Dozentin: Prof. Dr. Heike Mildenberger Assistent: M. Sc. Brendan Stuber-Rousselle

Blatt 10

Abgabe am 26.01.2021 vor 12 Uhr, durch Hochladen auf Ilias im Pfad: Magazin - Lehrveranstaltungen aus HISinOne - WS20 - Math.Inst.-VB - Mengenlehre

Aufgabe 1 (4 Punkte). Sei M ein ctm (countable transitive model) und $\mathbb{P} \in M$ eine Halbordnung.

- (a) Sei G ein \mathbb{P} -generischer Filter über M und $\tau \in M^{\mathbb{P}}$ ein \mathbb{P} -Name, so dass dom $(\tau) \subseteq \{\check{n} : n \in \omega\}$. Wir definieren $\sigma := \{\langle \check{n}, p \rangle : \forall q \in \mathbb{P}(\langle \check{n}, q \rangle \in \tau \to p \perp q)\}$. Berechnen Sie σ_G .
- (b) Sei $p \in \mathbb{P}$ ein Atom (Vgl. Blatt 9 Aufgabe 3). Finden Sie einen \mathbb{P} -generischen Filter G über M, so dass $G \in M$.

Definition (Forcingsprache). Sei \mathbb{P} eine Halbordnung. Die Menge $\{\varphi(\bar{\tau}) : \varphi \in \mathcal{L}(\in, V), \bar{\tau} \in \mathbf{V}^{\mathbb{P}}\}$ wird Forcingsprache und ihre Elemente werden Formeln der Forcingsprache genannt. Das Symbol V ist ein einstelliges Prädikat für das Grundmodell.

Aufgabe 2 (4 Punkte). Seien M ein ctm, $\mathbb{P} \in M$ eine atomlose Halbordnung (vgl. Blatt 9 Aufgabe 4) und G, H zwei verschiedene \mathbb{P} -generische Filter über M. Kann es einen Satz φ aus der Forcingsprache geben, so dass $M[G] \models \varphi$ und $M[H] \models \neg \varphi$?

Falls ja, geben Sie ein Beispiel \mathbb{P} , G, H und φ an. Falls nein, begründen Sie Ihre Antwort.

Vorspann zur Aufgabe 3: Sei M ein ctm. Wir schreiben ω_n^M für das Element $x \in \mathbf{V}$, so dass $M \models x = \omega_n$. Überlegen Sie sich, dass x eine Ordinalzahl ist. Wir definieren in M eine Halbordnung

$$\mathbb{P} := \operatorname{Coll}(\omega^M, \omega_1^M) = \operatorname{Fn}(\omega^M, \omega_1^M, \omega^M) := \{ p \in M : (\exists A \subseteq \omega \text{ endlich } \land p : A \to \omega_1)^M \},$$

die durch $q \leq p : \Leftrightarrow q \supseteq p$ geordnet ist. Diese Forcinghalbordnung wird auch $L\acute{e}vy^1$ -Kollaps von ω_1 genannt. Sei G ein \mathbb{P} -generischer Filter über M. Wir setzen $f_G := \bigcup \{p \in \mathbb{P} : p \in G\} = \bigcup G$.

Aufgabe 3 (8 Punkte). Zeigen Sie:

- (a) f_G ist ein Element von M[G].
- (b) Es gibt einen \mathbb{P} -Namen τ , so dass für jeden generischen Filter G über \mathbb{P} gilt: $\operatorname{val}(\tau, G) = f_G$. Wir bezeichnen τ mit \dot{f}_G .
- (c) $M[G] \models f_G$ ist eine Funktion.
- (d) $M[G] \models \text{dom}(f_G) = \omega$. Schließen Sie daraus, dass $\emptyset \Vdash_{\mathbb{P}} \text{dom}(\dot{f}_G) = \check{\omega}$ gilt.
- (e) $M[G] \models \operatorname{rng}(f_G) = \omega_1^M$. Wie lautet nun die entsprechende Formulierung in der Forcingsprache?
- (f) Ist $\omega_1^M = \omega_1^{M[G]}$, oder gilt $\omega_1^M < \omega_1^{M[G]}$ oder $\omega_1^M > \omega_1^{M[G]}$? Begründen Sie Ihre Antwort.
- (g) Eine der drei Möglichkeiten kann bei keinem Forcing vorkommen. Welche? Warum?

¹Azriel Lévy, *1934