Mengenlehre: Große Kardinalzahlen
WS 2017/18
Dozentin: Prof. Dr. Heike Mildenberger
Assistentin: M. Sc. Fiorella Guichardaz

Übungen

BLATT 10

Aufgabe 1. Kann man (ω_1, \in) oder die umgekehrte Ordnung $(\omega_1, <^*)$, wobei $\alpha <^* \beta : \Leftrightarrow \beta \in \alpha$, ordnungstreu in die reellen Zahlen mit ihrer gewöhnliche Ordnung einbetten? Begründen Sie Ihre Antwort.

Aufgabe 2. Sei R ein einstelliges Prädikat. Sei (M, \in, R) eine Struktur, so dass (M, \in) fundiert und extensional ist. (Die \in -Relation sei die gewöhnliche \in -Relation von V.) Wir bilden den Mostowski-Kollaps $\pi_M[M] = \bar{M}$. Können Sie ein $\bar{R} \subseteq \bar{M}$ finden, so dass $(M, \in, R) \cong (\bar{M}, \in, \bar{R})$?

Aufgabe 3. Sei $2 \leq \lambda$, wir fixieren eine injektive Aufzählung $^{\kappa}\lambda = \operatorname{rge}\{(\alpha, f_{\alpha}) : \alpha < \lambda^{\kappa}\}$. Sei $f \prec_{\operatorname{lex}} g := f(\Delta(f, g)) < g(\Delta(f, g)), \ \Delta(f, g) = \min\{\xi : f(\xi) \neq g(\xi)\}$. Wir färben $[^{\kappa}\lambda]^2$ mit der Sierpiński-Färbung S: Für $\alpha < \beta < \lambda^{\kappa}$ sei

$$S(\alpha, \beta) := \begin{cases} 1, & \text{wenn } f_{\alpha} \prec_{\text{lex}} f_{\beta}, \\ 0, & \text{sonst.} \end{cases}$$

Wir nehmen an, dass H eine S-homogene Menge des $<_{\text{index}}$ -Ordnungstyps κ^+ ist, und definieren rekursiv für $\alpha < \alpha_{\text{Abbruch}}$ (α_{Abbruch} wird erst unterwegs definiert):

$$B'_0 = H,$$
 für $\alpha > 0$ sei $B'_{\alpha} := \bigcap_{\beta < \alpha} B_{\beta}$, falls $|B'_{\alpha}| = \kappa^+$ sonst ist $\alpha = \alpha_{\text{Abbruch}}$,
$$F_{\alpha} := \prec_{\text{lex}} - \min(B'_{\alpha}) \text{ für die homogene Farbe 1,}$$

$$F_{\alpha} := \prec_{\text{lex}} - \max(B'_{\alpha}) \text{ für die homogene Farbe 0,}$$

$$\xi_{\alpha} = \min\{\Delta(f, f_{\alpha}) : f \in B'_{\alpha} \setminus \{F_{\alpha}\}\},$$

$$B_{\alpha} := \{f \in B'_{\alpha} \setminus \{f_{\alpha}\} : \Delta(f, F_{\alpha}) = \xi_{\alpha}\}.$$

- a) (2 Punkte) Begründen Sie, warum so ein Maximum existiert im Falle der Farbe 1.
- b) (2 Punkte) Zeigen Sie: B_{α} ist ein \prec_{lex} -Endabschnitt von H für Farbe 1 (bzw ein \prec_{lex} -Anfangsabschnitt von H für Farbe 0).
- c) (2 Punkte) Zeigen Sie: Für $\lambda = 2$ ist für $(\alpha < \beta < \kappa)(\xi_{\alpha} < \xi_{\beta})$. Also ist $\alpha_{Abbruch} = \kappa$.
- d) (2 Punkte) Sei immer noch $\lambda = 2$. Wir definieren $\forall \beta \in \kappa(t_{\beta} := F_{\beta} \upharpoonright \xi_{\beta})$. Zeigen Sie: $(\forall \beta < \gamma < \kappa)(t_{\beta} \subsetneq t_{\gamma})$. Wir haben also, dass B'_{κ} genau ein Element hat oder leer ist und

$$H = \bigcup \{B'_{\alpha} \setminus B_{\alpha} : \alpha < \kappa\} \cup B'_{\kappa}.$$

Da dies eine Aufteilung in disjunkte Intervalle ist, die in \prec_{lex} aufsteigend (absteigend für die Farbe 0) hintereinander liegen, kann also $(H, <_{\text{index}})$ nicht die Wohlordnung κ^+ sein.

e) (für 4 Bonuspunkte) Zeigen Sie: Für $2 < \lambda \le \kappa$ ist $\alpha_{\text{Abbruch}} < \kappa^+$ und für $(\alpha < \beta < \alpha_{\text{Abbruch}})(\xi_{\alpha} \le \xi_{\beta})$. Sei $A := \{\beta \in \alpha_{\text{Abbruch}} : \xi_{\beta+1} \ne \xi_{\beta}\}$. Zeigen Sie: Falls $\lambda \le \kappa$, ist $|A| = \kappa$. Wir definieren $\forall \beta \in A(t_{\beta} := f_{\beta} \upharpoonright \xi_{\beta})$. Zeigen Sie: $(\forall \beta < \gamma \in A)(t_{\beta} \subsetneq t_{\gamma})$. Insgesamt gilt der Satz von der Sierpiński-Färbung also auch für λ^{κ} statt 2^{κ} . Dies kann man auch herleiten, indem man erst $\lambda^{\kappa} = 2^{\kappa}$ benutzt und dann mit der 2^{κ} -Sierpiński-Färbung arbeitet.