Mengenlehre: Große Kardinalzahlen
WS 2017/18
Dozentin: Prof. Dr. Heike Mildenberger
Assistentin: M. Sc. Fiorella Guichardaz

Übungen

BLATT 12

Aufgabe 1. Sei $\kappa \geq \omega$ eine reguläre Kardinalzahl und $2^{<\kappa} := \{f \mid \exists \alpha < \kappa \ f : \alpha \to 2\}$. Für $f,g \in 2^{<\kappa}$ definieren wir das größte gemeinsame Anfangsstück

$$f \cap g := \begin{cases} f, & \text{falls } f \subseteq g; \\ g, & \text{falls } g \subseteq f; \\ f \upharpoonright \min\{\alpha \mid f(\alpha) \neq g(\alpha)\}, & \text{sonst.} \end{cases}$$

Nun definieren wir $\prec_{\mathbb{Q}}$ auf $2^{<\kappa}$: Für $f,g\in 2^{<\kappa}$ sei

$$f \prec_{\mathbb{Q}} g := (f \cap g \subsetneq g \land g(\mathrm{dom}(f \cap g)) = 1) \lor (f \cap g \subsetneq f \land f(\mathrm{dom}(f \cap g)) = 0).$$

- a) (1 Punkt) Ist $\prec_{\mathbb{Q}}$ auf $2^{<\kappa}$ eine lineare Ordnung?
- b) (1 Punkt) Sei $f \prec_{\mathbb{Q}} g$. Wieviele Elemente hat die Menge $\{h \in 2^{<\kappa} \mid f \prec_{\mathbb{Q}} h \land h \prec_{\mathbb{Q}} g\}$?
- c) (1 Punkt) Ist $\prec_{\mathbb{Q}}$ eine Wohlordnung?
- d) (2 Punkte) Gibt es eine Einbettung $f: (\kappa^+, \in) \to (2^{<\kappa}, \prec_{\mathbb{Q}})$?

 Hinweis: Schauen Sie sich den Beweis von $2^{\kappa} \not \longrightarrow (\kappa^+)_2^2$ an.

Aufgabe 2. (3 Punkte) Sei $\alpha < \kappa^+$ und sei

$$F_{\alpha} := \{ f \colon (\alpha, \in) \to (2^{<\kappa}, \prec_{\mathbb{Q}}) \mid f \text{ ist ordnungstreu und beschränkt} \}.$$

Sei $2^{<\kappa} = \kappa$. Gibt es einen κ^+ -Aronszajn-Baum $T \subseteq (\bigcup_{\alpha < \kappa^+} F_\alpha, \subseteq)$? Schreiben Sie explizit hin, für welche Schritte Sie die Voraussetzung $2^{<\kappa} = \kappa$ benutzen.

Hinweis: Suchen Sie $T_{\alpha} \subseteq F_{\alpha}$ ähnlich wie in der Vorlesung von 16.01.18, so dass T mit $L_{\alpha}(T) = T_{\alpha}$ und der Enderweiterung als Baumordnung möglichst ein Aronszajnbaum wird.

Aufgabe 3. (4 Punkte) Eine Kardinalzahl κ heißt Mahlo-Kardinalzahl, wenn κ stark unerreichbar ist und $S := \{\lambda < \kappa \mid \lambda \text{ regular}\}$ stationär in κ ist.

Sei κ eine Mahlo-Kardinalzahl. Gibt es eine stark unerreichbare Kardinalzahl $\lambda < \kappa$?

Hinweis: Betrachten Sie $C := \{ \lambda \in \kappa \mid \lambda \text{ Kardinalzahl } \wedge \forall \mu < \lambda \ 2^{\mu} < \lambda \}$. Ist C club? Gibt $C \cap S$ das Gewünschte?

Aufgabe 4. (4 Punkte) Eine Verstärkung von Aufgabe 3, die wir hier nicht durchführen, gibt den folgenden Satz:

 $\exists \kappa \text{ weakly compact } \rightarrow \exists \lambda < \kappa \lambda \text{ strongly inaccessible.}$

Sei nun V ein Modell von $\mathsf{ZFC} + \exists \kappa$ weakly compact. Gibt es in V eine reguläre Kardinalzahl $\geq \aleph_2$, die nicht die Baumeigenschaft hat?