Mengenlehre: Große Kardinalzahlen
WS 2017/18
Dozentin: Prof. Dr. Heike Mildenberger
Assistentin: M. Sc. Fiorella Guichardaz

Übungen

BLATT 9

Aufgabe 1. Ein Ultrafilter $\mathcal{U} \subseteq [\omega]^{\omega}$ heißt Ramsey-Ultrafilter, wenn folgendes gilt:

$$\forall \langle A_n : n \in \omega \rangle \big(\bigwedge_{n < \omega} A_n \in \mathcal{U} \to (\exists D \in \mathcal{U}) (\forall n \in D) (D \setminus (n+1) \subseteq A_n) \big).$$

Sei $f: [\omega]^2 \to \{0,1\}$. Gibt es eine f-homogene Menge in \mathcal{U} ?

Aufgabe 2. Gelte ZFC + CH. Gibt es einen Ramsey-Ultrafilter?

Hinweis: Man kann alle $\langle A_n : n < \omega \rangle \in ([\omega]^{\omega})^{\omega}$ in einer Wohlordnung des Typs ω_1 aufzählen. Können Sie dann für jeden Schritt einer Konstruktion der Länge ω_1 ein geeignetes Element (oder keines) zu einem wachsenden Ultrafilter hinzufügen?

Aufgabe 3. Sei $\mathcal{U} \subseteq [\omega]^{\omega}$ ein Ultrafilter, so dass $\forall f : [\omega]^2 \to \{0,1\} \exists H \in \mathcal{U} | f''[H]^2 | = 1$. Ist \mathcal{U} ein Ramsey-Ultrafilter?

Aufgabe 4. Sei κ messbar, und sei \mathcal{U} ein normaler Ultrafilter über κ . Hat jedes $f: [\kappa]^2 \to 2$ eine f-homogene Menge $H \in \mathcal{U}$?

Hinweis: Wählen Sie für $\alpha \in \kappa$ ein $A_{\alpha} \in \mathcal{U}$ und ein $c_{\alpha} \in 2$, so dass $\forall \beta \in A_{\alpha} \setminus (\alpha+1) f(\{\alpha,\beta\}) = c_{\alpha}$. Da \mathcal{U} normal ist, ist $D = \Delta_{\alpha \in \kappa} = \{\beta \in \kappa : \beta \in \bigcap_{\alpha < \beta} A_{\alpha}\} \in \mathcal{U}$. Hängt für $\alpha < \beta$ mit $\alpha, \beta \in D$ $f(\{\alpha,\beta\})$ nur von α ab? Gibt es ein $D' \subseteq D$, $D' \in \mathcal{U}$, und ein $c \in 2$, so dass für alle $\alpha \in D$ $c_{\alpha} = c$? Ist D' f-homogen?

Ohne Wertung: Kommt Ihnen die eben bewiesene Behauptung von einem früheren Blatt her bekannt vor? Die Behauptung impliziert $\kappa \longrightarrow (\kappa)_2^2$.