BLATT 02 29.04.2025

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Dr. Hannes Jakob

Abgabe am Dienstag, 06.05.2025, um 10:15 vor der Vorlesung oder im Briefkasten im Logik-Flur.

Aufgabe 1 (4 Punkte). Es seien X eine unendliche Menge und \mathcal{O} die kofinite Topologie auf X.

- 1. Es sei $A \subseteq X$. Wie sieht der Abschluss \overline{A} von A in (X, \mathcal{O}) aus? **Hinweis:** Machen Sie eine Fallunterscheidung je nachdem, ob A endlich oder unendlich ist.
- 2. Geben Sie alle dichten Teilmengen von X bezüglich \mathcal{O} an.

Aufgabe 2 (4 Punkte). Es sei (X, \mathcal{O}) ein topologischer Raum und $A \subseteq X$. Zeigen Sie:

- 1. $\mathring{A} = \bigcup \{B \in \mathscr{O} \mid B \subseteq A\} \stackrel{!}{=} \{x \in A \mid \exists U \in \mathscr{U}(x) \ U \subseteq A\},\$
- 2. A ist genau dann offen, wenn $A = \mathring{A}$,
- 3. A ist genau dann offen und abgeschlossen, wenn ∂A leer ist.

Aufgabe 3 (4 Punkte). Es sei (X, d) ein metrischer Raum. Wir definieren eine Abbildung $d' : X \times X \to \mathbb{R}$ durch

$$d'(x,y) := \frac{d(x,y)}{1 + d(x,y)}$$

- 1. Zeigen Sie, dass d' eine Metrik auf X ist.
- 2. Induzieren d und d' die gleiche Topologie, d.h. ist $\mathcal{O}_d = \mathcal{O}_{d'}$?

Aufgabe 4 (4 Punkte). Es sei (X, d) ein metrischer Raum. Für jedes $y \in X$ definieren wir $f_y \colon X \to \mathbb{R}$ durch $f_y(x) := d(x, y)$.

- 1. Ist für jedes $y \in X$ die Abbildung f_y stetig ist (bezüglich $\mathscr O$ und der Standardtopologie auf $\mathbb R$)?
- 2. Ist die durch d induzierte Topologie \mathcal{O}_d die gröbste Topologie \mathcal{O} auf X, sodass dies gilt?

Bonus-Aufgabe (4 Bonuspunkte). Bonuspunkte zählen im Zähler aber nicht im Nenner des Quotienten aus erreichten Punkten dividiert durch die Zahl der erreichbaren Punkte. Eine etwas schwerere Aufgabe für Menschen mit Mengenlehre-Hintergrund. Wir betrachten \mathbb{R} mit der *Sorgenfrey-Topologie* \mathcal{O}_S , die durch die Intervalle [a,b), $a < b \in \mathbb{R}$, erzeugt wird.

Eine Teilmenge $D \subseteq \mathbb{R}$ heißt diskret bezüglich \mathscr{O}_S , wenn es für jedes $d \in D$ eine \mathscr{O}_S -offene Umgebung gibt, die keinen Punkt aus $D \setminus \{d\}$ enthält (dies ist der Fall genau dann, wenn die Spurtopologie von \mathscr{O}_S auf D die diskrete Topologie ist).

- 1. Für welche lineare Ordnungen (L, \prec) gibt es eine Abbildung $\iota: (L, \prec) \to (\mathbb{R}, <)$ derart, dass ι die Ordnung erhält und das Bild diskret bezüglich \mathscr{O}_S ist? (Hinweis: Man könnte sich zuerst überlegen, welche Wohlordnungen oder umgekehrte Wohlordnungen sich ordnungstreu in $(\mathbb{R}, <)$ einbetten lassen.)
- 2. Gibt es eine überabzählbare Teilmenge $D \subseteq \mathbb{R}$, die diskret bezüglich \mathcal{O}_S ist?