smallest element of fy(o) — L. Let y(1) be the smallest y
such that m, ¢f,:y(1) exists and is less than « since m, ¢ L and therefore me€N{foia < &}
Let m; be the smallest element of fyw— L. Let y(2) be the smallest y such that m, ¢ Iy
(which exists and is less than « as before), and let m, be the smallest element of Sy — L.
Let y(3)(< ) be the smallest y such that m,¢ f,»ms be the smallesb_ element of
Jy@—L,and so on. Let ie P. Then, since m;_, belongs to f,;_;) but not to f,,

v(e —1) < y() (6)

by (4). By the definition of (i) and Corollary 34DB, y(:) is not a limit ordinal, and
by (6) y() > 0. Therefore y(i) — 1 exists and hence, by (i), there is an s;€Df 1 —Dfye
such that f ) includes all elements of [y0-1 less than or equal to A(s;). But, by the
definition of y(i), m,_, is an element of £, _, which is not in f, . Therefore m;_, > A(s,).
But s;€ A(f9-1) = A(f,4-p) by (4) and (6), and m, , is the smallest element of
fya—p not in L. Therefore s;e A(L). Moreover, if 1 <j < k, then v(5) < v(k) by (6)
and therefore by Lemma 34B ;€ Df 49—, and therefore s; + s,. Hence sy, s,, ... are
distinct elements of A4 (L), which is impossible since L is finite. Hence our assumption
that N{f,: o < k} was finite must have been false, and Lemma 34 E is proved.

To complete the proof of Lemma 34, we observe that, by Lemma 34 E and Corollary
34DA, Df, is a block. Moreover, if s,¢e Df, and ¢ = max ((s), {(t)), then by (5) s,¢
both belong to Df,, which is a barrier, and hence neither of s,¢ can be a strict subse-
quence of the other. Therefore Df, is a barrier, and hence f, (which we have already
proved to be an R,-function) is an Ry-array. Finally, if s,teDf. and s <1¢, and if
{ = max ({(s), {(t)), then by (5) s,¢ both belong to Df, and f(s) = f(s), f(t) = f()
and hence f,(s) § f.(¢) since f, is bad. Hence f, is bad.

Lemma 35. Let B,D be barriers such that D < B3. Then there exists a barrier
F <= BuDandaweB—F suchthat F includes all elements of B less than or equal to A(w).

Proof. Since D < B?, D < Band therefore each element of 4 (D) has a left-segment
in B. Hence Bn A(D) + @. Select a we Bn A(D) with A(w) as small as possible.
Let W be the set of elements of B less than or equal to A(w), and let W o D = D. Let

By = B~ (A(D)— A(D)), and let F = Byu D. Then F < BuD.
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Let ueA, (D). We will show that » has a left-segment in #. In the first place,

ue A, (B)since D= BuD < B u B3 = B. Therefore, since B is a barrier,  has a left-
segment seB. Since ue A (D), it follows that seBan A(D) and therefore either
seBy< F or se Bn A(D). If seF, u has a left-segment in ¥, and so we may suppose
that se B~ A(D). Then A(s) > A(w) by the definition of w. Write u = sv. Since ue 4,,(D)
and A(s) = A(w), the terms of v belong to D and are greater than A(w) and therefore
belong to D. Since we are assuming that se A(D), this implies that « = sv belongs to
A (D) and so (since D is a barrier) has a left-segment in D and hence in . Thus every
element of A4,(D) has a left-segment in F. Moreover D (since it contains D) is an
infinite set; and F < D since B, < A(D) and D < A(D) < A(D). Therefore by
Lemma 13 F = D and F is a block.

Let s,te F = B,u D: then we will show that s cannot be a strict subsequence of
t. If s,te By(< B), then s cannot be a strict subsequence of ¢ since B is a barrier, and
the same conclusion follows if s, € D since D is a barrier. If se D and te By, then, since
D < B3, s has a subsequence s’€ B. Since s, te B, s’ cannot be a strict subsequence
of ¢ and therefore nor can s. Finally, if se B, and t€ D, then, by the definition of B,
s¢ A(D) and so (since te D) s cannot be a subsequence of . We have thus established
that F is a barrier.

By Lemma 16, an element of B cannot belong to B? and therefore cannot belong to
D:hence w¢ D. Furthermore, w¢ B, since we B~ A(D), and hence w¢ F. Therefore
weB—F. Finally, since we have shown that ¥ = D, F contains W, i.e. includes all
elements of B less than or equal to A(w).

Lemma 36. Let 1 be a subset of SR and f be a bad W-array. 1f there exists a bad U-array

g such that Dg < (Df)® and g(s) < *f(sADf) for every seDyg, then there exists a bad
W-array h such that f warily foremm h.

Proof. By Lemma 35, there exists a barrier F# < Df u Dg and a weDf— F such that
F includes all elements of f less than or equal to A(w). We note that, since Dg < (Df)?,
Df and Dg are by Lemma 16 disjoint, so that we can unambiguously define a function
h:F -1 by writing h(s) = f(s) if se F nDf and h(s) = ¢(s) if se ' nDg. If seDk,
then either se F nDf or se # nDg. In the former case, seDf and k(s) = f(s), and
in the latter case, since Dg < (Df)3, s has a strict left-segment s ADfin Df and

h(s) = g(s) <*f(s D).

Furthermore, Dk = F < Df uDg < Df u (Df)® and therefore b < f. Hence f foreruns
h. But weDf— F = Df —D#h and F (= &) includes all elements of f less than or equal
to A(w). Therefore f warily foreruns 4. It remains to be shown that & is bad.

Let s,teDh (= F) and let s <{¢t. If s,teDf, then A(s) = f(s) < f(t) ) since
fis bad, and a similar argument shows that A(s) < A(f) if s, teDg. If seDf and teDyg,
then, since s <{ ¢, either s <] fADf or ¢ ADf is a strict subsequence of s. The latter alter-
native is, however, excluded since s, tADfeDf, and hence s <jtaDf. Therefore
f(s) £ f(tADf) since f is bad, and therefore, since g(t) <*f(taDf), it follows that
f(s) € g(t), i.e. h(s) £ A(t). The case seDy, teDf cannot arise, since, if seDg, then
se(Df)® and therefore ,s has a left-segment u e Df, so that, since s <]t, u < ,s < <t
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and therefore ¢ cannot belong to Df since its strict subsequence « is in Df. We have
thus shown that A(s) £ A(?) in all possible cases. Hence A is bad.

Lemva 37. If W is a closed well-branched subset of R, and f is a bad W-array, there
exists a bad [W-array h such that f warily foreruns h.

Proof. Since (forany T'eR) the second component of an element of @(7') is a set,of strict
branches of 7', the composition Of is an S(C' x S*¥SAW)-array with domain Df. Further-
more, Of is bad since, if u, ve Df and u <] v, then f(u) { f(v) since f is bad and therefore
Of (u) & Of(v) by Lemma 29. Therefore, by Lemma 26, there exists a bad (0 x S* S®)-
array ¢ such that D¢ = (D(0f))2 = (Df)? and ¢(s) € f(s,) for every se D¢, where for
brevity we use notation such as s, in place of s ADf. By Lemmas 22 and 27, there exists
a bad ©* SW-array g such that Dg < D¢ and g(s) = c,¢(s) for every seDg. Since 3
is well-branched, there exists by Lemma 28 a bad S%-array ¢ such that Dy < (Dg)?
and ¥(s) eg(s,) for every se Dyy. We observe that

Dy < (Dg)? = (Dg)* = ((Df)?)* = (Df)? (7)
by Lemma 17. Let se Dyr. Then s, = s, = s (Df)? since Dg = D¢ = (Df)?, and there-
fore s,ADf = s; by Lemma 17. Therefore ¢(s,) € Of(s;). Therefore c,4(s,) is the second

component of an element of Of(s;) and hence is (by the definition of ©) a set of strict
branches of f(s;). Hence, since y/(s)eg(s,) = c,4(s,), it follows that

U(s) <*f(s,). (8)
Moreover, since W is closed and ¢ is a bad SW-array, ¥ is a bad W-array. In view
of this fact and (7) and (8), there exists by Lemma 36 a bad ¥8-array % such that f warily
foreruns h. "

Lemma 38. Every closed well-branched subset of R is bgo.

Proof. Let % be a closed well-branched subset of R,. Let x be a limit ordinal such
that the set of ordinals less than x has a greater cardinal number than the set of all
barriers. Suppose that 28 is not bqo. Then there exists a bad -array f,. We now define
a set f, for every £ such that 0 < # < y by transfinite induction on £ as follows. Sup-
pose that f, has been defined for 0 < a < . If #is a limit ordinal, write f, = lim inff,.

a—f
If £ is not a limit ordinal and f,_, is a bad ®-array, take f, to be a bad ¥-array such
that f,_, warily foreruns f;. (This is possible by Lemma 37.) If £ is not a limit ordinal
and f,_, is not a bad W-array, write f; = . Then in fact f, is a bad W-array for every
f < pu. For otherwise there would be a smallest « such that f, is not a bad -array;
but x cannot be 0 by the definition of f,, and x cannot be a non-limit ordinal greater than
0 since then f,_, would be a bad W-array and therefore so would f,, and « cannot be a
limit ordinal by Lemma 34. But it now follows from the last part of Lemma 34 that the
Df, (B < p) are distinct barriers, which is impossible by our choice of z. Hence %
must be bqo.

Lrmma 39. If s is a strict left-segment of a bad w-sequence on Ry, then there exists a
T eR, such that

(i) s[T] s a left-segment of a bad w-sequence on R,

(ii) there is mo T" € ST such that s[T"] is a left-segment of a bad w-sequence on Ry,

-
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Proof. Let 11 be the set of those 7'¢R, which have the property that s{7'] is a left-
segment of a bad w-sequence on R,. Then 1 & @ since s is a strict left-segment of such
an w-sequence. Therefore we can select a 74 € 1I. If WA ST, + 2, select a Toe W n ST,
If WA ST, + 2, select a Tye L n STy, and so on. If this process did not terminate, we
should have constructed an infinite sequence Ty >*Ty >*..., which is impossible
since 7T} € R,. Therefore there is an ¢ such that T.e 1l and 1l ~ ST; = 2, which amounts
to saying that 7} is a T satistying (i) and (ii).

LemMA 40. Let [T, T, ...] be a bad w-scquence on Ry. If there is no bad w-sequence
on Ry which has a left-segment of the forin (1), Ty, ..., T;_y, T} where je P and T €ST;,
then STy v STy u ... is wqo.

Proof. If 8T, uSTyu ... is not wqo. there exists a bad w-sequence [Ry, B,,...] on
this set. Let R, € STy, and let k be a positive integer such that f(k) < f(l) for every [.
Since clearly any branch of an element of R, belongs to Ry,

[T1> Tza s ]}(Ic)uh -RIH Rl{+l’ RI.:+2’ ]

is an w-sequence on R,. Since Ry € ST), this w-sequence must, by the hypothesis of
our lemma, be good. Therefore either 7; < 7T} for some i, j such that i < j < f(k) or
R, < R, for some i, j such that k < i < j or T, < R for some i,j such that i < f(k),
j > k. But the first two alternatives contradict the hypotheses that [T}, 75, ...] and
[Ry, R,,...] are bad, and the third would imply that 7, < R; <*T}, which, since
i < f(k) < f(j), again contradicts the badness of [T}, Ty, ...]. Hence STy v ST, v ... must
be wqo.

Lemya 41. R, s wqo.

Proof. 1fR, is not wqo, there exists a bad w-sequence on R,, and []is a left-segment
of this sequence. Therefore by Lemma 39 we can select a T, e R, such that

(i) [7,]is a left-segment of a bad w-sequence on R

(ii) there is no T € ST, such that [T] is a left-segment of a bad w-sequence on Ro.
By Lemma 39 again, we can select a T,eR, such that

(i) [T,,T,)is a left-segment of a bad w-sequence on Ro»

(i) there is no 7'e ST, such that [T}, 7] is a Jeft-segment of a bad w-sequence on .
By Lemma 39 again, we can select a T;e R, such that

() [Ty, T, T,)is a left-segment of a bad w-sequence on o

(i) thereisno 7 e STysuch that[Ty, Ty, Tisa left-segment of a bad w-sequence on $;
and so on. In this way, we can construct an w-sequence (T, Ty, ...] on Ry. I3 <,
then 7} ¢ Tjsince [T}, ..., T;]isa left-segment of a bad w-sequence. Therefore (7,T,,...]
is bad, and hence ST, v ST, u ... is wqo by Lemma 40. Since it is easily seen that

S(BT,uBT,u...)=ST,uSTu...,

it follows that BT, u BT, u ... is a well-branched (closed) subset of R, and is therefore
wqo by Lemmas 38 and 1. This, however, contradicts the fact that [T}, T, ...], which
is an w-sequence on BT, uBT,u ..., is bad. Hence our original assumption that R,
was not wqo must have been false.
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Lemma 42. R is bgo.

Proof. Since obviously SR, < Ry, R, is by Lemma 41 a well-branched subset of
itself, and is therefore by Lemma 38 hao. Therefore any subset of i, is bqo. But, if
T eR, then FT < R;: therefore FT is bqo and so by Lemma 32 T'e$,. Hence R = R,,
which we have just shown to be bqo.

5. Proof of Theorem 2. Given any set T of trees, we may take the set.Z of section 4
to be U{Z(T'): T € X} and define R (in relation to Z) as before. Let f be any T-array.
Then we form an R-array g with the same domain as S by taking g(s) to be (for each
s€Df) a rooted tree obtained from f(s) by sclecting an arbitrary vertex as root. Then
g is good by Lemma 42. Therefore there exist s, teDf such that s </t and g(s) < g(t)
(where < has the meaning defined in section 4). From this we easily infer that
f(s) < f(t) in the sense defined in the statement of Theorem 2. In fact, if ¢ is a convey-
ance of g(s) into g(¢), an embedding 7 of f(s) in f(¢) is defined by the rules that

L1OE = {e(§)}

for every £ € V(f(s)) and that, if an edge A joins the vertices £and 5 in f(s), then IO A
is the set of mid-terms of the path from ¢(£) to ¢(y) in f(8). Hence the T-array fis good.
This argument proves that ¥ is bqo.

I am indebted to Dr J. B. Kruskal for some helpful correspondence on the subject-
matter of this paper.
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1. Introduction. When the distribution of a statistical function could not be deter-
mined exactly, a suitable form for an approximate formula has sometimes been found
by the use of information about the order of smoothness of the distribution and about
any singularities it might have (see, for example, Geary ((4))). The object of the present
paper is to develop a general theory that will provide information of this kind. For
the singularity in the distribution of a function at an end of its range Hotelling ((8))
obtained formulae for cases where the original distribution is uniform over a curved
space. However, some special sampling distributions are known to have singularities
in the interior of the range, for example, the distribution of /b, (see (4)) and those of
various serial correlation coefficients (see (6)). In view of this I shall deal below with
orders of smoothness and with singularities over the whole range. For simplicity I
shall assume that the original distribution has a fairly high order of smoothness:
attention will therefore be concentrated on the singularities (if any) that arise from the
form of the statistical function.

The order of smoothness of a function will be described in terms of the classes €,
€' €, ...,6™, ..., where €™ denotes the class of functions continuous together with all
their derivatives of orders not exceeding the mth (for all values of the arguments
unless otherwise indicated).

Suppose now that x,,,,...,x, are random variables, let x denote (xy,%,,...,%,),
and let p(x) be the probability density of the distribution of X. Let F(z) be the cumu-
lative distribution function of a statistical function {(x), and let f(z) be the correspond-
ing density. Also, let [k] denote the greatest integer not exceeding k.

TrEOREM 1. Let {(X) and the probability density p(X) satisfy the conditions
(1) &x)eENt, where N > 0, throughout an open region ;
(IT) grad{(x) + 0 (x€Q);
(II1) p(x) = 0 when X is outside a bounded closed set of points K contained in L,
and p(X) € €Y on Q.
Then F(z) = prob [{(X) < z] €e€V*! and so f(z) = F'(z) e GV
THEOREM 2. Let {(X) and p(X) fulfil conditions (I) and (I1I) of Theorem 1 and supposethat

(I1*) grad {(x) =+ 0 in Q except at a finite number of points a,, a,, ..., a;, all in the set
K, and, for j = 1,2, ..., 1, the function {(X) is in EN+3 in a neighbourhood of a; and its
Hessian matriz H(a;) at a; is non-singular;

(IV) N > max(L,[in—3%]) (n=1,2,...),and N > 2¢fn = 3.
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