Mengenlehre: Große Kardinalzahlen
WS 2017/18
Dozentin: Prof. Dr. Heike Mildenberger
Assistentin: M. Sc. Fiorella Guichardaz

Übungen

BLATT 3

Aufgabe 1. Wir definieren die kardinale Addition \oplus und die kardinale Multiplikation \otimes für Ordinalzahlen α , β we folgt:

$$\alpha \oplus \beta = |\{0\} \times \alpha \cup \{1\} \times \beta|.$$

 $\alpha \otimes \beta = |\alpha \times \beta|.$

Seien λ , κ Kardinalzahlen, wobei eine der beiden unendlich sei und die andere $\neq \emptyset$.

- a) Ist $\kappa \oplus \lambda = \max(\kappa, \lambda)$?
- b) Ist $\kappa \otimes \lambda = \max(\kappa, \lambda)$?

Begründen Sie Ihre Antwort.

Aufgabe 2. Wir nutzen nun das Auswahlaxiom und definieren die kardinale Exponentiation

$$\kappa^{\lambda} := |\{ f \in V : f : \lambda \to \kappa \}|.$$

- a) Ist κ^{λ} wohldefiniert? Bemerken Sie, dass jede Funktion $f:\lambda\to\kappa$ eine Teilmenge von $\lambda\times\kappa$ ist.
- b) Sei $\lambda \neq 0$. Ist $\kappa^{\lambda} \geq \kappa$?
- c) Ist $2^{\kappa} = |\mathcal{P}(\kappa)|$?
- d) Ist $2^{\mu \otimes \nu} = (2^{\mu})^{\nu}$?

Begründen Sie Ihre Anworten durch Beweise oder durch Angabe eines Gegenbeispiels.

Aufgabe 3. a) Zeigen Sie, dass $\mu \leq \nu \rightarrow \mu^{\lambda} \leq \nu^{\lambda}$.

- b) Zeigen Sie, dass $\lambda \le \kappa \to \mu^{\lambda} \le \mu^{\kappa}$.
- c) Ist $\lambda^{\lambda} \leq 2^{\lambda}$? Hinweis: Zeigen Sie zuerst, dass $(2^{\lambda})^{\lambda} = 2^{\lambda}$. Hierzu kann man 2.d) und 1.b) heranziehen.

Aufgabe 4. Sei $cf(\kappa) = \kappa$. Seien A_i für $i \in I$ Mengen, so dass $(\forall i \in I)(|A_i| < \kappa)$ und $|I| < \kappa$. Kann $|\bigcup \{A_i : i \in I\}| = \kappa$ sein? Begründen Sie Ihre Antwort.

Hinweis: Sie können Ihren Beweis in die folgenden drei Schritte aufteilen.

- i) Man kann ohne Einschränkung der Allgemeinheit $A_i \subseteq \kappa$ annehmen.
- ii) Man kann o.B.d.A $I \subseteq \kappa$ nehmen. Dann ist $(I, <) := (I, \in)$ eine Wohlordnung.
- iii) Betrachten Sie

$$f: I \to \kappa$$

 $i \mapsto \sup(A_i)$

Ist f konfinal?