Übungsaufgaben zur Funktionentheorie II

7. Blatt

Abgabe: Di in der Vorlesung (Do-Gruppe) und Do in der Vorlesung (Di-Gruppe)

Aufgabe 7-1 (6 = 2 + 1 + 1 + 2 Punkte):

Es sei X_d die durch

$${F(x,y,z) = x^d + y^d + z^d = 0}$$

gegebene ebene projektive Kurve. Man nennt X_d die Fermat-Kurve vom Grad d. Wir haben gesehen, dass jede Gerade in \mathbb{P}_2 biholomorph zu $\hat{\mathbb{C}}$ ist (Aufgabe 4-3a)). Wir betrachten die Gerade $\{z=0\}\subset \mathbb{P}_2$. Es sei $\pi:X_d\to \hat{\mathbb{C}}$ die durch $[x:y:z]\mapsto [x:y:0]$ induzierte Abbildung.

- a) Zeigen Sie: die Fermat-Kurven sind glatt, d.h. X_d ist eine Riemannsche Fläche.
- b) Zeigen Sie: $\pi: X_d \to \hat{\mathbb{C}}$ ist eine wohldefinierte holomorphe Abbildung vom Grad d.
- c) Finden Sie alle Punkte in $R_{\pi} \subset X_d$ und $\pi(R_{\pi}) \subset \hat{\mathbb{C}}$.
- d) Verwenden Sie Hurwitz' Formel, um das Geschlecht von X_d zu berechen. Sie sollten

$$g(X_d) = \frac{(d-1)(d-2)}{2}$$

erhalten.

Aufgabe 7-2 (4 Punkte):

Zeigen Sie Lemma 5.4. (die Abbildung $t^{\mathfrak{U}}_{\mathfrak{V}}: H^1(\mathfrak{U},\mathscr{F}) \to H^1(\mathfrak{V},\mathscr{F})$ ist unabhängig von der Verfeinerungsabbildung $\tau: K \to I$).

<u>Hinweis:</u> Sei $\tilde{\tau}: K \to I$ eine weitere Abbildung mit $V_k \subset U_{\tilde{\tau}k}$. Sei $(f_{ij}) \in Z^1(\mathfrak{U}, \mathscr{F})$ und $g_{kl} := f_{\tau k, \tau l}|_{V_k \cap V_l}$ sowie $\tilde{g}_{kl} := f_{\tilde{\tau}k, \tilde{\tau}l}|_{V_k \cap V_l}$. Dann müssen Sie zeigen, dass die Cozyklen (g_{kl}) und (\tilde{g}_{kl}) cohomolog sind.

Aufgabe 7-3: (4 = 1 + 3 Punkte)

Es sei $X = \{z \in \mathbb{C} \mid |z| < R\} \subset \mathbb{C}$ mit globaler Koordinate z = x + iy.

- a) Es sei $f \in \mathcal{O}(X)$ und $\omega = f \, dz$. Zeigen Sie, dass $d\omega = 0$. Zeigen Sie dann (z.B. mit Hilfe der Potenzreihenentwicklung von f), dass es eine holomorphe Funktion $F \in \mathcal{O}(X)$ gibt mit $\omega = dF$.
- b) Es sei nun $\omega = f \ dx + g \ dy$, $f,g \in \mathcal{E}(X)$ eine allgemeine (differenzierbare) komplexe Differentialform auf X. Wir nehmen im Folgenden an, dass $d\omega = 0$. Es sei

F die \mathbb{C} -wertige Funktion, die durch

$$F(x,y) := \int_0^1 (f(tx,ty)x + g(tx,ty)y) dt$$

definiert ist. Zeigen Sie, dass $F \in \mathscr{E}(X)$ und dass $dF = \omega$.

Aufgabe 7-4: (2 Punkte)

Es sei X eine kompakte Riemannsche Fläche mit $H^1(X, \mathcal{O}) = 0$. Zeigen Sie (mit Hilfe der Folgerungen aus der Endlichdimensionalität von $H^1(Y, \mathcal{O})$ (Y eine kompakte Riemannsche Fläche), die in der Vorlesung bewiesen wurden), dass X biholomorph zu $\hat{\mathbb{C}}$ ist.