ANWESENHEITSBLATT

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Dr. Hannes Jakob

Besprechung im Tutorat am Mittwoch, 30.04.2025.

Aufgabe 1. Es sei $X = \mathbb{N}$. Wir betrachten auf X die kofinite Topologie \mathcal{O} , d.h. $A \subseteq X$ ist offen genau dann, wenn $A = \emptyset$ oder $X \setminus A$ endlich ist.

- 1. Sei $f: X \to X$ eine Funktion, sodass für jedes $x \in X$ nur endlich viele $x' \in X$ mit f(x') = x existieren. Ist f stetig (bezüglich \mathscr{O})?
- 2. Nun sei $f: X \to X$ definiert durch

$$f(x) := \begin{cases} 0 & x \text{ ist gerade} \\ 1 & x \text{ ist ungerade} \end{cases}$$

ist f stetig (bezüglich \mathcal{O})?

- **Lösung.** 1. Ja. Es sei $A \subseteq X$ offen, d.h. $X \setminus A$ ist endlich. Wir zeigen, dass $f^{-1}[A]$ offen ist. Es gilt $X \setminus f^{-1}[A] = f^{-1}[X \setminus A]$. Da $X \setminus A$ endlich ist und f nur endlich viele Elemente auf dasselbe abbildet, sind Urbilder endlicher Mengen endlich. Also ist $X \setminus f^{-1}[A]$ endlich, weshalb $f^{-1}[A]$ offen ist.
 - 2. Nein. Die Menge $\mathbb{N} \setminus \{0\}$ ist offen, da sie kofinit ist. Allerdings ist $f^{-1}[\mathbb{N} \setminus \{0\}]$ die Menge der ungeraden Zahlen und somit nicht kofinit und nicht offen.

Aufgabe 2. Es sei $X = \mathbb{R}$. Wir betrachten die folgenden Topologien auf X:

- (a) Es sei \mathcal{O}_1 die *Standardtopologie*, also die Topologie, die durch die Standardmetrik erzeugt wird.
- (b) Es sei \mathcal{O}_2 die kofinite Topologie (siehe Aufgabe 1).
- (c) Es sei \mathcal{O}_3 die ko-abzählbare Topologie, d.h. $A\subseteq X$ ist offen genau dann, wenn $A=\emptyset$ oder $X\smallsetminus A$ abzählbar ist.
- 1. Ist die Funktion $f:(X,\mathcal{O}_1)\to (X,\mathcal{O}_2)$ definiert durch f(x)=x stetig? Ist sie ein Homöomorphismus?
- 2. Gibt es einen Homöomorphismus von (X, \mathcal{O}_1) auf (X, \mathcal{O}_3) ?

Hinweis: Überlegen Sie sich, welche Topologien das zweite Abzählbarkeitsaxiom erfüllen.

Lösung. 1. Ja und Nein. Wenn $O \subseteq X$ offen bzgl. \mathscr{O}_2 ist, ist $X \setminus O$ endlich, $X \setminus O = \{x_0, \dots, x_{n-1}\}$. Für jedes k < n ist $X \setminus \{x_k\} = (-\infty, x_k) \cup (x_k, \infty)$ offen bzgl. \mathscr{O}_1 . Damit ist auch $\bigcap_{k < n} X \setminus \{x_k\} = O = f^{-1}[O]$ offen bzgl. \mathscr{O}_1 .

Obwohl f bijektiv und stetig ist, ist f kein Homöomorphismus, da f^{-1} nicht stetig ist: Es sei z.B. O := (0,1). Dann ist O offen bzgl. \mathcal{O}_1 , aber $(f^{-1})^{-1}[O] = O$ ist nicht offen bzgl. \mathcal{O}_2 , da das Komplement von O unendlich ist.

Weiterhin gibt es gar keinen Homöomorphismus zwischen (X, \mathcal{O}_1) und (X, \mathcal{O}_2) . Dies folgt aus Aufgabe 1 auf Blatt 2.

Dozentin: Prof. Dr. Heike Mildenberger Assistent: Dr. Hannes Jakob

2. Nein. Wir wissen aus Analysis I, dass \mathbb{Q} dicht in (X, \mathcal{O}_1) ist. Daraus folgt, dass $\{B_{q_0}(q_1) \mid q_0, q_1 \in \mathbb{Q}\}$ eine abzählbare Basis von (X, \mathcal{O}_1) ist. Allerdings besitzt (X, \mathcal{O}_3) keine abzählbare Basis: Es sei $\mathscr{U} \subseteq \mathcal{O}_3$ abzählbar. Dann ist $Y := \bigcup_{U \in \mathscr{U}} X \smallsetminus U$ eine abzählbare Vereinigung abzählbarer Mengen und somit abzählbar. Also gibt es ein $x \in X \smallsetminus Y$, da \mathbb{R} überabzählbar ist. Insbesondere ist $x \in U$ für jedes $U \in \mathscr{U}$. Also gibt es kein $U \in \mathscr{U}$, welches in der offenen Menge $X \smallsetminus \{x\}$ enthalten ist. Also ist \mathscr{U} keine Basis von (X, \mathcal{O}_3) .

Allerdings wird das zweite Abzählbarkeitsaxiom von Homöomorphie bewahrt, also kann es keinen Homöomorphismus geben.

Aufgabe 3. Es sei (X, d) ein metrischer Raum. Zeigen Sie, dass d eine Topologie auf X induziert, indem Sie zeigen, dass die Kollektion

$$\mathscr{B} := \{ B_{\epsilon}(x) \mid x \in X, \epsilon > 0 \}$$

eine Basis ist.

Lösung. Wir benutzen Lemma 1.11 aus dem Skript. Hierfür seien $B_{\epsilon_0}(x_0), \ldots, B_{\epsilon_{n-1}}(x_{n-1}) \in \mathscr{B}$ und $x \in \bigcap_{k < n} B_{\epsilon_k}(x_k)$. Nach Voraussetzung ist also $d(x, x_k) < \epsilon_k$ für alle k < n, d.h. $\epsilon_k - d(x, x_k) > 0$. Wir setzen $\epsilon := \min\{\epsilon_k - d(x, x_k)\}/2$ (was positiv ist) und zeigen $B_{\epsilon}(x) \subseteq \bigcap_{k < n} B_{\epsilon_k}(x_k)$. Wenn $y \in B_{\epsilon}(x)$ und k < n, dann gilt

$$d(y,x_k) \le d(y,x) + d(x,x_k) < \epsilon + d(x,x_k) \le (\epsilon_k - d(x,x_k)) + d(x,x_k) = \epsilon_k$$

also ist $y \in B_{\epsilon_k}(x_k)$.

Aufgabe 4. Es sei $X = \{0,1\}^{\mathbb{N}}$ die Menge aller Funktionen von \mathbb{N} nach $\{0,1\}$. Für eine Funktion $s \colon \{0,\ldots,n-1\} \to \{0,1\}$ sei [s] die Menge aller $f \in X$, sodass $f \upharpoonright \{0,\ldots,n-1\} = s$.

1. Zeigen Sie, dass die Kollektion

$$\mathscr{B} := \{ [s] \mid n \in \mathbb{N}, s \colon \{0, \dots, n-1\} \to \{0, 1\} \}$$

die Basis einer Topologie \mathcal{O} auf X ist.

- 2. Zeigen Sie, dass jede Menge [s] auch abgeschlossen bezüglich \mathscr{O} ist.
- 3. Zeigen Sie, dass X eine abzählbare dichte Teilmenge bezüglich \mathcal{O} besitzt.

Lösung. 1. Wir verwenden erneut Lemma 1.11. Es seien s_0, \ldots, s_{n-1} gegeben und $f \in \bigcap_{k < n} [s_k]$. Da es nur endlich viele s_k gibt, existiert ein s_k mit maximaler Länge, sei dies oBdA s_0 und $s_0 \colon \{0, \ldots, l-1\} \to \{0, 1\}$. Dann ist $f \in [f \upharpoonright \{0, \ldots, l-1\}]$ und es gilt $[f \upharpoonright \{0, \ldots, l-1\}] \subseteq \bigcap_{k < n} [s_k]$: Wenn $g \in [f \upharpoonright \{0, \ldots, l-1\}]$, so gilt $g \upharpoonright \{0, \ldots, l-1\} = f \upharpoonright \{0, \ldots, l-1\}$. Für irgendein k < n ist $s_k \colon \{0, \ldots, l'-1\} \to \{0, 1\}$, wobei $l' \le l$ und somit gilt

$$g \upharpoonright \{0, \dots, l'-1\} = (g \upharpoonright \{0, \dots, l-1\}) \upharpoonright \{0, \dots, l'-1\}$$
$$= (f \upharpoonright \{0, \dots, l-1\}) \upharpoonright \{0, \dots, l'-1\}$$
$$= f \upharpoonright \{0, \dots, l'-1\}$$
$$= s_k$$

also sind wir fertig.

Allgemeiner kann man zeigen, dass für beliebige s, s' entweder $s \subseteq s', s' \subseteq s$ oder $[s] \cap [s'] = \emptyset$ gilt. Daraus folgt, dass $\bigcap_{k < n} [s_k]$ entweder leer ist oder gleich einem der $[s_k]$ und somit basisoffen.

2. Es sei $s: \{0, \ldots, n-1\} \to \{0, 1\}$ gegeben und $f \in X$. Wenn $f \notin [s]$, so gilt $f \upharpoonright \{0, \ldots, n-1\} \neq s$. Es folgt also, dass

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Dr. Hannes Jakob

$$X \smallsetminus [s] = \bigcup_{t \colon \{0,\dots,n-1\} \to \{0,1\}, t \neq s} [t]$$

Die rechte Menge ist eine Vereinigung offener Mengen und somit selbst offen.

3. Es sei $A \subseteq X$ die Menge aller Funktionen f, sodass es ein k_0 gibt, sodass f(k) = 0 für alle $k \ge k_0$. Diese Menge ist abzählbar, denn für jedes $k_0 \in \mathbb{N}$ gibt es nur endlich viele Funktionen f mit f(k) = 0 für alle $k \ge k_0$. Also ist A eine abzählbare Vereinigung endlicher Mengen und somit abzählbar.

Weiterhin ist A dicht: Gegeben irgendein $s: \{0, \ldots, n-1\} \to \{0, 1\}$ sei f die Funktion, sodass $f \upharpoonright \{0, \ldots, n-1\} = s$ und f(k) = 0 für $k \ge n$. Dann ist $f \in A$ (mit $k_0 = n$) und $f \in [s]$.