Analytic equivalence relations and bi-embeddability

Luca Motto Ros

Kurt Gödel Research Center for Mathematical Logic
University of Vienna
luca.mottoros@libero.it

Paris, December 15th 2008
A subset of a Polish space X is said Borel if it belongs to the σ-algebra generated by the topology of X, and is said analytic if it is the projection of a closed (equiv. Borel) subset of $X \times \omega^\omega$, where ω^ω is the Baire space.

A structure (X, E) is called analytic equivalence relation (resp. Borel equivalence relation) if X is a Polish space and E is an equivalence relation on X which is analytic (resp. Borel) as subset of $X \times X$.

Luca Motto Ros
Analytic equivalence relations and bi-embeddability
A subset of a Polish space X is said Borel if it belongs to the σ-algebra generated by the topology of X, and is said analytic if it is the projection of a closed (equiv. Borel) subset of $X \times \omega \omega$, where $\omega \omega$ is the Baire space.
A subset of a Polish space X is said Borel if it belongs to the σ-algebra generated by the topology of X, and is said analytic if it is the projection of a closed (equiv. Borel) subset of $X \times \omega$, where ω is the Baire space.

A structure (X, E) is called analytic equivalence relation (resp. Borel equivalence relation) if X is a Polish space and E is an equivalence relation on X which is analytic (resp. Borel) as subset of $X \times X$.
Classification and invariants

The analysis of analytic equivalence relation arises from the idea of classifying mathematical objects:

Example: Let X be the space of complex $n \times n$ matrices (i.e. \mathbb{C}^{n^2}), E be the similarity relation, and ϕ be the function which maps each matrix into its Jordan's canonical form.
The analysis of analytic equivalence relation arises from the idea of classifying mathematical objects: If we view X as a set of mathematical objects, which we are interested in up to E-equivalence, the classification problem for (X, E) consists of finding some (concrete or nicely definable) set I of invariants, together with some (concrete or nicely definable) assignment $\varphi : X \to I$ which satisfies $x E y \iff \varphi(x) = \varphi(y)$ for every $x, y \in X$.

Example: Let X be the space of complex $n \times n$ matrices (i.e. \mathbb{C}^{n^2}), E be the similarity relation, and φ be the function which maps each matrix into its Jordan's canonical form.
The analysis of analytic equivalence relation arises from the idea of classifying mathematical objects: If we view X as a set of mathematical objects, which we are interested in up to E-equivalence, the classification problem for (X, E) consists of finding some (concrete or nicely definable) set I of invariants, together with some (concrete or nicely definable) assignment $\varphi: X \to I$ which satisfies $x E y \iff \varphi(x) = \varphi(y)$ for every $x, y \in X$.

Example: Let X be the space of complex $n \times n$ matrices (i.e. \mathbb{C}^{n^2}), E be the similarity relation, and φ be the function which maps each matrix into its Jordan’s canonical form.
Borel reducibility

To compare the complexity of two analytic equivalence relations \((X, E)\) and \((Y, F)\) we use the notion of Borel-reducibility:

\[(X, E) \leq_B (Y, F) \text{ iff exists some Borel function } f: X \to Y \text{ s.t. } \forall x_1, x_2 \in X (x_1 E x_2 \iff f(x_1) F f(x_2)).\]

\[(X, E) \text{ and } (Y, F) \text{ are Borel-equivalent, } (X, E) \sim_B (Y, F) \text{ in symbols, iff } (X, E) \leq_B (Y, F) \text{ and } (Y, F) \leq_B (X, E).\]

Intuitive meaning of \(\leq_B\): "\((X, E) \leq_B (Y, F)\) = "\((X, E)\) is simpler than \((Y, F)\)." In fact, any solution to the classification problem for \((Y, F)\) can be converted via \(f\) into a solution to the classification problem for \((X, E)\)."
To compare the complexity of two analytic equivalence relations (X, E) and (Y, F) we use the notion of Borel-reducibility:

$(X, E) \leq_B (Y, F)$ iff exists some Borel function $f : X \to Y$ s.t. $\forall x_1, x_2 \in X (x_1 E x_2 \iff f(x_1) F f(x_2))$;
To compare the complexity of two analytic equivalence relations \((X, E)\) and \((Y, F)\) we use the notion of Borel-reducibility:

- \((X, E) \leq_B (Y, F)\) iff there exists some Borel function \(f : X \to Y\) such that \(\forall x_1, x_2 \in X (x_1 E x_2 \iff f(x_1) F f(x_2))\);

- \((X, E)\) and \((Y, F)\) are Borel-equivalent, \((X, E) \sim_B (Y, F)\) in symbols, iff \((X, E) \leq_B (Y, F)\) and \((Y, F) \leq_B (X, E)\).
To compare the complexity of two analytic equivalence relations \((X, E)\) and \((Y, F)\) we use the notion of Borel-reducibility:

- \((X, E) \leq_B (Y, F)\) iff exists some Borel function \(f: X \to Y\) s.t. \(\forall x_1, x_2 \in X \cdot (x_1 E x_2 \iff f(x_1) F f(x_2))\);

- \((X, E)\) and \((Y, F)\) are Borel-equivalent, \((X, E) \sim_B (Y, F)\) in symbols, iff \((X, E) \leq_B (Y, F)\) and \((Y, F) \leq_B (X, E)\).

Intuitive meaning of \(\leq_B\):

"\((X, E) \leq_B (Y, F)\)" = "\((X, E)\) is simpler than \((Y, F)\)."
Borel reducibility

To compare the complexity of two analytic equivalence relations \((X, E)\) and \((Y, F)\) we use the notion of Borel-reducibility:

- \((X, E) \leq_B (Y, F)\) iff exists some Borel function \(f : X \to Y\) s.t. \(\forall x_1, x_2 \in X (x_1 E x_2 \iff f(x_1) F f(x_2))\);
- \((X, E)\) and \((Y, F)\) are Borel-equivalent, \((X, E) \sim_B (Y, F)\) in symbols, iff \((X, E) \leq_B (Y, F)\) and \((Y, F) \leq_B (X, E)\).

Intuitive meaning of \(\leq_B\):

\[\text{“(}X, E\text{) \leq_B (Y, F)\text{)" = “(}X, E\text{) is simpler than (}Y, F\text{).”}\]

In fact, any solution to the classification problem for \((Y, F)\) can be converted via \(f\) into a solution to the classification problem for \((X, E)\).
Analytic completeness

All the notions involved depend only on the Borel structure of the domain of the relation considered, hence it suffices that such domains are standard Borel spaces (rather than Polish spaces).

Definition

E is said analytic complete if for every analytic equivalence relation F one has $F \leq B_E$.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
Analytic completeness

All the notions involved depends only on the Borel structure of the domain of the relation considered, hence it suffices that such domains are standard Borel spaces (rather than Polish spaces).

Moreover, every two uncountable Polish spaces are Borel-isomorphic,
Analytic completeness

All the notions involved depends only on the Borel structure of the domain of the relation considered, hence it suffices that such domains are standard Borel spaces (rather than Polish spaces).

Moreover, every two uncountable Polish spaces are Borel-isomorphic, therefore we can restrict ourselves to $X = \omega^2$ and drop any reference to the domain of our relations.
Analytic completeness

All the notions involved depends only on the Borel structure of the domain of the relation considered, hence it suffices that such domains are standard Borel spaces (rather than Polish spaces).

Moreover, every two uncountable Polish spaces are Borel-isomorphic, therefore we can restrict ourselves to $X = \omega^2$ and drop any reference to the domain of our relations.

Definition

E is said **analytic complete** if for every analytic equivalence relation F one has $F \leq_B E$.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

There are relations which are neither analytic complete nor Borel (e.g. $x \mathrel{E} y \iff \omega^1 x = \omega^1 y$); there are incompatible relations (e.g. E and F); there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones); there are infinite descending chains, and so on.

Positive structural results: dichotomy theorems. Silver’s Theorem; Harrington-Kechris-Louveau Theorem; Ulm-classifiability, and so on.
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x E y \iff \omega_1^x = \omega_1^y$);
- There are incompatible relations (e.g. E_1 and F_2);
- There are infinite antichains of equivalence relations (even among very "simple" equivalence relations, such as the countable ones);
- There are infinite descending chains, and so on.

Positive structural results: dichotomy theorems. Silver's Theorem; Harrington-Kechris-Louveau Theorem; Ulm-classifiability, and so on.
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x E y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);

Positive structural results: dichotomy theorems. Silver’s Theorem; Harrington-Kechris-Louveau Theorem; Ulm-classifiability, and so on.
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x E y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);
- there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones);

Positive structural results: dichotomy theorems.

Silver’s Theorem; Harrington-Kechris-Louveau Theorem; Ulm-classifiability, and so on.
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x E y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);
- there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones);
- there are infinite descending chains, and so on.
The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x \ E \ y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);
- there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones);
- there are infinite descending chains, and so on.

Positive structural results: dichotomy theorems.
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x \mathrel{E} y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);
- there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones);
- there are infinite descending chains, and so on.

Positive structural results: dichotomy theorems.

- Silver’s Theorem;
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x \mathcal{E} y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);
- there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones);
- there are infinite descending chains, and so on.

Positive structural results: **dichotomy theorems**.

- Silver’s Theorem;
- Harrington-Kechris-Louveau Theorem;
The structure of analytic equivalence relations

The structure given by analytic equivalence relations under \leq_B is extremely complicated!

- There are relations which are neither analytic complete nor Borel (e.g. $x E y \iff \omega_1^x = \omega_1^y$);
- there are incompatible relations (e.g. E_1 and F_2);
- there are infinite antichains of equivalence relations (even among very “simple” equivalence relations, such as the countable ones);
- there are infinite descending chains, and so on.

Positive structural results: dichotomy theorems.

- Silver’s Theorem;
- Harrington-Kechris-Louveau Theorem;
- Ulm-classifiability, and so on.
Let \mathcal{L} be a countable language. We can assume that each countable \mathcal{L}-structures has domain ω, and identify such a structure with an element of the Cantor space.
Let \mathcal{L} be a countable language. We can assume that each countable \mathcal{L}-structures has domain ω, and identify such a structure with an element of the Cantor space.

Example: $\mathcal{L} = \{R\}$, with R binary. Then each $x \in \omega^2$ code the structure $A_x = (\omega, R^{A_x})$, where $n R^{A_x} m$ if and only if $x(\langle n, m \rangle) = 1$.

Therefore each isomorphism between countable \mathcal{L}-structures is simply a permutation of ω. The isomorphism relation on a Borel class of countable structures is an analytic equivalence relation.
Countable \mathcal{L}-structures

Let \mathcal{L} be a countable language. We can assume that each countable \mathcal{L}-structures has domain ω, and identify such a structure with an element of the Cantor space.

Example: $\mathcal{L} = \{R\}$, with R binary. Then each $x \in \omega^2$ code the structure $A_x = (\omega, R^{A_x})$, where $n R^{A_x} m$ if and only if $x(\langle n, m \rangle) = 1$.

Therefore each isomorphism between countable \mathcal{L}-structures is simply a permutation of ω.
Countable \mathcal{L}-structures

Let \mathcal{L} be a countable language. We can assume that each countable \mathcal{L}-structures has domain ω, and identify such a structure with an element of the Cantor space.

Example: $\mathcal{L} = \{ R \}$, with R binary. Then each $x \in \omega^2$ code the structure $\mathcal{A}_x = (\omega, R^{\mathcal{A}_x})$, where $n R^{\mathcal{A}_x} m$ if and only if $x(\langle n, m \rangle) = 1$.

Therefore each isomorphism between countable \mathcal{L}-structures is simply a permutation of ω.

The isomorphism relation on a Borel class of countable structures is an analytic equivalence relation.
Isomorphism relations

\[\text{Mod}_\mathcal{L} = \text{all (codes for) countable } \mathcal{L} \text{-structures} \]
Isomorphism relations

$\text{Mod}_\mathcal{L} = \text{all (codes for) countable } \mathcal{L}\text{-structures}$

$S_\infty = \text{Polish group of all permutations of } \omega$.

Definition

A set $X \subseteq \text{Mod}_\mathcal{L}$ is said to be invariant if it is closed under isomorphism (i.e. closed under the action of S_∞ on $\text{Mod}_\mathcal{L}$).

Fact: $X \subseteq \text{Mod}_\mathcal{L}$ is Borel and invariant if and only if there is some $\mathcal{L}_{\omega_1 \omega}$-sentence ϕ such that $X = \text{Mod}_{\phi}$.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
Isomorphism relations

\[\text{Mod}_\mathcal{L} = \text{all (codes for) countable } \mathcal{L}\text{-structures} \]
\[S_\infty = \text{Polish group of all permutations of } \omega. \]

Definition

A set \(X \subseteq \text{Mod}_\mathcal{L} \) is said to be **invariant** if it is closed under isomorphism (i.e. closed under the action of \(S_\infty \) on \(\text{Mod}_\mathcal{L} \)).
Isomorphism relations

\[\text{Mod}_\mathcal{L} = \text{all (codes for) countable } \mathcal{L}\text{-structures} \]

\[S_\infty = \text{Polish group of all permutations of } \omega. \]

Definition

A set \(X \subseteq \text{Mod}_\mathcal{L} \) is said to be invariant if it is closed under isomorphism (i.e. closed under the action of \(S_\infty \) on \(\text{Mod}_\mathcal{L} \)).

Now consider an \(\mathcal{L}_{\omega_1\omega} \)-sentence \(\varphi \) and let \(\text{Mod}_\varphi \) be the collection of all \(x \in \text{Mod}_\mathcal{L} \) which are models of \(\varphi \).
Isomorphism relations

$Mod_L = \text{all (codes for) countable } L\text{-structures}$

$S_\infty = \text{Polish group of all permutations of } \omega$.

Definition
A set $X \subseteq Mod_L$ is said to be invariant if it is closed under isomorphism (i.e. closed under the action of S_∞ on Mod_L).

Now consider an $L_{\omega_1\omega}$-sentence φ and let Mod_φ be the collection of all $x \in Mod_L$ which are models of φ.

Fact: $X \subseteq Mod_L$ is Borel and invariant if and only if there is some $L_{\omega_1\omega}$-sentence φ such that $X = Mod_\varphi$.
Isomorphism relations \cong are a very special subclass of the analytic equivalence relations:
Isomorphism relations \cong are a very special subclass of the analytic equivalence relations:

- H. Friedman-Stanley: isomorphism on countable trees, linear orders, and so on are S_∞-complete, i.e. $F \leq_B E$ for any isomorphism relation F;
Isomorphism relations \(\cong \) are a very special subclass of the analytic equivalence relations:

- H. Friedman-Stanley: isomorphism on countable trees, linear orders, and so on are \(S_\infty \)-complete, i.e. \(F \leq_B E \) for any isomorphism relation \(F \);
- there are equivalence relations which are not Borel-equivalent to an isomorphism relation;
Isomorphism relations \cong are a very special subclass of the analytic equivalence relations:

- H. Friedman-Stanley: isomorphism on countable trees, linear orders, and so on are S_∞-complete, i.e. $F \leq_B E$ for any isomorphism relation F;
- there are equivalence relations which are not Borel-equivalent to an isomorphism relation;
- there are equivalence relations which are not Borel-reducible to an isomorphism relation (i.e. equivalence relations non classifiable by countable structures, such as turbulent relations);
Isomorphism relations \cong are a very special subclass of the analytic equivalence relations:

- H. Friedman-Stanley: isomorphism on countable trees, linear orders, and so on are S_∞-complete, i.e. $F \leq_B E$ for any isomorphism relation F;
- there are equivalence relations which are not Borel-equivalent to an isomorphism relation;
- there are equivalence relations which are not Borel-reducible to an isomorphism relation (i.e. equivalence relations non classifiable by countable structures, such as turbulent relations);
- in particular, no isomorphism relation is analytic complete!
All the definitions about analytic equivalence relations can be stated in the setup of quasi-orders (i.e. reflexive and transitive relations):
Analytic quasi-orders

All the definitions about analytic equivalence relations can be stated in the setup of quasi-orders (i.e. reflexive and transitive relations):

- a quasi-order \((X, R)\) is **analytic** if \(X\) is standard Borel and \(R\) is an analytic subset of \(X \times X\);
Analytic quasi-orders

All the definitions about analytic equivalence relations can be stated in the setup of quasi-orders (i.e. reflexive and transitive relations):

- a quasi-order \((X, R)\) is analytic if \(X\) is standard Borel and \(R\) is an analytic subset of \(X \times X\);

- \(R \leq_B S\) if there is a Borel \(f : X \to Y\) (where \(X\) and \(Y\) are the domains of \(R\) and \(S\)) such that \(x R y \iff f(x) S f(y)\);
Analytic quasi-orders

All the definitions about analytic equivalence relations can be stated in the setup of quasi-orders (i.e. reflexive and transitive relations):

1. a quasi-order \((X, R)\) is analytic if \(X\) is standard Borel and \(R\) is an analytic subset of \(X \times X\);
2. \(R \leq_B S\) if there is a Borel \(f : X \rightarrow Y\) (where \(X\) and \(Y\) are the domains of \(R\) and \(S\)) such that \(x R y \iff f(x) S f(y)\);
3. \((X, R)\) is complete analytic if \(S \leq_B R\) for every analytic quasi-order \((Y, S)\), and so on.
Analytic quasi-orders

All the definitions about analytic equivalence relations can be stated in the setup of quasi-orders (i.e. reflexive and transitive relations):

- a quasi-order \((X, R)\) is analytic if \(X\) is standard Borel and \(R\) is an analytic subset of \(X \times X\);
- \(R \leq_B S\) if there is a Borel \(f : X \to Y\) (where \(X\) and \(Y\) are the domains of \(R\) and \(S\)) such that \(x R y \iff f(x) S f(y)\);
- \((X, R)\) is complete analytic if \(S \leq_B R\) for every analytic quasi-order \((Y, S)\), and so on.

Each analytic quasi-order \(R\) canonically induce the analytic equivalence relation \(E_R = R \cap R^{-1}\), and if \(R\) is complete analytic then so is \(E_R\).
Let \mathcal{L}, $\text{Mod}_\mathcal{L}$, φ and Mod_φ be as before.

Remark: \sqsubseteq restricted to Mod_φ is an analytic quasi-order, and can canonically induce the analytic equivalence relation \equiv of bi-embeddability.

Example 1: On well-founded linear orders of length $\leq \alpha$, some fixed countable ordinal, isomorphism and bi-embeddability coincide (Schröder-Bernstein Theorem).

Example 2: \equiv_{LO} is \mathcal{S}_∞-complete (H. Friedman-Stanley), while \equiv_{LO} has only \aleph_1-many classes but does not Borel-reduce equality on ω_2 (Laver: \sqsubseteq_{LO} is a bqo).
Embeddings

Let \mathcal{L}, $\text{Mod}_\mathcal{L}$, φ and Mod_φ be as before.

Given two \mathcal{L}-structures A and B, we say that A embeds in B ($A \sqsubseteq B$ in symbols) if there is an injection $f : A \to B$ which is an isomorphism between A and its image under f.
Let \mathcal{L}, $\text{Mod}_\mathcal{L}$, φ and Mod_φ be as before.

Given two \mathcal{L}-structures A and B, we say that A embeds in B ($A \sqsubseteq B$ in symbols) if there is an injection $f : A \to B$ which is an isomorphism between A and its image under f.

Remark: \sqsubseteq restricted to Mod_φ is an **analytic quasi-order**, and canonically induce the analytic equivalence relation \equiv of bi-embeddability.
Let \mathcal{L}, $\text{Mod}_\mathcal{L}$, φ and Mod_φ be as before.

Given two \mathcal{L}-structures A and B, we say that A embeds in B ($A \sqsubseteq B$ in symbols) if there is an injection $f : A \to B$ which is an isomorphism between A and its image under f.

Remark: \sqsubseteq restricted to Mod_φ is an analytic quasi-order, and canonically induce the analytic equivalence relation \equiv of bi-embeddability.

Example 1: On well-founded linear orders of length $\leq \alpha$, α some fixed countable ordinal, isomorphism and bi-embeddability coincide (Schröder-Bernstein Theorem).
Let \mathcal{L}, $\text{Mod}_\mathcal{L}$, φ and Mod_φ be as before.

Given two \mathcal{L}-structures A and B, we say that A embeds in B ($A \sqsubseteq B$ in symbols) if there is an injection $f : A \to B$ which is an isomorphism between A and its image under f.

Remark: \sqsubseteq restricted to Mod_φ is an analytic quasi-order, and canonically induce the analytic equivalence relation \equiv of bi-embeddability.

Example 1: On well-founded linear orders of length $\leq \alpha$, α some fixed countable ordinal, isomorphism and bi-embeddability coincide (Schröder-Bernstein Theorem).

Example 2: \cong_{LO} is S_∞-complete (H. Friedman-Stanley), while \equiv_{LO} has only \aleph_1-many classes but does not Borel-reduce equality on ω^2 (Laver: \sqsubseteq_{LO} is a bqo).
Main results

Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)
For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1^{\omega}}$-sentence φ such that R is Borel-equivalent to \subseteq on $\text{Mod} \varphi$.

Corollary (S.-D. Friedman-M.)
E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1^{\omega}}$-sentence φ such that E is Borel-equivalent to \equiv on $\text{Mod} \varphi$.

The same results hold if we replace "embedding" with homomorphism; weak homomorphism; isometric embeddings on a Borel class of discrete Polish metric spaces closed under isometry.
Main results

Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)

For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.

Corollary (S.-D. Friedman-M.)

E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that E is Borel-equivalent to \equiv on Mod_φ.

The same results hold if we replace “embedding” with homomorphism; weak homomorphism; isometric embeddings on a Borel class of discrete Polish metric spaces closed under isometry.
Main results

Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)

For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.

Corollary (S.-D. Friedman-M.)

E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that E is Borel-equivalent to \equiv on Mod_φ.

The same results hold if we replace “embedding” with homomorphism; weak homomorphism; isometric embeddings on a Borel class of discrete Polish metric spaces closed under isometry.
Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)

*For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.***

Corollary (S.-D. Friedman-M.)

*E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that E is Borel-equivalent to \equiv on Mod_φ.***

The same results hold if we replace “embedding” with
Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)

For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.

Corollary (S.-D. Friedman-M.)

E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that E is Borel-equivalent to \equiv on Mod_φ.

The same results hold if we replace “embedding” with

- homomorphism;
Main results

Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)

For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.

Corollary (S.-D. Friedman-M.)

E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that E is Borel-equivalent to \equiv on Mod_φ.

The same results hold if we replace “embedding” with
- homomorphism;
- weak homomorphism;
Main results

Let \mathcal{L} be a language with two binary relational symbols.

Theorem (S.-D. Friedman-M.)

For each analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.

Corollary (S.-D. Friedman-M.)

E is an analytic equivalence relation iff there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that E is Borel-equivalent to \equiv on Mod_φ.

The same results hold if we replace “embedding” with

- homomorphism;
- weak homomorphism;
- isometric embeddings on a Borel class of discrete Polish metric spaces closed under isometry.
Normal trees

For $s, t \in {}^n\omega$, put $s \leq t$ if $s(i) \leq t(i)$ for each $i < n$, and define $s + t$ by setting $s + t(i) = s(i) + t(i)$ for each $i \leq n$.
Normal trees

For \(s, t \in {}^n\omega \), put \(s \leq t \) if \(s(i) \leq t(i) \) for each \(i < n \), and define \(s + t \) by setting \(s + t(i) = s(i) + t(i) \) for each \(i \leq n \).

A function \(f : {}^{<\omega}\omega \to {}^{<\omega}\omega \) is said to be Lipschitz if \(s \subseteq t \Rightarrow f(s) \subseteq f(t) \) and \(|s| = |f(s)| \) for every \(s, t \in {}^{<\omega}\omega \).
Normal trees

For $s, t \in {}^n\omega$, put $s \leq t$ if $s(i) \leq t(i)$ for each $i < n$, and define $s + t$ by setting $s + t(i) = s(i) + t(i)$ for each $i \leq n$.

A function $f : {}^{<\omega}\omega \to {}^{<\omega}\omega$ is said to be Lipschitz if $s \subseteq t \Rightarrow f(s) \subseteq f(t)$ and $|s| = |f(s)|$ for every $s, t \in {}^{<\omega}\omega$.

A tree T on $X \times \omega$ is said to be normal if $(u, s) \in T$ and $s \leq t$ implies $(u, t) \in T$.

Remark: \leq_{\max} is an analytic quasi-order.
Normal trees

For $s, t \in n\omega$, put $s \leq t$ if $s(i) \leq t(i)$ for each $i < n$, and define $s + t$ by setting $s + t(i) = s(i) + t(i)$ for each $i \leq n$.

A function $f : <\omega, \omega \rightarrow <\omega, \omega$ is said to be Lipschitz if $s \subseteq t \Rightarrow f(s) \subseteq f(t)$ and $|s| = |f(s)|$ for every $s, t \in <\omega, \omega$.

A tree T on $X \times \omega$ is said to be normal if $(u, s) \in T$ and $s \leq t$ implies $(u, t) \in T$.

Definition

If S, T are normal trees on $2 \times \omega$, we put $S \leq_{\text{max}} T$ iff exists a Lipschitz f such that $S(s) = \{u \in <\omega, 2 | (u, s) \in S\} \subseteq T(f(s)) = \{u \in <\omega, 2 | (u, f(s)) \in T\}$ for every $s \in <\omega, \omega$.
For \(s, t \in {}^n\omega \), put \(s \leq t \) if \(s(i) \leq t(i) \) for each \(i < n \), and define \(s + t \) by setting \(s + t(i) = s(i) + t(i) \) for each \(i \leq n \).

A function \(f : {}^{<\omega}\omega \rightarrow {}^{<\omega}\omega \) is said to be Lipschitz if \(s \subseteq t \Rightarrow f(s) \subseteq f(t) \) and \(|s| = |f(s)| \) for every \(s, t \in {}^{<\omega}\omega \).

A tree \(T \) on \(X \times \omega \) is said to be normal if \((u, s) \in T \) and \(s \leq t \) implies \((u, t) \in T \).

Definition

If \(S, T \) are normal trees on \(2 \times \omega \), we put \(S \leq_{\text{max}} T \) iff exists a Lipschitz \(f \) such that \(S(s) = \{u \in {}^{<\omega}2 \mid (u, s) \in S\} \subseteq T(f(s)) = \{u \in {}^{<\omega}2 \mid (u, f(s)) \in T\} \) for every \(s \in {}^{<\omega}\omega \).

Remark: \(\leq_{\text{max}} \) is an analytic quasi-order.
Normal form for quasi-orders

Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- R is the projection of S;
- $(u, u, s) \in S$ for every $u \in <\omega^2$ and $s \in <\omega^\omega$ of the same length;
- $(u, v, s) \in S$ and $(v, w, t) \in S$ implies $(u, w, s + t) \in T$.

Modification:

Require also that $(u, v, 0 | u) \in S$ implies $u = v$.

(Simply drop all sequences of the form $(u, v, 0 | u)$ form the S constructed above and check that all the other properties still hold.)
Normal form for quasi-orders

Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- S is the projection of S;
- $(u, u, s) \in S$ for every $u \in <\omega^2$ and $s \in <\omega^\omega$ of the same length;
- $(u, v, s) \in S$ and $(v, w, t) \in S$ implies $(u, w, s + t) \in S$.

Modification:

Require also that $(u, v, 0 | u |)$ $\in S$ implies $u = v$. (Simply drop all sequences of the form $(u, v, 0 | u |)$ form the S constructed above and check that all the other properties still hold.)
Normal form for quasi-orders

Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- R is the projection of S;
Normal form for quasi-orders

Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- R is the projection of S;
- $(u, u, s) \in S$ for every $u \in \langle \omega^2$ and $s \in \langle \omega \omega$ of the same length;
Normal form for quasi-orders

Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- R is the projection of S;
- $(u, u, s) \in S$ for every $u \in <\omega^2$ and $s \in <\omega^\omega$ of the same length;
- $(u, v, s) \in S$ and $(v, w, t) \in S$ implies $(u, w, s + t) \in T$.

Modification:

Require also that $(u, v, 0 \mid u) \in S$ implies $u = v$.

(Simply drop all sequences of the form $(u, v, 0 \mid u)$ form the S constructed above and check that all the other properties still hold.)
Normal form for quasi-orders

Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- R is the projection of S;
- $(u, u, s) \in S$ for every $u \in <\omega^2$ and $s \in <\omega \omega$ of the same length;
- $(u, v, s) \in S$ and $(v, w, t) \in S$ implies $(u, w, s + t) \in T$.

Modification: Require also that $(u, v, 0^{\nu}) \in S$ implies $u = v$.

Lucas Motto Ros

Analytic equivalence relations and bi-embeddability
Each analytic subset of $\omega^2 \times \omega^2$ is the projection of a tree on $2 \times 2 \times \omega$.

Theorem (Louveau-Rosendal)

Let R be a quasi-order on ω^2. Then there is a normal tree S on $2 \times 2 \times \omega$ such that:

- R is the projection of S;
- $(u, u, s) \in S$ for every $u \in <\omega^2$ and $s \in <\omega$ of the same length;
- $(u, v, s) \in S$ and $(v, w, t) \in S$ implies $(u, w, s + t) \in T$.

Modification: Require also that $(u, v, 0 | u |) \in S$ implies $u = v$.

(Simply drop all sequences of the form $(u, v, 0 | u |)$ form the S constructed above and check that all the other properties still hold.)
Completeness of \leq_{max}

Theorem (Louveau-Rosendal)

\leq_{max} is a complete analytic quasi-order.
Completeness of \leq_{max}

Theorem (Louveau-Rosendal)

\leq_{max} is a complete analytic quasi-order.

Idea of the proof: Given an analytic quasi-order R, construct S as before and define the Borel-reduction

$$f(x) = S^x = \{(u, s) \in <\omega (2 \times \omega) \mid (u, x \upharpoonright |u|, s) \in S\}.$$
Completeness of \leq_{max}

Theorem (Louveau-Rosendal)

\leq_{max} is a complete analytic quasi-order.

Idea of the proof: Given an analytic quasi-order R, construct S as before and define the Borel-reduction

$$f(x) = S^x = \{(u, s) \in <\omega(2 \times \omega) \mid (u, x \upharpoonright |u|, s) \in S}\}.$$

Remark: Our modification gives that such f is injective. In fact $(u, u, 0^{\|u\|}) \in S^x$ iff $u \subseteq x$: hence if $x \neq y$ and n is such that $u = x \upharpoonright n \not\subseteq y$ then $(u, u, 0^n) \in S^x \setminus S^y$.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph.
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

\sqsubseteq_{CT} is a complete analytic quasi-order.

Idea of the proof: Borel-reduce \leq_{\max} to \sqsubseteq_{CT} via a function $T \mapsto G_T$, where T is a normal tree on $2^{<\omega} \times \omega$ and $G_T \in CT$.

Construction of G_T:

First define G_0: nodes are of the type $s \in \omega^\omega$ or s^* (for $s \in \omega^\omega \setminus \{\emptyset\}$), and put edges between s^* and s and between s^* and the predecessor s^- of s.

Choose an injective enumeration θ of ω^2 such that $|u| \leq |v| \Rightarrow \theta(u) \leq \theta(v)$ (so that $\theta(\emptyset) = 0$).

For each $(u, s) \in T$ add vertices (u, s, x) where $x \subseteq \vec{0}$ or $x \subseteq 0^2 \theta(u) + 2^{\vec{1} \vec{0}}$. Link (u, s, x) to (u, s, x^-) and (u, s, \emptyset) to s.
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

\sqsubseteq_{CT} is a complete analytic quasi-order.

Idea of the proof: Borel-reduce \leq_{max} to \sqsubseteq_{CT} via a function $T \mapsto G_T$, where T is a normal tree on $2 \times \omega$ and $G_T \in CT$.

Construction of G_T:

First define G_0: nodes are of the type $s \in <\omega\omega$ or s^* (for $s \in <\omega\omega \setminus \{\emptyset\}$), and put edges between s^* and s and between s^* and the predecessor s^- of s. Choose an injective enumeration θ of $<\omega^2$ such that $|u| < |v| \Rightarrow \theta(u) \leq \theta(v)$ (so that $\theta(\emptyset) = 0$). For each $(u, s) \in T$ add vertices (u, s, x) where $x \subseteq \vec{0}$ or $x \subseteq 0^2_{\theta(u)+2}$. Link (u, s, x) to (u, s, x^-) and (u, s, \emptyset) to s.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

\sqsubseteq_{CT} is a complete analytic quasi-order.

Idea of the proof: Borel-reduce \leq_{max} to \sqsubseteq_{CT} via a function $T \mapsto G_T$, where T is a normal tree on $2 \times \omega$ and $G_T \in CT$.

Construction of G_T:
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

\sqsubseteq_{CT} is a complete analytic quasi-order.

Idea of the proof: Borel-reduce \leq_{max} to \sqsubseteq_{CT} via a function $T \mapsto G_T$, where T is a normal tree on $2 \times \omega$ and $G_T \in CT$.

Construction of G_T:

- First define G_0: nodes are of the type $s \in <\omega \omega$ or s^* (for $s \in <\omega \omega \setminus \{\emptyset\}$), and put edges between s^* and s and between s^* and the predecessor s^- of s.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

\sqsubseteq_{CT} is a complete analytic quasi-order.

Idea of the proof: Borel-reduce \leq_{max} to \sqsubseteq_{CT} via a function $T \mapsto G_T$, where T is a normal tree on $2 \times \omega$ and $G_T \in CT$.

Construction of G_T:

- First define G_0: nodes are of the type $s \in ^{<\omega}\omega$ or s^* (for $s \in ^{<\omega}\omega \setminus \{\emptyset\}$), and put edges between s^* and s and between s^* and the predecessor s^- of s.
- Choose an injective enumeration θ of $^{<\omega}2$ such that $|u| \leq |v| \Rightarrow \theta(u) \leq \theta(v)$ (so that $\theta(\emptyset) = 0$).
Completeness of \sqsubseteq_{CT}

A combinatorial tree is a connected and acyclic graph. CT is the collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

\sqsubseteq_{CT} is a complete analytic quasi-order.

Idea of the proof: Borel-reduce \leq_{max} to \sqsubseteq_{CT} via a function $T \mapsto G_T$, where T is a normal tree on $2 \times \omega$ and $G_T \in CT$.

Construction of G_T:

- First define G_0: nodes are of the type $s \in <\omega \omega$ or s^* (for $s \in <\omega \omega \setminus \{\emptyset\}$), and put edges between s^* and s and between s^* and the predecessor s^- of s.
- Choose an injective enumeration θ of $<\omega 2$ such that $|u| \leq |v| \Rightarrow \theta(u) \leq \theta(v)$ (so that $\theta(\emptyset) = 0$).
- For each $(u, s) \in T$ add vertices (u, s, x) where $x \subseteq \hat{0}$ or $x \subseteq 0^{2\theta(u)+2} \hat{1} \hat{0}$. Link (u, s, x) to (u, s, x^-) and (u, s, \emptyset) to s.
Sketch of the proof

Given a witness f of $S \leq_{\text{max}} T$, construct an embedding between G_S and G_T by sending s to $f(s)$, s^* to $f(s)^*$, and (u, s, x) to $(u, f(s), x)$.
Sketch of the proof

Given a witness \(f \) of \(S \leq_{\text{max}} T \), construct an embedding between \(G_S \) and \(G_T \) by sending \(s \) to \(f(s) \), \(s^* \) to \(f(s)^* \), and \((u, s, x) \) to \((u, f(s), x) \).

For the other direction, note that embeddings must preserve distances and (at most) increase valence of vertices. Then use the fact that:

...
Sketch of the proof

Given a witness f of $S \leq_{max} T$, construct an embedding between G_S and G_T by sending s to $f(s)$, s^* to $f(s)^*$, and (u, s, x) to $(u, f(s), x)$.

For the other direction, note that embeddings must preserve distances and (at most) increase valence of vertices. Then use the fact that:

- elements of the form s have valence ω and even distance from other elements of the same form;
Given a witness f of $S \leq_{\text{max}} T$, construct an embedding between G_S and G_T by sending s to $f(s)$, s^* to $f(s)^*$, and (u, s, x) to $(u, f(s), x)$.

For the other direction, note that embeddings must preserve distances and (at most) increase valence of vertices. Then use the fact that:

- elements of the form s have valence ω and even distance from other elements of the same form;
- elements of the form $(u, s, 0^{2\theta(u)+2})$ (for $(u, s) \in T$) have valence 3 and distance $2\theta(u) + 3$ from s;
Sketch of the proof

Given a witness f of $S \leq_{max} T$, construct an embedding between G_S and G_T by sending s to $f(s)$, s^* to $f(s)^*$, and (u, s, x) to $(u, f(s), x)$.

For the other direction, note that embeddings must preserve distances and (at most) increase valence of vertices. Then use the fact that:

- elements of the form s have valence ω and even distance from other elements of the same form;
- elements of the form $(u, s, 0^{2\theta(u)+2})$ (for $(u, s) \in T$) have valence 3 and distance $2\theta(u) + 3$ from s;
- all other vertices have valence 2,
Sketch of the proof

Given a witness f of $S \leq_{\text{max}} T$, construct an embedding between G_S and G_T by sending s to $f(s)$, s^* to $f(s)^*$, and (u, s, x) to $(u, f(s), x)$.

For the other direction, note that embeddings must preserve distances and (at most) increase valence of vertices. Then use the fact that:

- elements of the form s have valence ω and even distance from other elements of the same form;
- elements of the form $(u, s, 0^{2\theta(u)} + 2)$ (for $(u, s) \in T$) have valence 3 and distance $2\theta(u) + 3$ from s;
- all other vertices have valence 2,

and prove that an embedding from G_S to G_T restricted to $<\omega \omega$ is a (well-defined) witness of $S \leq_{\text{max}} T$.
An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices.
An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. OCT is the collection of all countable ordered combinatorial trees.
Ordered combinatorial trees

An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. OCT is the collection of all countable ordered combinatorial trees.

For $s, t \in <\omega \omega$ put $s \preceq t$ if either $|s| < |t|$ or $|s| = |t|$ and $s \leq_{\text{lex}} t$.
An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. OCT is the collection of all countable ordered combinatorial trees.

For $s, t \in \omega$ put $s \preceq t$ if either $|s| < |t|$ or $|s| = |t|$ and $s \preceq_{lex} t$.

For each normal tree T, construct an ordered combinatorial tree G_T using the same construction as before but adjoining the following order \leq_T:

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
Ordered combinatorial trees

An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. OCT is the collection of all countable ordered combinatorial trees.

For $s, t \in <\omega \omega$ put $s \leq t$ if either $|s| < |t|$ or $|s| = |t|$ and $s \leq \text{lex} t$.

For each normal tree T, construct an ordered combinatorial tree G_T using the same construction as before but adjoining the following order \leq_T:

- $s \leq_T t^*$, $s \leq_T (v, t, y)$ and $s^* \leq_T (v, t, y)$
Ordered combinatorial trees

An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. \(\text{OCT} \) is the collection of all countable ordered combinatorial trees.

For \(s, t \in <\omega \omega \) put \(s \leq t \) if either \(|s| < |t| \) or \(|s| = |t| \) and \(s \leq_{\text{lex}} t \).

For each normal tree \(T \), construct an ordered combinatorial tree \(G_T \) using the same construction as before but adjoining the following order \(\leq_T \):

- \(s \leq_T t^* \), \(s \leq_T (v, t, y) \) and \(s^* \leq_T (v, t, y) \)
- \(s \leq_T t \) iff \(s \leq t \)
Ordered combinatorial trees

An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. OCT is the collection of all countable ordered combinatorial trees.

For $s, t \in <\omega \omega$ put $s \leq t$ if either $|s| < |t|$ or $|s| = |t|$ and $s \leq_{\text{lex}} t$.

For each normal tree T, construct an ordered combinatorial tree G_T using the same construction as before but adjoining the following order \leq_T:

- $s \leq_T t^*$, $s \leq_T (v, t, y)$ and $s^* \leq_T (v, t, y)$
- $s \leq_T t$ iff $s \leq t$
- $s^* \leq_T t^*$ iff $s \leq t$
An ordered combinatorial tree is a combinatorial tree with a new transitive relation defined on (some of) its vertices. \(OCT \) is the collection of all countable ordered combinatorial trees.

For \(s, t \in <\omega \omega \) put \(s \leq t \) if either \(|s| < |t| \) or \(|s| = |t| \) and \(s \leq_{\text{lex}} t \).

For each normal tree \(T \), construct an ordered combinatorial tree \(G_T \) using the same construction as before but adjoining the following order \(\leq_T \):

- \(s \leq_T t^* \), \(s \leq_T (v, t, y) \) and \(s^* \leq_T (v, t, y) \)
- \(s \leq_T t \) iff \(s \leq t \)
- \(s^* \leq_T t^* \) iff \(s \leq t \)
- \((u, s, x) \leq_T (v, t, y) \) iff \(s \prec_T t \), or \(s = t \) and \(u \prec_T v \), or \(s = t \), \(u = v \) and \(x \leq y \).
Completeness of \sqsubseteq_{OCT}

Proposition (S.-D. Friedman-M.)

\sqsubseteq_{OCT} is a complete analytic quasi-order.
Completeness of \sqsubseteq_{OCT}

Proposition (S.-D. Friedman-M.)

\sqsubseteq_{OCT} is a **complete** analytic quasi-order.

The proof is identical to the one of the Louveau-Rosendal Theorem:
Completeness of \sqsubseteq_{OCT}

Proposition (S.-D. Friedman-M.)

\sqsubseteq_{OCT} is a complete analytic quasi-order.

The proof is identical to the one of the Louveau-Rosendal Theorem: just check that the orders defined doesn’t obstruct the construction of the embedding from G_S and G_T arising from a witness f of $S \leq_{\max} T$, since f can be taken such that $s \preceq t \iff f(s) \preceq f(t)$ (this is because we consider only normal trees).
Lemma

If S, T are two distinct normal trees then G_S and G_T are not isomorphic.
Lemma

If S, T are two distinct normal trees then G_S and G_T are not isomorphic.

Proof: We prove that if G_S and G_T are isomorphic then $S = T$. An isomorphism i between G_S and G_T must respect the orders \leq_S and \leq_T. Since they coincide on their initial segment $<\omega \omega$, i must be the identity on $<\omega \omega$. Therefore

$$
(u, s) \in S \iff (u, s, 0^{2\theta(u)+2}) \in G_S \\
\iff (u, i(s), 0^{2\theta(u)+2}) = (u, s, 0^{2\theta(u)+2}) \in G_T \\
\iff (u, s) \in T,
$$

i.e. $S \subseteq T$. Similarly, using i^{-1} instead of i we get $T \subseteq S$.

Luca Motto Ros
Analytic equivalence relations and bi-embeddability
Injective action of S_{∞}

Each G_S can be coded Borel-in-S into an ordered combinatorial tree \hat{G}_S on ω: we identify G_S with \hat{G}_S.

Lemma
For every normal tree S and every distinct permutations $p, q \in S_{\infty}$, $j_L(p, G_S) \neq j_L(q, G_S)$.

Proof: S is a well-founded linear order, therefore distinct permutations must at least "exchange" two elements with respect to \leq_S.

Luca Motto Ros
Analytic equivalence relations and bi-embeddability
Each G_S can be coded Borel-in-S into an ordered combinatorial tree \hat{G}_S on ω: we identify G_S with \hat{G}_S.

Lemma

*For every normal tree S and every distinct permutations $p, q \in S_\infty$, $j_L(p, G_S) \neq j_L(q, G_S)$.***
Injective action of S_∞

Each G_S can be coded Borel-in-S into an ordered combinatorial tree \hat{G}_S on ω: we identify G_S with \hat{G}_S.

Lemma

For every normal tree S and every distinct permutations $p, q \in S_\infty$, $j_L(p, G_S) \neq j_L(q, G_S)$.

Proof: \leq_S is a well-founded linear order, therefore distinct permutations must at least “exchange” two elements with respect to \leq_S.
The main theorem

Theorem (S.-D. Friedman-M.)

If R is an analytic quasi-order then there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.
The main theorem

Theorem (S.-D. Friedman-M.)

If R is an analytic quasi-order then there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod$_{\varphi}$.

Proof: Let R' be the analytic quasi-order on $\omega^2 \times S_\infty$ defined by

$$(x, p) R' (y, q) \iff x R y.$$

Obviously $R \sim_B R'$, so it is enough to prove the result for R'.

Luca Motto Ros

Analytic equivalence relations and bi-embeddability
The main theorem

Theorem (S.-D. Friedman-M.)

If R is an analytic quasi-order then there is an $\mathcal{L}_{\omega_1\omega}$-sentence φ such that R is Borel-equivalent to \sqsubseteq on Mod_φ.

Proof: Let R' be the analytic quasi-order on $\omega_2 \times S_\infty$ defined by

$$(x, p) R' (y, q) \iff x R y.$$

Obviously $R \sim_B R'$, so it is enough to prove the result for R'. Consider the Borel map f which sends (x, p) to $j_L(p, G_{S^x})$, where S^x is defined as before. f reduces R' to \sqsubseteq_{OCT} because

$$(x, p) R' (y, q) \iff x R y$$

$$\iff S^x \leq_{\text{max}} S^y$$

$$\iff G_{S^x} \sqsubseteq G_{S^y}$$

$$\iff f(x, p) \sqsubseteq f(y, q).$$
Now check that \(f \) is injective. Take \((x, p) \neq (y, q)\): if \(x \neq y \) then \(f(x, p) \) is not isomorphic to \(f(y, q) \) by strong injectivity of the map \(T \mapsto G_T \) (in particular, \(f(x, p) \neq f(y, q) \)), while if \(x = y \) but \(p \neq q \) then \(f(x, p) \neq f(y, q) \) by the second lemma above.
Now check that f is injective. Take $(x, p) \neq (y, q)$: if $x \neq y$ then $f(x, p)$ is not isomorphic to $f(y, q)$ by strong injectivity of the map $T \mapsto G_T$ (in particular, $f(x, p) \neq f(y, q)$), while if $x = y$ but $p \neq q$ then $f(x, p) \neq f(y, q)$ by the second lemma above.

Note also that the range of f is invariant by definition of f. Since f is an injective Borel map defined on a Borel set we have that:
The main theorem

Now check that f is injective. Take $(x, p) \neq (y, q)$: if $x \neq y$ then $f(x, p)$ is not isomorphic to $f(y, q)$ by strong injectivity of the map $T \mapsto G_T$ (in particular, $f(x, p) \neq f(y, q)$), while if $x = y$ but $p \neq q$ then $f(x, p) \neq f(y, q)$ by the second lemma above.

Note also that the range of f is invariant by definition of f. Since f is an injective Borel map defined on a Borel set we have that:

- the range of f is also Borel: being Borel and invariant, it coincides with Mod_φ for some $\mathcal{L}_{\omega_1\omega}$-sentence φ;
Now check that f is injective. Take $(x, p) \neq (y, q)$: if $x \neq y$ then $f(x, p)$ is not isomorphic to $f(y, q)$ by strong injectivity of the map $T \mapsto G_T$ (in particular, $f(x, p) \neq f(y, q)$), while if $x = y$ but $p \neq q$ then $f(x, p) \neq f(y, q)$ by the second lemma above.

Note also that the range of f is invariant by definition of f. Since f is an injective Borel map defined on a Borel set we have that:

- the range of f is also Borel: being Borel and invariant, it coincides with Mod_φ for some $\mathcal{L}_{\omega_1\omega}$-sentence φ;
- f^{-1} is a Borel function and therefore also a Borel reduction of \sqsubseteq on Mod_φ to R'.

This concludes our proof.
The main theorem

Now check that \(f \) is injective. Take \((x, p) \neq (y, q)\): if \(x \neq y \) then \(f(x, p) \) is not isomorphic to \(f(y, q) \) by strong injectivity of the map \(T \mapsto G_T \) (in particular, \(f(x, p) \neq f(y, q) \)), while if \(x = y \) but \(p \neq q \) then \(f(x, p) \neq f(y, q) \) by the second lemma above.

Note also that the range of \(f \) is invariant by definition of \(f \). Since \(f \) is an injective Borel map defined on a Borel set we have that:

- the range of \(f \) is also Borel: being Borel and invariant, it coincides with \(Mod_\varphi \) for some \(\mathcal{L}_{\omega_1 \omega} \)-sentence \(\varphi \);
- \(f^{-1} \) is a Borel function and therefore also a Borel reduction of \(\sqsubseteq \) on \(Mod_\varphi \) to \(R' \).

This concludes our proof.
Homomorphism and weak homomorphism

Given two \(L \)-structures \(A \) and \(B \) (where \(L = \{ P, Q \} \) contains two binary relational symbols as before), an homomorphism between them is a function \(f : A \rightarrow B \) such that for all \(x, y \in A \)

\[x P^A y \iff f(x) P^B f(y) \quad \text{and} \quad x Q^A y \iff f(x) Q^B f(y). \]
Homomorphism and weak homomorphism

Given two \mathcal{L}-structures A and B (where $\mathcal{L} = \{P, Q\}$ contains two binary relational symbols as before), an homomorphism between them is a function $f : A \rightarrow B$ such that for all $x, y \in A$

\[x \, P^A \, y \iff f(x) \, P^B \, f(y) \text{ and } x \, Q^A \, y \iff f(x) \, Q^B \, f(y). \]

f is said \textbf{weak homomorphism} if for all $x, y \in A$

\[x \, P^A \, y \Rightarrow f(x) \, P^B \, f(y) \text{ and } x \, Q^A \, y \Rightarrow f(x) \, Q^B \, f(y). \]
Homomorphism and weak homomorphism

Given two \mathcal{L}-structures A and B (where $\mathcal{L} = \{P, Q\}$ contains two binary relational symbols as before), an homomorphism between them is a function $f: A \rightarrow B$ such that for all $x, y \in A$

$$x P^A y \iff f(x) P^B f(y) \text{ and } x Q^A y \iff f(x) Q^B f(y).$$

f is said weak homomorphism if for all $x, y \in A$

$$x P^A y \Rightarrow f(x) P^B f(y) \text{ and } x Q^A y \Rightarrow f(x) Q^B f(y).$$

Theorem (S.-D. Friedman-M.)

*If R is an analytic quasi-order then there is an $\mathcal{L}_{\omega_1 \omega}$-sentence φ such that R is Borel-equivalent to the relation of homomorphism (resp. weak homomorphism) on Mod_φ.***
Sketch of the proof

We have just to modify our main construction:

given a normal tree T on $2 \times \omega$ construct the ordered combinatorial tree G_T as before but replacing \leq_T with its strict part $< T$. We claim that on (isomorphic copies of) ordered combinatorial trees of this kind, weak homomorphism, homomorphism and embedding coincide.

Let f be a weak homomorphism between G_S and G_T. First note that f must be injective: if x, y are distinct elements of G_S, either $x < S y$ or $y < S x$. But if $f(x) = f(y)$ then neither $f(x) < T f(y)$ nor $f(y) < T f(x)$.

Now assume $f(x) < T f(y)$: if $x \not\preceq_S y$ then $y < S x$ and hence $f(y) < T f(x)$ (since f is a weak homomorphism), a contradiction!

Finally, let $f(x)$ and $f(y)$ be two linked vertices of G_T: if x and y are not linked in G_S, then the proper (and unique) chain connecting x and y should be mapped to a proper chain connecting $f(x)$ and $f(y)$, contradiction!
Sketch of the proof

We have just to modify our main construction: given a normal tree T on $2 \times \omega$ construct the ordered combinatorial tree G_T as before but replacing \leq_T with its strict part $<_T$. We claim that on (isomorphic copies of) ordered combinatorial trees of this kind, weak homomorphism, homomorphism and embedding coincide.
Sketch of the proof

We have just to modify our main construction: given a normal tree \(T \) on \(2 \times \omega \) construct the ordered combinatorial tree \(G_T \) as before but replacing \(\leq_T \) with its strict part \(<_T \). We claim that on (isomorphic copies of) ordered combinatorial trees of this kind, weak homomorphism, homomorphism and embedding coincide.

Let \(f \) be a weak homomorphism between \(G_S \) and \(G_T \). First note that \(f \) must be injective: if \(x, y \) are distinct elements of \(G_S \), either \(x <_S y \) or \(y <_S x \). But if \(f(x) = f(y) \) then neither \(f(x) <_T f(y) \) nor \(f(y) <_T f(x) \).
Sketch of the proof

We have just to modify our main construction: given a normal tree T on $2 \times \omega$ construct the ordered combinatorial tree G_T as before but replacing \leq_T with its strict part $<_T$. We claim that on (isomorphic copies of) ordered combinatorial trees of this kind, weak homomorphism, homomorphism and embedding coincide.

Let f be a weak homomorphism between G_S and G_T. First note that f must be injective: if x, y are distinct elements of G_S, either $x <_S y$ or $y <_S x$. But if $f(x) = f(y)$ then neither $f(x) <_T f(y)$ nor $f(y) <_T f(x)$.

Now assume $f(x) <_T f(y)$: if $x \not<_S y$ then $y <_S x$ and hence $f(y) <_T f(x)$ (since f is a weak homomorphism), a contradiction!
Sketch of the proof

We have just to modify our main construction: given a normal tree T on $2 \times \omega$ construct the ordered combinatorial tree G_T as before but replacing \leq_T with its strict part $<_T$. We claim that on (isomorphic copies of) ordered combinatorial trees of this kind, weak homomorphism, homomorphism and embedding coincide.

Let f be a weak homomorphism between G_S and G_T. First note that f must be injective: if x, y are distinct elements of G_S, either $x <_S y$ or $y <_S x$. But if $f(x) = f(y)$ then neither $f(x) <_T f(y)$ nor $f(y) <_T f(x)$.

Now assume $f(x) <_T f(y)$: if $x \not<_S y$ then $y <_S x$ and hence $f(y) <_T f(x)$ (since f is a weak homomorphism), a contradiction!

Finally, let $f(x)$ and $f(y)$ be two linked vertices of G_T: if x and y are not linked in G_S, then the proper (and unique) chain connecting x and y should be mapped to a proper chain connecting $f(x)$ and $f(y)$, contradiction!
Our main theorem remains true (in the case of embeddings) if we replace \mathcal{L} with the language \mathcal{L}' containing just one binary relational symbol (in this case we use combinatorial trees rather than ordered combinatorial trees). However the construction is a little bit more difficult.
Our main theorem remains true (in the case of embeddings) if we replace \mathcal{L} with the language \mathcal{L}' containing just one binary relational symbol (in this case we use combinatorial trees rather than ordered combinatorial trees). However the construction is a little bit more difficult.

Disadvantages: One can still prove the analogous statement for homomorphism (in a rather different way), but **NOT** the one for weak homomorphism.
Getting rid of the order

Our main theorem remains true (in the case of embeddings) if we replace \mathcal{L} with the language \mathcal{L}' containing just one binary relational symbol (in this case we use combinatorial trees rather than ordered combinatorial trees). However the construction is a little bit more difficult.

Disadvantages: One can still prove the analogous statement for homomorphism (in a rather different way), but NOT the one for weak homomorphism.

Advantages: One gets as a corollary that each analytic quasi-order is Borel-equivalent to the relation of isometric embedding (injective metric-preserving maps) on a Borel class of discrete Polish metric spaces closed under isomorphism (each discrete space is viewed here as a space on ω).