Dr. Markus Junker — Mathematik II für Informatiker — Sommer 2013

Sammlung typischer Klausuraufgaben

In der Hauptklausur werden nur ca. 10 Aufgaben gestellt. Sie haben dafür 2 Stunden Zeit. 50 % reichen zum Bestehen.

1. Bestimmen Sie die Lösungsmenge von folgendem linearen Gleichungssystem.

$$3x + 4y + z = 0$$
$$x - y - z = 1$$
$$x + 5y + z = 2$$

2. (a) Berechnen Sie eine Basis des von den Vektoren

$$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ -5 \\ -3 \\ 8 \end{pmatrix}$$

aufgespannten Untervektorraumes des \mathbb{R}^4 .

- (b) Ergänzen Sie die gefundene Basis zu einer Basis des \mathbb{R}^4 .
- 3. Berechnen Sie eine Basis des Schnittes $U_1 \cap U_2$ der beiden folgenden Unterverktorräume des \mathbb{R}^4 :

$$U_1 = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \mid x + 3y - 2z + 3w = 0 \right\},$$

$$U_2 = \{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \mid 2x - y + 3z - w = 0 \}.$$

4. Sei $\alpha \in \mathbb{R}$. Interpretieren Sie die Abbildung $\mathbb{R}^2 \to \mathbb{R}^2$, welche durch die Matrix

$$\begin{pmatrix} -\cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

beschrieben wird, geometrisch.

5. Betrachten Sie die lineare Abbildung $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$, welche bezüglich der Standardbasis durch die Matrix

$$\begin{pmatrix} 2 & -1 & -1 \\ 4 & -1 & -3 \\ -2 & 0 & 2 \end{pmatrix}$$

gegeben wird. Bestimmen Sie die Matrix dieser Abbildung bzgl. der Basis

$$v_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

6. Bestimmen Sie jeweils eine Basis von Kern und Bild der linearen Abbildung $\alpha : \mathbb{R}^3 \to \mathbb{R}^4$, welche durch die Matrix

$$\begin{pmatrix} 3 & 2 & 0 \\ 4 & 3 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & -2 \end{pmatrix}$$

gegeben wird.

7. Betrachten Sie

$$M_1 := \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix} \quad \text{und} \quad M_2 := \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

als Matrizen über \mathbb{F}_3 bzw. über \mathbb{F}_5 . Berechnen Sie in beiden Fällen das Produkt $M_1 \cdot M_2$.

- 8. Sei $M = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix}$. Berechnen Sie die Determinante $\det(M)$ und die Inverse M^{-1} .
- 9. Die Erzeugermatrix $G := (\mathrm{id}_{10} | A)$ gibt uns einen Code über \mathbb{F}_3 . Dabei ist A die Matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Geben Sie die zugehörige Prüfmatrix an.

10. Sei (G, \circ) eine Gruppe. Der Zentralisator von $g \in G$ ist definiert durch

$$Z(g):=\{h\in G\mid h\circ g=g\circ h\}.$$

Zeigen Sie, dass für alle $g \in G$ der Zentralisator Z(g) eine Untergruppe von G ist.

11. Betrachten Sie die Abbildung $\varphi:\{1,...,7\} \rightarrow \{1,...,7\},$ die durch die Wertetafel

gegeben ist. Man sieht, dass φ ein Gruppenelement von S_7 ist. Berechnen Sie die Ordnung von φ in S_7 .

12. Berechnen Sie den g.g.T. der Zahlen 36 und 93 und finden Sie eine Darstellung der Form

$$ggT(36, 93) = m \cdot 36 + n \cdot 93$$

mit $m, n \in \mathbb{Z}$.

- 13. Berechnen Sie das multiplikative Inverse von $\overline{5}$ im Restklassenring $\mathbb{Z}/12\mathbb{Z}$.
- 14. Bestimmen Sie die Gruppentafel von $(\mathbb{Z}/9\mathbb{Z})^*$.
- 15. Geben Sie einen Gruppenisomorphismus $(\mathbb{Z}/5\mathbb{Z})^* \to \mathbb{Z}/4\mathbb{Z}$ als Wertetabelle an.
- 16. Berechnen Sie $\varphi(5)$, $\varphi(6)$, $\varphi(7)$, $\varphi(8)$, $\varphi(9)$, $\varphi(10)$, $\varphi(11)$ und $\varphi(12)$, wobei φ die Eulersche φ -Funktion ist.
- 17. Finden Sie eine ganze Zahl x so, dass

$$x \equiv 10 \pmod{9},$$

 $x \equiv 9 \pmod{10}.$

18. Bestimmen Sie den g.g.T. der Polynome $f:=X^4+X+1$ und $g:=X^2+1$ in $\mathbb{F}_2[X]$ und finden Sie eine Darstellung der Form:

$$ggT(f,g) = m \cdot f + n \cdot g,$$

mit $m, n \in \mathbb{R}[X]$.

19. Berechnen Sie die Richtungsableitung der Funktion

$$f(x,y) = \sin(x) + \cos(y)$$

im Punkt x = 0, y = 0 und in Richtung $(\cos(\varphi), \sin(\varphi))$, für einen Winkel $\varphi \in [0, 2\pi)$.

20. Berechnen Sie die Extremstellen der Funktion

$$f(x,y) = x^2 + y^3 + 6 \cdot x \cdot y + 92 \cdot x + 3 \cdot y$$

und bestimmen Sie, ob es sich jeweils um ein Minimum, Maximum oder einen Sattelpunkt handelt.