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1 Introduction
The relation between mathematics and physics is way younger than both of the subjects:
they have existed separately for millennia before bonding together in the XVII century,
and together they have been from that time on; the advantages of the union became
evident as years passed by, the former developing new ideas for theories and structures
and the latter having at his disposal powerful tools to express the surrounding world.

It is no coincidence that physics was previously called “natural philosophy”: most of its
principles arises with a philosophical flavour rather than a mathematical one, and these
philosophical observation are later made into mathematical statements, getting modified
and somehow sharpened.
In this guise, a principle becomes part of a mathematical structure, and as such one can
try to understand whether it’s coherent or not with the axioms of the structure itself:
Poincaré’s Recurrence Theorem, for instance, was firstly proved in the framework of clas-
sical mechanics. In the same paper in which the theorem is proven, the mathematician
remarks that

The world [...] tends at first towards a state where it remains for a long
time without apparent change; and this is consistent with experience; but it
does not remain that way forever, if the theorem cited above is not violated;
it merely stays there for an enormously long time, a time which is longer the
more numerous are the molecules. This state will not be the final death of
the universe, but a sort of slumber, from which it will awake after millions of
millions of centuries. According to this theory, to see heat pass from a cold
body to a warm one, it will not be necessary to have the acute vision, the
intelligence and dexterity of Maxwell’s demon: it will suffice to have a little
patience.1

Thus the theorem shows there exists a contradiction between the Second Law of Ther-
modynamics and Classical Mechanics: anyway, one may hope this is due to flaws in the
theory of Classical Mechanics, and try to show that taking other points of view the con-
tradiction disappears.

This is the aim of the paper, which consists of two independent sections, the first one
approaching the problem by means of probability theory following a model proposed by
Ehrenfest, the second one employing quantum mechanics: as the purpose is to prove the
existence - or the lack - of a contradiction in these structures with respect to the Second
Law, a special emphasis is given to the mathematical aspects of the theories involved,
clarifying the physical correspondences whenever needed.

1H. Poincaré. Le mécanisme et l’expérience. Revue de Metaphysique et de Morale, 4, 534.





2 Stochastic approach
Consider the typical thermodynamic example of a box divided in half by an internal sep-
tum, and let an ideal gas be put in one of the two halves: we want to study the temporal
evolution of the system when the septum is taken away, exploiting a stochastic approach.
We will be using a modeling due to Ehrenfest: imagine the two halves of the box to be
two urns A and B, and put in each urn as many balls as many are the gas particles in
the respective half of the box; for instance, at time t = 0, when the septum has just been
removed, all the balls are in A. Say that the total number of balls is 2N , and label each
ball by a different number.
Now, after a fixed time n randomly choose a number between 1 and 2N , pick the ball
with that number on from the corresponding urn and move it to the other urn. Repeat
the process at times 2n, 3n, . . .

We want to study the evolution of this system, called an Ehrenfest chain, in its most
natural environment, that of the Markov chains.

The chapter is structured as follows:

1. The first paragraph contains some recalls of probability theory;

2. The second introduces Markov chains and some of their features;

3. The third formalizes the concepts of recurrence and transience in this context;

4. The fourth defines an equivalence class and analyzes some of its properties;

5. The fifth takes advantages of the results of the previous one to develop some fun-
damental identities;

6. The last paragraph is dedicated to the analysis of the Ehrenfest chain.

2.1 Recalls of probability theory

We summarize hereby some basic definitions of probability theory.

Definitions. (i) Let Ω be a set and P a σ-algebra of subsets of Ω: the couple (Ω,P)
is called a probabilizable space.

(ii.1) Let P a probability measure on P, namely P : P → [0,1] with the requirements

P (Ω) = 1, P (A) ≥ 0 ∀A ∈P (1)

and ∀{An}n sequence of mutually disjoint subsets of P

P (∪n≥1An) =
∑
n≥1

P (An) (2)

Then the triple (Ω,P, P ) is called a probability space.
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(ii.2) A probability space is said to be complete if every subset of a negligible set for P
(i.e. A ∈P s.t. P (A) = 0) is contained in P himself.
We won’t address this requirement more specifically, as it’s rather technical and it
will not be needed explicitly in the following sections; completion of the probability
space is nonetheless a compulsory request in order to avoid undesirable situation,
and in the following the probability spaces are always assumed to be complete.

(iii.1) Let (Ω,P, P ) be a probability space and (S,S ) a probabilizable space.
By a random element X we understand a function X : Ω→ S such that

{ω ∈ Ω : X(ω) ∈ B} ∈P ∀B ∈ S (3)

Ω and S are respectively called sample space and state space of X, while their
element are respectively called sample events and states.

(iii.2) Set S discrete, and S its power set. Then a function X : Ω → S is said to be a
(discrete) random variable if

{ω ∈ Ω : X(ω) = s} ∈P ∀s ∈ S (4)

Henceforth we will only be dealing with discrete random variable, abbreviating the
term by RV.

[Notation] From now on X denotes an RV , (Ω,P, P ) a probability space and (S,S ) a proba-
bilizable space with discrete state space.
Furthermore, we shorten statements as {ω ∈ Ω : X(ω) = s} by {X = s}, and write
P{X = s} rather than P ({X = s}).

(iv) The expectation E(X) of an RV taking the values {sk} is defined by

E[X]
.
=
∑
k

skP{X = sk} (5)

(v) Let B ∈P such that P (B) > 0. Then the mapping PB(·) : P → [0, 1] defined by

PB(A) = P (A ∩B)/P (B) (6)

is a measure on P. The value PB(A) is called conditional probability of A given B
and is written as P(A|B).

(vi) Let {Bn}n be a partition of Ω such that P (Bn) > 0 ∀n.
If A ∈P, then

P (A) =
∑
n

P (Bn)P (A|Bn) (7)

We will refer to the above identity as Formula of total probability.

(vii) By a discrete stochastic process we understand a sequence of random variables shar-
ing the same probability and probabilizable space, indexed by a discrete parameter
set.

We are now ready to introduce Markov chains.
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2.2 Markov chains: definitions and first properties

In order to get a grasp of the idea behind Markov chains one may make an analogy with
the evolution of a classical physical system: if at time n all the physical coordinates -
the initial values - of the system are known, one doesn’t need any further information to
predict the evolution of the system at time n + 1; stochastically the system is described
at each n, n+ 1, . . . by some Xn, Xn+1, . . . , and the corresponding assumption is that to
predict the probability of Xn+1 taking any fixed value one just needs knowing the proba-
bility of Xn taking the initial value.
Namely, one doesn’t need to investigate the probability distributions of Xn−1 and such,
just as physically one doesn’t need to know the past of the system to predict its future
evolution: the present suffices.

On with the definition:

Definition (Markov chain). A discrete stochastic process X = {Xn, n ≥ 0} on the state
space S is said to be a Markov chain, or MC, if for any sequence {xi}i ⊂ S

P{Xn+1 = xn+1 | Xk = xk, 0 ≤ k ≤ n} = P{Xn+1 = xn+1 | Xn = xn}
.
= p(n, xn, xn+1)

(8)

We call the indexes of the sequence {Xn}n time points, and ∀x, y ∈ S we call p(n, x, y)
the one step transition probability from x to y at time n. When this probability is inde-
pendent of n we say that the Markov chain is homogeneous.
For homogeneous Markov Chain a notion of n-step transition probability from x to y is
given:

pn(x, y) = P{Xn = y | X0 = x} ∀x, y ∈ S, n ∈ N (9)

The initial distribution of an MC is defined as p0(x)
.
= P{X0 = x} ∀x ∈ S.

Please note that from now on we will only be dealing with homogenous MC, which will
be referred at just by MC.

We are ready to prove a preliminary result.

Proposition 2.2.1. Let {Xn, n ≥ 0} be an homogeneous MC with an initial distribution
{p0(x)} and n-step transition probabilities pn(x, y) ∀x, y ∈ S. Then the following holds:

(i) P{Xn = y} =
∑

x∈S p0(x)pn(x, y)

(ii) pn+m(x, y) =
∑

z∈S p
m(x, z)pn(z, y) (Chapman-Kolmogorov relation)

Proof. Ad (i). Fix m ∈ N and let {Qm
x }x∈S be the countable family of pairwise, dis-

joint measurable sets with generic element Qx
m
.
= {Xm = x}, observe ∪x∈SQm

x = Ω and
P (Qm

x ) > 0 ∀x ∈ S.
Then the Formula of Total Probability holds, and we may safely write

P (Qn
y ) =

∑
x∈S

P (Qm
x )P (Qn

y | Qm
x ) (10)
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by choosing m = 0 we get

P{Xn = y} = P (Qn
y ) =

∑
x∈S

P (Q0
x)P (Qn

y | Q0
x) =

∑
x∈S

p0(x)pn(x, y) (11)

Ad (ii). Observe that by the formula of total probability and by definition of conditioned
probability the following holds ∀A,B ∈ S:

P (A|B) =
P (A ∩B)

P (B)
=
∑
x∈S

P (Qm
x )

P (B)
P (A ∩B |Qm

x ) =
∑
x∈S

P ((A ∩B) ∩Qm
x )

P (B)

=
∑
x∈S

P (A ∩ (B ∩Qm
x ))

P (B ∩Qm
x )

P (B ∩Qm
x )

P (B)
=
∑
x∈S

P (A | B ∩Qm
x )P (Qm

x | B)

(12)

This can be used to our advantage. In fact by the previous identity

P (Qn+m
y | Q0

x) =
∑
z∈S

P (Qn+m
y | Qm

z ∩Q0
x)P (Qm

z | Q0
x) (13)

But now

1. by the Markov property P (Qn+m
y | Qm

z ∩Q0
x) = P (Qn+m

y | Qm
z )

2. by homogeneity P (Qn+m
y | Qm

z ) = P (Qn
y | Q0

z)

Hence

pn+m(x, y) = P (Qn+m
y | Q0

x) =

=
∑
z∈S

P (Qm
z | Q0

x)P (Qn
y | Q0

z) =
∑
z∈S

pm(x, z)pn(z, y) (14)

�

In order to investigate the phenomenon of recurrence, we need to formalize the idea
of probability for an event to happen at time n: time must then be thought as a random
variable, and it’s called Markov time.

Definition (Markov time). Let Pn be the σ-algebra generated by the events {Xk ∈
B}k=0,...,n ∀B ∈ S . A random variable t : Ω → N ∪ {+∞} is called a Markov time
relative to {Xn}n if

{t = n} ∈Pn ∀n ∈ N (15)

An useful notion is that of hitting time of a set A ∈ S , defined as

tA
.
= min{n > 0 : Xn ∈ A} (16)

The hitting time of a set is indeed a Markov time, as

{tA = n} = {ω ∈ Ω : tA(ω) = n} =

= {ω ∈ Ω : Xn(ω) ∈ A,Xk(ω) /∈ A, 0 ≤ k ≤ n− 1} ∈Pn

(17)

We get to see how important the notion of hitting time in the next paragraph.
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2.3 Recurrence and transience

Denote by Px(A) the probability of some event A with respect to the MC {Xn}n taking
the initial value x ∈ S, namely

Px(A)
.
= P (A | X0 = x) (18)

Then we define the following probabilities ∀x, y ∈ S:

(i) fn(x, y)
.
= Px{ty = n}

That is, the probability that the first passage from x to y occurs at time n;

(ii) f ∗(x, y)
.
= Px{ty < +∞}

That is, the probability that a passage from x to y eventually occurs.

Now let ν(x) : S → N ∪ {+∞} such that

ν(x)
.
=
∑
n≥1

Ix(Xn(Ω)) ∀x ∈ S (19)

where Ix : S → {0, 1} denotes the indicator function of x, namely

Ix(S)
.
=

{
1 if x ∈ S
0 if x /∈ S

(20)

As time passes, ν(x) increases its value by 1 if Xn may take the value x, thus making for
a (stochastical) visit counter to x. It doesn’t take in account the initial value of the MC,
though, so that the following definition is far more useful in applications:

• g(x, y)
.
= Px{ν(y) = +∞}

That is, the probability of infinitely many visits to the state y for an MC starting
from x.

The following proposition collects some useful identities related to the definitions we
have just given:

Proposition 2.3.1. Let x, y ∈ S. Then

(i) f ∗(x, y) =
∑

n≥1 f
n(x, y)

(ii) Px{ν(y) = n} = f ∗(x, y)[f ∗(y, y)]n−1[1− f ∗(y, y)], provided n ≥ 1

(iii) g(x, y) = f ∗(x, y)g(y, y)

(iv) g(x, x) = limn→+∞[f ∗(x, x)]n

Proof. Ad (i). Observe that the sets {ty = n}n≥1 form a countable family of pairwise
disjoint sets, as t is an RV. Then

f ∗(x, y) = Px{ty < +∞} = Px{∪n≥1{ty = n}} =
∑
n≥1

Px{ty = n} =
∑
n≥1

fn(x, y) (21)
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Ad (ii). First let us prove that

Px{ν(y) ≥ n} = f ∗(x, y)[f ∗(y, y)]n−1, n ≥ 1 (22)

For n = 1, Px{ν(y) ≥ 1} = Px{ty < +∞} = f ∗(x, y), namely the probability of having at
least one visit to y is equal the probability of transition from x to y in a finite time. For
greater n we have to take into consideration the probability of y returning on itself in a
finite time: as an example for n = 2 we have

Px{ν(y) ≥ 2} = Px{ty < +∞}Py{ty < +∞} = f ∗(x, y)f ∗(y, y) (23)

and thus we have by induction equation (22). Now observe

Px{ν(y) = n} =
∑
k≥n

Px{ν(y) = k} −
∑
k≥n+1

Px{ν(y) = k} =

= Px{ν(y) ≥ n} − Px{ν(y) ≥ n+ 1} = f ∗(x, y)[f ∗(y, y)]n−1[1− f ∗(y, y)]

(24)

Ad (iii). Let us denote by ν(y, n) the number of visits to the state y up to the time n.
Then we may calculate g(x, y) as the probability of a transition from x to y at time n
times the probability that infinitely many visits are paid to y from that time on. Namely

g(x, y) =
∑
n≥1

Px{ty = n}Py{ν(y)− ν(y, n) = +∞} (25)

But we’re considering an homogenous MC, thus∑
n≥1

Px{ty = n}Py{ν(y)− ν(y, n) = +∞} =

=
∑
n≥1

Px{ty = n}Py{ν(y) = +∞} = f ∗(x, y)g(y, y)
(26)

Ad (iv). Take x = y in (22). Then

g(x, x) = P (ν(x) = +∞) = lim
n→+∞

Px{ν(x) ≥ n} = lim
n→+∞

[f ∗(x, x)]n (27)

�

Now we are all set to state the definition of recurrent state and prove an important
recurrence criterion.

Definition. A state x ∈ S is called recurrent if f ∗(x, x) = 1, and transient otherwise.

Theorem 1 (Recurrence criterion). A state x is recurrent if and only if∑
n≥0

pn(x, x) = +∞ (28)
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Proof. First we claim that ∀x, y ∈ S we have

f ∗(x, y) = lim
N→+∞

∑N
n=1 p

n(x, y)∑N
n=0 p

n(y, y)
(29)

indeed observe that any n-step transition from x to y may be thought as a composition of
a transition from x to y in n−m steps (n > m) and a permanence of y in the same state
for the remaining m steps; in order to range over all the possible transitions m should be
allowed to vary from 0 to n− 1, namely

pn(x, y) =
n−1∑
m=0

Px{ty = n−m}pm(y, y) =
n−1∑
m=0

fn−m(x, y)pm(y, y) (30)

then
N∑
n=1

pn(x, y) =
N∑
n=1

n−1∑
m=0

fn−m(x, y)pm(y, y) =

=
N−1∑
m=0

pm(y, y)
N∑

n=m+1

fn−m(x, y) =
N−1∑
m=0

pm(y, y)
N−m∑
n=1

fn(x, y)

(31)

Now define

1. {bn}n
.
= {
∑n

k=0 f
k(x, y)}n, b0

.
= 0, and observe bn → f ∗(x, y)

.
= b as n → +∞ by

(i) of the previous proposition;

2. {an}n
.
= {pn(y, y)}n < 1, and observe an ≤ 1∀n ∈ N

Our claim can be now written as

b = lim
N→+∞

∑N
m=0 ambN−m∑N

m=0 am
(32)

In order to show that it is indeed true we examine the two cases

(i)
∑

m≥0 am = +∞

(ii)
∑

m≥0 am < +∞

Suppose (i). Then ∣∣b− ∑N
m=0 ambN−m∑N

m=0 am

∣∣ =
|
∑N

m=0 am(b− bN−m)|∑N
m=0 am

(33)

but now, for N sufficiently large, ∀ε > 0 ∃n̄ = n̄(ε) > 0 s.t. |b−bN−m < ε|, 0 ≤ m < N−n̄;
since ε is arbitrary we may safely choose ε = ε̂ · 2−N < ε̂ · 2−m, 0 ≤ m < N − n̄, for some
ε̂ > 0. Then

|
∑N

m=0 am(b− bN−m)|∑N
m=0 am

< ε̂
|
∑N−n̄−1

m=0 am2−m|∑N
m=0 am

+
|
∑N

m=N−n̄ am(b− bN−m)|∑N
m=0 am

<

<
ε̂∑N

m=0 am
+ max

0≤n≤n̄
|b− bn|

n̄∑N
m=0 am

−→N→+∞ 0

(34)
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Now suppose (ii). Then ∀η > 0 ∃N̄ = N̄(η) > 0 s.t.
∑q

n=N̄
an < η ∀q ≥ N̄ . Choose an η

and pick N > N̄ , then

∣∣b− ∑N
m=0 ambN−m∑N

m=0 am

∣∣ < |∑N̄
m=0 am(b− bN−m)∑N

m=0 am
+

η∑N
m=0 am

∣∣ (35)

Now recall that for N sufficiently large, ∀ε > 0 ∃n̄ = n̄(ε) > 0 s.t. |b − bN−m < ε|, 0 ≤
m < N − n̄; pick an ε, by choosing N sufficiently large we may satisfy N̄ < N − n̄. Then
we may proceed as previously and prove

N̄∑
m=0

am(b− bN−m) <
N−n̄∑
m=0

am(b− bN−m) < ε (36)

If ε̄ .= ε+ η we have ∣∣b− ∑N
m=0 ambN−m∑N

m=0 am

∣∣ < ε̄

a0

(37)

The thesis follows taking the infimum on ε̄ on both sides of the equality.
Now that our first claim is proven, we can choose x = y and observe that (i) ⇒ x
recurrent, while (ii)⇒ x transient, hence the thesis. �

This criterion enables us to prove that the visits paid to a transient state are always
finite, and to give an explicit expression for its expected value. The first result is quite
intuitive, and important nonetheless, whereas the second will be particularly useful in the
next paragraph.

Proposition 2.3.2. Let u, x be states, denote by µ(u, x)
.
= Eu(ν(x)), the expected number

of visits to x for an MC starting from u. Let x be transient, then the following holds:

(i) g(u, x) = 0

(ii) µ(u, x) = f∗(u,x)
1−f∗(x,x)

< +∞

Proof. Ad (i). By Proposition 5.2.2 (iii)-(iv) and the transience of x we have

g(u, x) = f ∗(u, x)g(x, x) = f ∗(u, x) lim
n→+∞

[f ∗(x, x)]n = 0 (38)

Ad (ii). By Proposition 5.2.2 (ii) we have

µ(u, x) =
∑
n≥1

nPu(ν(x) = n) = f ∗(u, x)[1− f ∗(x, x)]
∑
n≥1

nf ∗(x, x)n−1

= f ∗(u, x)
1− f ∗(x, x)

(1− f ∗(x, x))2
=

f ∗(u, x)

1− f ∗(x, x)
< +∞

(39)

�
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2.4 Communication between states

We want to study the structure of the state space of an MC. It turns out that there is an
equivalence relation linking communicating states, and more precisely:

Definition. We say that a state x leads to state y and write x −→ y if ∃n ≥ 0 :
pn(x, y) > 0. If both x −→ y and x ←− y hold, we say that x and y communicate, and
write x←→ y.

The relation ‘communication" is indeed an equivalence relation in the state space of
an homogeneous MC, as it is

1. Reflexive: p0(x, x) = 1 > 0 ∀x ∈ S;

2. Symmetric: by definition;

3. Transitive: if x←→ y and y ←→ z for some x, y, z ∈ S, then ∃m,n ∈ N such that
pm(x, y)pn(y, z) > 0. Then by the Chapman-Kolmogorov relation we have

pn+m(x, z) =
∑
u∈S

pn(x, u)pm(u, z) ≥ pm(x, y)pn(y, z) > 0 (40)

that is, x −→ z. Similarly z −→ x.

When the state space of an MC is an equivalence class with respect to ←→, we say
that the corresponding MC is irreducible. It is natural to expect that an irreducible MC
over a finite state space contains just recurrent states: we state the result as a theorem
for its future importance.

Theorem 2. Let {Xn}n be an irreducible MC with finite space S: then all the states of
{Xn}n are recurrent, and the MC is said to be recurrent.

Proof. We divide the proof in two steps:

(i) S contains at least one recurrent state;

(ii) For any x, y ∈ S if x is recurrent and x −→ y then y is recurrent.

Ad (i). Ad absurdum: suppose that all the states in S are transient, then ∀x, y ∈ S we
have from Proposition 5.2.3 (ii) that

+∞ > µ(x, y) = Ex[
+∞∑
n=1

Iy(Xn)] =
+∞∑
n=1

Px{Xn = y} =
+∞∑
n=1

pn(x, y) (41)

Hence limn→+∞ p
n(x, y) = 0. As this limit exists and the state space is finite we may

write
0 =

∑
x∈S

lim
n→+∞

pn(x, y) = lim
n→+∞

Px{Xn ∈ S} = lim
n→+∞

1 = 1. (42)

Hence (i).
Ad (ii). As x −→ y, there exists m ∈ N such that pm(x, y). Let us define

M
.
= min{m : pm(x, y) > 0} (43)
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We proceed claiming f ∗(y, x) = 1.
Indeed, assume the contrary: then 1− f ∗(y, x) > 0, namely there is a positive probability
for a particle starting in y of never visiting x. Then pM(x, y)(1 − f ∗(y, x)) > 0, that is,
there is a positive probability for a particle starting from x to get to y in M steps and
then never coming back to x.
But we know from Proposition 5.2.2 (iv) that P{ν(x) = +∞} = 1, hence a contradiction
and f ∗(y, x) = 1.
Observe that f ∗(y, x) = 1 ⇒ ∃N ∈ N : pN(y, x) > 0. By an obvious extension of the
Chapman-Kolmogorov relation we have

pN+n+M(x, y) =
∑
u,v∈S

pN(y, u)pn(u, v)pM(v, y) ≥

≥ pN(y, x)pn(x, x)pM(x, y) ∀n ∈ N
(44)

Hence

+∞∑
n=0

pn(y, y) =
N+M∑
n=0

pn(y, y) +
+∞∑
n=0

pN+n+M(y, y)

≥
+∞∑
n=0

pN+n+M(y, y) ≥ pN(y, x)pM(x, y)
+∞∑
n=0

pn(x, x) = +∞
(45)

where we have used

(a) pN(y, x) > 0, pM(x, y) > 0 by construction;

(b)
∑+∞

n=0 p
n(x, x) = +∞ by the recurrence criterion.

We can use the recurrence criterion again to conclude that y is recurrent as well, and
thus complete the proof. �

In the next paragraph we work with irreducible MCs over finite state spaces, giving
the last definitions and proving one important identity.

2.5 Stationary distributions

Consider an MC {Xn}n over a finite state space. By Proposition 2.2.1(i)

P{Xn = y} =
∑
x∈S

p0(x)pn(x, y) (46)

Now suppose that the system evolves so that P{Xn = y} = p0(y) ∀y ∈ S. If this is the
case we denote π(x)

.
= p0(x), and (46) becomes

π(x) =
∑
u∈S

π(u)pn(u, x) (47)

Let us show that if the above equality is valid for n = 1, then it is ∀n ∈ N, provided
we’re working in a finite state space. Indeed, if (46) holds for n = 1, let us prove our
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claim by induction: that is, we suppose it holds for n and show that then it does hold for
n+ 1 too. The proof is straightforward:∑

u∈S

π(u)pn+1(u, x) =
∑
u∈S

∑
v∈S

π(u)pn(u, v)p(v, x) =
∑
v∈S

π(v)p(v, x) = π(x) (48)

We’re ready to give the definition of stationary distribution.

Definition (Stationary distribution). Let S be a finite state space, let π : S → [0, 1] such
that

(i)
∑

x∈S π(x) = 1

(ii) π(x) =
∑

u∈S π(u)p(u, x) ∀x ∈ S

then {π(x)}x∈S is called a stationary distribution.

The definition has an immediate physical meaning, but before proceeding we’d rather
clarify some language issues.

Definitions. (i) We say that a physical quantity related to a particle obey to some
distribution {p∗(x)}x∈S if when a measurement of the said quantity is made it yields
the result x with a probability p∗(x). We call x a state of the particle.
When there is no need to refer to a particular physical quantity, we will simply say
that the particle obeys to the distribution {p∗(x)}x∈S.

(ii) Many particles make up a system; if all of them obey the same distribution {p∗(x)}x∈S,
we say that the system obeys to the distribution {p∗(x)}x∈S.

Now observe that no matter the value of n in (47), π(x) stays constant, that is, if a
particle obeys {π(x)}x∈S the probability of finding it in some state x is time independent;
a direct consequence of this fact is that if a system obeys to {π(x)}x∈S, the fraction of
particles in each of the possibile states of the system is “more or less” constant - namely,
we are assuming that if the number of particles N is large enough Nπ(x) ∈ N ∀x ∈ S.
Thus the notion of stationary distribution is closely related to that of macroscopic equi-
librium: even if there may be transitions of the single particles from one state to another,
the number of particles in the state is overall the same.

In view of the discussion on the Ehrenfest chain, we would like to give a definition of
mean recurrence time of a state x, that is, we would like to know on average how long
does it take to a particle in state x to get back to x during its temporal evolution. The
rough idea is to consider the ratio of the time elapsed in the complete evolution of the
system to the number of visits paid to x during that time: for our purposes the evolution
process is infinitely long, and the definition needs some mathematical refinements, but
essentially it still works.
We give the definition and then show it is indeed well-posed.
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Definition. Let x, y states, {Xn} an irreducible, recurrent MC. Recall that ν(y)
.
=
∑

n≥1 Iy(Xn)
denotes the number of visits paid to y after n steps, whereas Ex[ν(y, n)] denotes the ex-
pected number of visits paid to y after n steps for a particle starting with state x. It is
easy to see, by definition of ν(y, n)

Ex(ν(y, n)) =
n∑

m=1

pm(x, y) (49)

Define then

ν̄(x, y)
.
= lim

n→∞

1

n

n∑
m=1

pm(x, y) (50)

Then the mean recurrence time τ(y) of the state y is, by definition,

τ(y)
.
==

{
[ν̄(x, y)]−1 if ν̄(x, y) 6= 0
+∞ otherwise (51)

Now for some comments.

(i) First of all, note that τ(y) is by definition independent of the choice of x. That’s
actually the case: to prove it, let x, u, v states and observe

1

n

n∑
m=1

(pm(x, y)− pm(u, y)) =
p(x, y) + p(u, y)

n︸ ︷︷ ︸
=a(n)

+
1

n

n∑
m=1

(pm+1(x, y)− pm+1(u, y))

= a(n) +
1

n

n∑
m=1

∑
v∈S

(p(x, v)− p(u, v))pm(v, y)

= a(n) +
∑
v∈S

(p(x, v)− p(u, v))
1

n

n∑
m=1

pm(v, y)

(52)

The exchange of sums is justified as they’re both finite. Now take the limit for
n→ +∞, and for the moment assume that ν̄(·, y) exists no greater than 1 on both
sides of the equation - we will show it does in (ii). Then

|ν̄(x, y)− ν̄(u, y)| = |0 +
∑
v∈S

(p(x, v)− p(u, v))ν̄(v, y)| ≤
∣∣∣∑
v∈S

(p(x, v)− p(u, v))
∣∣∣ =

=
∣∣∣∑
v∈S

p(x, v)−
∑
v∈S

p(u, v)
∣∣∣ = 0

(53)

(ii) For the definition to make sense, the limit denoted by ν̄(x, y) has to exist for any
two states x, y. We claim it does, and that furthermore ν̄(x, y) ∈ [0, 1]. Indeed

0 ≤ 1

n

n∑
m=1

pm(x, y) ≤ 1

n

n∑
m=1

1 = 1 ∀n ∈ N (54)

moreover, it is easily seen that the sequence is non-decreasing, and made up of
positive terms. Then it converges.
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(iii) There is a simple identity linking the stationary distribution of an MC to its mean
recurrence times, namely

τ(x) =
1

π(x)
(55)

indeed, recall that for a stationary distribution

π(x) =
∑
u∈S

π(u)pm(u, x) ∀m ∈ N (56)

then

π(x) =
1

n

n∑
m=1

∑
u∈S

π(u)pm(u, x) =
∑
u∈S

π(u)
1

n

n∑
m=1

pm(u, x) (57)

and by letting n→ +∞ we get our identity.

Now we have all the results we need to examine the Ehrenfest chain in detail.

2.6 Ehrenfest chain

First of all, let’s make sure we are working with an MC.
Recall that the total number of balls is 2N and focus on urn A: the possible states of
the urn - that is, the number of balls contained in it - ranges from 0 to 2N , extremes
included, spanning all the integers.
Let {Xn}n be the RVs related to the state of the urn at any time n ∈ N: by construction

P{Xn+1 = xn+1 | Xk = xk, 0 ≤ k ≤ n} = P{Xn+1 = xn+1 | Xn = xn} (58)

in fact at time n + 1 the number of balls in urn A either increase by 1 or decrease by
1, unless we’re in the extremes, with a probability that varies according to the same
number before the extraction. The probability of the number of balls increasing equals
the probability of extracting a number corresponding to a ball not contained in the urn;
vice versa, the probability of losing a ball equals the probability of the extraction of a
number whose ball is contained in the urn: there aren’t any other possibilities. Note that
the process is time homogeneous.
The transition probabilities look like

p(m,m− 1) =
m

2N

p(m,m+ 1) =
2N −m

2N
p(m, k) = 0, k 6= m± 1

(59)

To sum it up, we have a time homogeneous MC over a finite state space. Is it irreducible?
It is: as we have just seen each state communicates with the previous and following one,
namely

p(m,m− 1) =
m

2N
> 0; p(m− 1,m) =

2N + 1−m
2N

> 0 (60)

unless m = 0. But p(0, 1) = 1 > 0, and for m = 1 the inequalities above are verified: by
transitivity all the states are communicating, and the Ehrenfest chain is irreducible.
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By Theorem 2 an irreducible MC over a finite state space is a recurrent MC. Indeed
observe that to have a nonzero probability of a state recurring we need just two steps:

p2(m,m) =
∑
l∈S

p(m, l)p(l,m) = p(m,m+ 1)p(m+ 1,m) + p(m,m− 1)p(m− 1,m)

=
2Nm−m2 +N

2N2
=

2N −m
2N2

m+
1

2N
> 0 ∀m = 0, 1, . . . , 2N

(61)

Now we want to estimate the mean recurrence times of the states of the Ehrenfest chain:
it is most convenient to do so by computing the stationary distribution π(x) of the chain,
in order to exploit the relation

τ(x) =
1

π(x)
(62)

Observe that τ(x) is well defined since we proved the chain to be irreducible and recurrent;
as for π(x), we know that by definition two conditions must hold:

(i)
∑

x∈S π(x) = 1

(ii) π(x) =
∑

u∈S π(u)p(u, x) ∀x ∈ S

Let’s focus on (ii). We have recursively

π(0) =
1

2N
π(1)⇒ π(1) = 2Nπ(0)

π(1) = π(0) +
2

2N
π(2)⇒ π(2) =

2N(2N − 1)

2
π(0)

π(2) =
2N − 1

2N
π(1) +

3

2N
π(3)⇒ 2N(2N − 1)(2N − 2)

6
π(0)

(63)

We see that generally

π(x) =

(
2N

x

)
π(0), x = 0, 1, . . . , 2N (64)

Now observe
K∑
i=0

(
K

i

)
= 2K (65)

Indeed, by the binomial theorem (x + y)k =
∑k

i=0

(
k
i

)
xiyk−i, and by choosing x = y = 1

(65) follows.
Then (i) yields π(0)22N = 1. In conclusion

π(x) =

(
2N

x

)
2−2N (66)

Thus the mean recurrence time of the generic state x is

τ(x) = 22N x!(2N − x)!

2N !
(67)
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Observe that for x = 0 and x = 2N the mean recurrence is time is enormous:

τ̄
.
= τ(0) = τ(2N) = 22N (68)

In order to give a rough estimate, take for instance N ' 1023 and let 210 = 1024 ' 103:
then τ̄ ' 10(1022).
Now this is just the number of “extractions” it takes to have a recursion: by multiplying
it for a typical time of the system one can try to convert the result in seconds; we may
choose as a typical time the inverse of the collision frequency. Suppose to work with
Helium at STP, what we get is ∆ttyp,He ' 10−13s 2.
Then the mean recurrence time is THe = ∆ttyp,He · τ̄ ' 10(1022−13)s ' 10(1022)s. Observe
that for x = N the same computation yields, by making use of the Stirling approximation,
tHe '

√
π1023

2
10−13s ' 10−2s!

Asking for the mean recurrence time of the state 0 or 2N is equivalent to ask the frequency
at which the gas is found all contained in one half of the box: the time we obtain is so
large that we may safely consider the process of a gas previously enclosed in an half of
the box spreading all over the box to be irreversible.

2see HyperPhysics, http://hyperphysics.phy-astr.gsu.edu
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3 Quantum approach

While the Ehrenfest chain has the advantages of giving a simple model, it lacks both ac-
curacy and depth: the dynamics of the system is totally neglected in favour of a stochastic
viewpoint, and the very ideas of “extractions" and discrete time are quite far from the
actual behavior of the system.
On the other hand, the quantum theory is less simple both in terms of understanding of
the model and mathematics implied, but it lets us push our analysis further by elaborat-
ing more information about the system and giving a fuller response.

The aim of the chapter is to build a wave function for a quantum gas of non-interacting
particles and show that a recurrence theorem holds, giving an estimate of the recurrence
time for a sample system.
The chapter is structured as follows:

1. The first paragraph introduces the problem from a physical point of view, empha-
sizing the concepts we need to formalize;

2. The second paragraph collects some results on tensors;

3. The third paragraph collects some results on groups;

4. The fourth paragraph proves and comments the recurrence theorem;

3.1 Quantum gases and exchange degeneracy

Consider a system of N non-interacting particles with the same mass, and label their
positions by r1, . . . , rn, setting t as the time coordinate for the system. Spin is not relevant
by now, and we ignore it; we suppose the particles to be confined in a finite volume V .
The state function of the system may be written in the spatial coordinates framework as
some ψ = ψ(r1, . . . , rn, t) satisfying the Schrödinger equation

i~∂tψ = Hψ (69)

where H is the Hamiltonian operator for the system. As the particles do not mutually
interact we may write it down as

H =
N∑
i=1

Hi (70)

with the His being the Hamiltonians for the single particles.
The normalization request for the spatial parts reads out∫

Vx...xV
|ψ(r1, . . . , rn, t)|2d3Nµ = 1 ∀t ∈ R (71)



with d3Nµ denoting the 3N -dimensional Lebesgue measure.
We conclude ψ(·, t) ∈ L2(VN , d3Nµ) ∀t ∈ [0,+∞).

For our purposes it is not restrictive to assume the Hamiltonian to be time indepen-
dent; furthermore, we consider only systems with a discrete energy eigenvalues set E .
When these hypotheses are made we know that the the general solution of the Schrödinger
equation may be written as ∑

E∈E

aEφE(r) exp (−iEt) (72)

Where r collects all the N -tuple of coordinates, ~ = 1, and

HφE(r) = EφE(r) ∀E ∈ E (73)

Now we would like to use at our advantage equation (70). In order to do so, consider the
ith particle’s stationary Schrödinger equation

Hiϕi(ri) = Eiϕi(ri) (74)

and observe that the ith Hamiltonian will regard the jth particle’s stationary wave func-
tion as a constant whenever i 6= j. Now observe that ∀E ∈ E we can find an eigenvalue
N -tuple (E1, . . . , En) such that

∑N
i=1Ei = E, then it is easily seen that

φE(r) .
=

N∏
i=1

ϕi(ri) (75)

satisfies equation (73).

Mathematically this solution makes sense - indeed, it solves the equation of motion. But
what about the physical meaning? Our simple model of a quantum gas is that of a system
made up of N “equivalent" particles, that is, particles with the same physical properties
(e.g. mass, charge...): therefore the single particle Hamiltonians Hi have all the same
form, and the domain is the same as well, namely L2(VN). They are, indeed, all the same
operator, and it is just us making a distinction by assigning each of them to a different
particle: but this is just a virtual difference, a problem of bookkeeping without any cor-
respondence in the physical reality.
Now we may expect this misunderstanding to have consequences on the mathematical
form of the solution too. That’s the direction we’ll be investigating on.

Before addressing the quandary, let’s clarify the meaning of φi(rj) for i 6= j: it is the
wave function with energy Ei assigned to the framework of the jth particle, namely it
satisfies

Hjφi(rj) = Eiφi(rj) (76)

as all the Hamiltonians have the same form and therefore the same eigenvalues.
A direct consequence of this fact is that any permutation of particle, any reordering of
the function’s indexes, yields another possible solution of the equation of motion. If a
permutation is defined, naturally, as a bijection of the form

σ : {1, . . . , N} → {1, . . . , N} (77)

24



we may conclude that if
∏N

i=1 ϕi(ri) solves the stationary equation of motion then

N∏
i=1

ϕσ(i)(ri) (78)

does too, yielding the same eigenvalue.
We have found a degeneracy, but this is not a problem: the problem is that it cannot be
solved, for it doesn’t exist an operator who can distinguish any two of those degenerate
solutions, for we made up the degeneracy in first place: the particles are not distinguish-
able.
A good way to get out of this is to select from the set of all possible solutions a smaller
class of solutions who have the physical meaning we ask for. When making measurement
what we determine is not the wave function, but rather its absolute value: therefore we
would like wave functions whose absolute value does not to change under swaps, namely

||
N∏
i=1

ϕi(ri)||2 = ||
N∏
i=1

ϕσ(i)(ri)||2 (79)

for any possible permutations.

Now the question is: is there a way to obtain solutions of this form from the solution
we got before? And how do we transfer the idea of swapping indexes to the idea of swap-
ping single particle wave functions? Is there a way to do so?

What we had was a good mathematical solution with physical problems. Now we have
the physical solution, but we lack the proper mathematical tools for an in-depth analysis.
The next paragraph is devoted to the construction of these tools.

3.2 Some recalls about tensors on Hilbert spaces

Firstly some basic definitions (and a fact) about tensors:

Definitions. Let V1, ..., Vn (n ≥ 1) vector spaces on K = R or C, L(V ∗1 , ..., V
∗
n ) the linear

space of multilinear maps from V ∗1 × ...×V ∗n to K, V ∗ denoting the dual space of V . Then

(i) if (u1, ..., un) ∈ V1 × ...× Vn, L(V ∗1 , ..., V
∗
n ) 3 u1 ⊗ ...⊗ un is defined as

u1 ⊗ ...⊗ un(v1, ..., vn)
.
= 〈u1, v1〉....〈un, vn〉 ∀(v1, ..., vn) ∈ V ∗1 × ...× V ∗n (80)

where 〈, 〉 is the pairing between elements of V and V ∗ respectively.
We call u1 ⊗ ...⊗ un tensor product of (u1, ..., un).

(ii) The map ⊗ : V1 × ...× Vn → L(V ∗1 , ..., V
∗
n ) such that ⊗((u1, ..., un)) = u1 ⊗ ...⊗ un

is called tensor product map.

(iii) The vector subspace Im(⊗) of L(V ∗1 , ..., V
∗
n ) is denoted by V1⊗ ...⊗ Vn and is called

tensor product of the spaces V1, ..., Vn.
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(Universality) Let W a vector space, f : V1 × ...× Vn → W a multilinear mapping.
Then there exists an unique linear mapping f⊗ .

= f ◦ ⊗ : V1 ⊗ ...⊗ Vn → W .

From now on we will be working on N copies of the Hilbert space (H, (·|·)) on C,
denoting H⊗ ...⊗H︸ ︷︷ ︸

Ntimes

.
= HN .

The next proposition collects some useful properties of HN .

Proposition 3.2.1. Let (H, (·|·)) an Hilbert space on C, consider its tensor product HN .
Then

• HN can be enriched with an Hermitean scalar product (·|·)⊗ defined as

(u1 ⊗ ...⊗ uN |v1 ⊗ ...⊗ vN)⊗
.
= (u1|v1)...(uN |vN) ∀ui, vi ∈ H, i = 1, ..., N (81)

• The completion of HN with respect to (·|·)⊗ is an Hilbert space, which we will denote
by HN

⊗ and call Hilbertian tensor product;

• If {ei}i∈I is an Hilbert basis for H, then {ei1 ⊗ ...⊗ eiN}i1,...,iN∈I is an Hilbert basis
for HN

⊗ .

The reason for which we want to work with spaces of this sort is that permutations
may be conveniently represented - in a sense that we’ll see more precisely in a while - on
the tensor product of vectorial spaces.
We have already observed that our wave function’s spatial part belongs to the space
L2(V , d3Nµ): we would like to prove that L2(V , d3Nµ) can be seen - i.e.: is isomorphic to
- some Hilbertian tensor product. That’s the content of the following theorem.

Theorem 3. Let V a bounded subset of V, H .
= L2(V , d3µ). Then HN

⊗ is naturally
isomorphic to L2(VN , d3Nµ).

Proof. We know that H admits an Hilbert basis {ei}i∈I , then by proposition (3.2.1) HN
⊗

admits a basis {ei1 ⊗ ...⊗ eiN}i1,...,iN∈I .
As {ei1 · ... · eiN}i1,...,iN∈I is a basis for L2(VN , d3Nµ), it sounds quite natural to propose
an association of the form

HN
⊗ 3 ei1 ⊗ ...⊗ eiN 7−→

A
ei1 · ... · eiN ∈ L2(VN , d3Nµ) (82)

and try to extend it on the whole space.
In order to do so, observe that ∀v ∈ HN

⊗ there exists a sequence of scalars such that
v =

∑
i1,...,iN∈I c

i1,...,iN
v ei1 ⊗ ...⊗ eiN ; then we define Ã : HN

⊗ → L2(VN , d3Nµ) as

Ã(v)
.
=

∑
i1,...,iN∈I

ci1,...,iNv A(ei1 ⊗ ...⊗ eiN ) =
∑

i1,...,iN∈I

ci1,...,iNv ei1 ...eiN (83)

observe that Ã(v) < +∞ ∀v ∈ HN
⊗ , as the series on the right side must converge by

definition of A and by the fact that {ei1 · ... · eiN}i1,...,iN∈I is a basis for L2(VN , d3Nµ);
moreover Ã is linear by construction, then we may conclude it is continuous.
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Such an extension is unique. Indeed, let B be another linear, continuous extension of A,
then:

B(v) =
∑

i1,...,iN∈I

ci1,...,iNv B(ei1 ⊗ ...⊗ eiN ) =
∑

i1,...,iN∈I

ci1,...,iNv B(ei1 ⊗ ...⊗ eiN )

=
∑

i1,...,iN∈I

ci1,...,iNv A(ei1 ⊗ ...⊗ eiN ) = Ã(v)
(84)

Now let’s show that Ã is an isomorphism.

• Injectivity: suppose Ã(v) = y = Ã(w) for some v, w ∈ HN
⊗ , y ∈ L2(VN , d3Nµ), then

0 = Ã(v)− Ã(w) = Ã(v − w) =
∑

i1,...,iN∈I

(ci1,...,iNv − ci1,...,iNw )ei1 ...eiN (85)

but {ei1 · ... · eiN}i1,...,iN∈I is a basis for L2(VN , d3Nµ), so that

ci1,...,iNv − ci1,...,iNw = 0 ∀i1, ..., iN ∈ I (86)

therefore v = w.

• Surjectivity: pick y ∈ L2(VN , d3Nµ). We may write it in terms of the basis, therefore

y =
∑

i1,...,iN∈I

ci1,...,iNy ei1 ...eiN =
∑

i1,...,iN∈I

ci1,...,iNy A(ei1 ⊗ ...⊗ eiN ) =

= Ã

( ∑
i1,...,iN∈I

ci1,...,iNy ei1 ⊗ ...⊗ eiN
)

= Ã(v)
(87)

for some v ∈ HN
⊗ , by its completeness.

• Scalar product preservation: let (·|·)⊗ the scalar product of HN
⊗ , (·|·) the one of

L2(VN , d3Nµ). Then

(A(v)|A(w)) =
∑

i1,...,iN∈I

∑
j1,...,jN∈I

ci1,...,iNv ci1,...,iNw δi1j1 ...δiNjN = (v|w)⊗ (88)

�

This theorem lets us choose a more convenient domain for our wave function, that is
- we write it explicitly once and for all - L2(V , d3µ)⊗ ...⊗ L2(V , d3µ)︸ ︷︷ ︸

Ntimes

.
= L N(V).

Furthermore, we denote L2(V , d3µ)× ...× L2(V , d3µ)︸ ︷︷ ︸
Ntimes

.
= L N

× (V)
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3.3 The group of permutations

We defined a permutation as a bijection of a set of indexes {1, . . . , N} ⊂ N into itself:
with this definition we can permute indexes, but what we would like to have is an object
that swaps the wave functions generating in turn other wave functions, just as the original
permutation generates sets of indexes from sets of indexes.

First of all, let IN
.
= {1, . . . , N} and observe that the set of all permutations σ : In → In

makes up a group when endowed with the usual composition rule for maps ◦.
The group structure is self-evident, indeed

(i) ◦ is associative by definition;

(ii) the group unit is Iσ, the identity on IN ;

(iii) each σ is invertible, as it is bijective.

We denote the group of permutations on IN by PN .
The group structure allows us to explore representations of the group in other spaces.
More precisely,

Definitions. 1. Let (G1, ◦1), (G2, ◦2) groups.
A group homomorphism from (G1, ◦1) to (G2, ◦2) is a mapping h which preserves
the group structure, that is

h(ga ◦1 gb) = h(ga) ◦2 h(gb) (89)

2. Let (G, ◦G) a group, V a vector space and (GL(V ), ◦) the group made up by the set
of automorphisms of V with the usual composition rule for maps.
A representation of (G, ◦G) on V is a group homomorphism from (G, ◦G) to (GL(V ), ◦).

Now for the main goal, namely a representation of PN on L N(V): we want to associate
to each σ ∈ PN some σ⊗ ∈ GL(L N(V)). That’s not hard when observing that we can
easily build a σ× : L N

× (V) → L N(V) : (v1, ..., vN) 7→ vσ−1(1) ⊗ ... ⊗ vσ−1(N), and then
determine uniquely the linear map we looked for by universality:

σ⊗ : L N(V)→ L N(V) : v1 ⊗ ...⊗ vN 7→ vσ−1(1) ⊗ ...⊗ vσ−1(N) (90)

And here’s the crucial result:

Theorem 4. The mapping

PN 3 σ 7−→
A

σ⊗ ∈ GL(L N(V)) (91)

is a representation of PN on L N(V).

Proof. Two steps:
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• Let us show the group structure is preserved, that is

A(σ1 ◦ σ2) = A(σ1) ◦ A(σ2) (92)

to have it proven, we should show it holds for any v1 ⊗ ... ⊗ vN ∈ L N(V) applied
on the left and right side of the equation. Indeed

(A(σ1) ◦ A(σ2))(v1 ⊗ ...⊗ vN) = σ⊗1 (σ⊗2 (v1 ⊗ ...⊗ vN)) = σ⊗1 (vσ−1
2 (1) ⊗ ...⊗ vσ−1

2 (N))

= vσ−1
2 (σ−1

1 (1)) ⊗ ...⊗ vσ−1
2 (σ−1

1 (N)) = v(σ1◦σ2)−1(1)) ⊗ ...⊗ v(σ1◦σ2)−1(N)

= A(σ1 ◦ σ2)(v1 ⊗ ...⊗ vN)

(93)

by choosing as v1⊗ ...⊗vN the Hilbert basis elements of L N(V) and observing that
σ⊗ is bounded - an isometry, actually -, hence continuous, the thesis follows.

• Let us show σ⊗ ∈ GL(L N(V)). Linearity is given by construction, as for bijectivity
observe that by the first step

σ⊗ ◦ (σ⊗)−1 = (σ ◦ σ−1)⊗ = (Iσ)⊗ = Iσ⊗ (94)

The last equality is easily proven to be true when noticing (Iσ)⊗ : v1 ⊗ ... ⊗ vN 7→
v1 ⊗ ...⊗ vN , and the existence of left inverse is analogously verified.

�

Now that we have learned to swap functions, it’s time to find out what kind of per-
mutations generates the wave functions we look for.

Definitions. 1. We call transposition a permutation that swaps just two elements.
Furthermore, it holds true that any permutation may be expressed as composition
of a finite number η of transpositions, whose parity is independent from the chosen
composition; the parity εσ of a permutation is defined as

εσ =

{
1 if η is even
−1 if η is odd

(95)

2. φ ∈ L N(V) is said to be symmetric if σ⊗φ = φ ∀σ ∈PN ;

3. φ ∈ L N(V) is said to be anti symmetric if σ⊗φ = εσφ ∀σ ∈PN ;

The good news is that whenever φ is either symmetric or antisymmetric

||σ⊗φ(r)||2 = ||φ(r)||2 (96)

and now we can state more precisely what kind of wave function we want: a symmetric
or anti symmetric wave function. The bad news is that we don’t know how to get one.
Luckily, the following proposition holds:
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Proposition 3.3.1. Define the linear operators

A : L N(V)→ L N(V) : φ 7→ 1

N !

∑
σ∈PN

εσσ
⊗φ (97)

and
S : L N(V)→ L N(V) : φ 7→ 1

N !

∑
σ∈PN

σ⊗φ (98)

then ∀φ ∈ L N(V)

(i) Aφ is anti symmetric;

(ii) Sφ is symmetric.

Proof. Ad (i). We have to show that

τ⊗(Aφ) = ετAφ ∀τ ∈PN (99)

Indeed observe that PN has a finite number of elements, and therefore we can compute
the summation after the action of τ⊗:

τ⊗(Aφ) =
1

N !

∑
σ∈PN

εστ
⊗σ⊗φ =

1

N !

∑
σ∈PN

εσ(τ ◦ σ)⊗φ (100)

Now observe that

• ετ◦σεσ = ετ◦σ◦σ = (ετ )
2εσ = εσ;

• if σ spans over all PN , so does τ ◦ σ .
= σ′.

Therefore
τ⊗(Aφ) =

ετ
N !

∑
σ′∈PN

εσ′σ
′⊗φ = ετAφ (101)

Ad (ii). The proof is essentially the same: we have to show that

τ⊗(Sφ) = Sφ ∀τ ∈PN (102)

Indeed, as before:

τ⊗(Sφ) =
1

N !

∑
σ∈PN

τ⊗σ⊗φ =
1

N !

∑
σ∈PN

(τ ◦ σ)⊗φ =
1

N !

∑
σ′∈PN

σ′⊗φ = Sφ (103)

�

Furthermore, it can be shown that if Aφ = 0 = Sφ then necessarily φ = 0.

To sum things up: we had a mathematical solution for the equation of motion of our
gas, but it lead to an unpleasant exchange degeneracy; we moved the wave functions
on another environment, and managed to describe on that environment the exchange of
particle, that is, the permutation of wave functions.
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At the end of the day what we have is that there exists a standard procedure by means
of the operator A or S which transforms the unpleasant wave function into another wave
function which still solves the equation of motion, being a linear combination of permu-
tations of a solution, and hasn’t got any exchange degeneracy. Moreover, if the wave
function has a trivial symmetrization - namely, Sφ = 0 -, the anti symmetrization is not
trivial, and vice versa: one way or the other we can obtain a “good" solution.

Now that we are all set with the state function of the gas, let’s have a look at the
recurrence problems.

3.4 The recurrence theorem

Before stating and proving the theorem, it is convenient to do a quick résumé of the
physical conclusions - and notations - of the first paragraph: we had an Hamiltonian of
the form H =

∑N
i=1Hi with a discrete set of eigenvalues E and eigenvectors φE, E ∈ E .

Then we expressed the eigenvectors as φE
.
=
∏N

i=1 ϕi, with the requests

(1) Hiϕi = Eiϕi i = 1, ..., N

(2)
N∑
i=1

Ei = E
(104)

Now we know we can express φE as ϕi1(E) ⊗ ...⊗ ϕiN (E).
Furthermore, we observed that solutions of this kind had an exchange degeneracy. With
the formalism we have developed in the previous paragraphs we can write equivalently

H[σ⊗φE] = Eσ⊗φE ∀σ ∈PN ,∀E ∈ E (105)

This is the starting point of the recurrence theorem.

Theorem 5. Fix Π = A or S, V a bounded subset of R3, {ϕi}i∈I , H, {φE}E∈E as in the
comments above. Let `2 3 {aE}E∈E ⊂ C and define ψ ∈ LN(V) ∩ C1,t([0,+∞)) as

ψ(r, t)
.
=
∑
E∈E

aEΠ[φE(r)] exp (−iEt) : VN × [0,+∞)→ C (106)

that is, the general solution of the Schrödinger equation related to H.
Then ∀ε > 0,∀t0 ≥ 0 ∃T = T (ε, t0) ∈ (t0,+∞) such that

||ψ(·, t0)− ψ(·, T )||L N (V) < ε (107)

Before proceeding with the proof we state and prove a lemma.

Lemma.—Let b ∈ R\{0} a fixed constant, (a1, ..., am) ∈ Rm\{0} such that

qj
.
=
a1

aj
∈ Q, j = 2, ...,m (108)

then ∃t ∈ R\{0}, (k1, ..., km) ∈ Nm\{0} such that

tai = bki, i = 1, ...,m (109)
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Proof. Equation (109) is equivalent to the following requests:

(i) ta1 = bk1

(ii) qj = k1
kj
∀j = 2, ...,m

Indeed
a1

aj
=
k1

kj
⇐⇒ ta1

taj
=
bk1

bkj
(110)

Now define

ri
.
= min{n ∈ N\{0} : n/qi ∈ N}

r
.
= LCM{ri : i = 2, ...,m}

(111)

and let k1 = r, kj = r/qj for j = 2, ...,m: then (k1, ..., km) ∈ Nm\{0} and it satistfies (ii).
Finally, set t = br/a1. �

Now for the proof of the theorem.

Proof. We divide the proof in steps.

Step 1. The vectors in {Π(φE)}E∈E ⊂ LN(V) are pairwise normal. In order to prove
it, choose E1, E2 ∈ E , E1 6= E2. Then

(Π[φE1 ]|Π[φE2 ])L N (V) =
1

(N !)2

∑
σa,σb∈PN

πσaπσb(σ
⊗
a φE1|σ⊗b φE2)L N (V) (112)

where πσ = εσ if Π = A, and 1 if Π = S. But now

(σ⊗a φE1|σ⊗b φE2)L N (V) = (ϕσ−1
a (i1(E1)) ⊗ ...⊗ ϕσ−1

a (iN (E1)|ϕσ−1
b (i1(E2)) ⊗ ...⊗ ϕσ−1

b (iN (E2)))L N (V)

=
N∏
k=1

(ϕσ−1
a (ik(E1)|ϕσ−1

b (ik(E2)))L2(V) =
N∏
k=1

δσ−1
a (ik(E1)),σ−1

b (ik(E2))

(113)

We proceed ad absurdum: suppose ∃σa, σb such that (σ⊗a φE1|σ⊗b φE2) 6= 0, then we must
have σ−1

a (ik(E1)) = σ−1
b (ik(E2)) ∀k = 1, ..., N „ hence by definition

σ⊗a φE1 = σ⊗b φE2 (114)

Now it descends from H[σ⊗φE] = Eσ⊗φE that

E1σ
⊗
b φE2 = E1σ

⊗
a φE1 = Hσ⊗a φE1 = Hσ⊗b φE2 = E2σ

⊗
b φE2 (115)

But σ⊗2 φE2 6= 0, as a tensorial product of non-zero terms, then our identity is contra-
dictory and we conclude that if E1 6= E2 then (σ⊗1 φE1|σ⊗2 φE2) = 0 ∀σ ∈ PN , whence
(Π[φE1 ]|Π[φE2 ])L N (V) = 0.
Similarly it can be proven that ||Π[φE]||2 ≤ 1: essentially, the worst possible case in this
sense is to have φE = ϕk ⊗ ...⊗ ϕk︸ ︷︷ ︸

Ntimes

, which yields ||Π[φE]||2 = 1. All the other possibilities
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return smaller norms due to {φi}i∈I being an orthonormal basis.

Step 2. First part of the inequality. From step 1 we have

||ψ(·, t)||2L N (V) =
∑
E∈E

|aE|2||Π[φE]||2L N (V) (116)

then for some T > t0

||ψ(·, t0)− ψ(·, T )||2L N (V) = 2
∑
E∈E

|aE|2||Π[φE]||2L N (V)(1− cos[E(T − t0)])

≤ 4
∑
E∈E

|aE|2 < +∞
(117)

As the set E is discrete, we can label each of his components by an integer - in case E
is finite, add to the set a countable number of zeros from the last non-zero element on.
Then the last inequality reads

+∞∑
n=1

|an|2||Π[φn]||2L N (V)(1− cos[E(T − t0)]) < +∞ (118)

Then ∀ε > 0 ∃M = M(ε) > 0 such that

+∞∑
n=M+1

|an|2||Π[φn]||2L N (V)(1− cos[E(T − t0)]) <
ε

2
(119)

Step 3. Set τ .
= T − t0, we want to prove the remaining side of the inequality, that is

M∑
n=1

|an|2||Π[φn]||2L N (V)(1− cos[Enτ ]) <
ε

2
(120)

As a first estimate, set a .
= max1≤n≤M |an| and observe

M∑
n=1

|an|2||Π[φn]||2L N (V)(1− cos[Enτ ]) ≤ a
M∑
n=1

(1− cos[Enτ ]) (121)

Whenever En = 0 the corresponding term does not contribute to the sum, thus from now
we restrict to the case En 6= 0; furthermore, observe that by parity of the cosine we can
take all the En to be positive.
By continuity of the cosine we have that ∀n ∈ N, ∀ε > 0 ∃δn = δn(ε) > 0 such that

1− cos[Enτ ] < ε/M if τ ∈ ∪k∈N(2kπ/En − δn, 2kπ/En + δn) (122)

We would like the inequality to hold simultaneously for all the terms for some τ , namely

∃τ > 0 : ∀n = 1, ...,M 1− cos[Enτ ] < ε/M (123)

this claim implies (120) and thus our final thesis.
Now we examine two different cases: the special case identified by the Lemma, which
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turns out to be of great physical importance, and the general case.
In order to prove the special case, observe that

∀ε̄ > 0 ∃Ēn ∈ Q :
∣∣∣ 1

En
− 1

Ēn

∣∣∣ < ε̄ ∀n = 1, ...,M (124)

thus Ē1/Ēn ∈ Q: then apply the lemma with b = 2π. As a result there exist (k1, ..., kM) ∈
NM\{0}, τ ∈ R\{0} such that

Ēnτ = 2knπ ∀n = 1, ...,M (125)

or equivalently

∀n,m = 1, ...,M ∃kn, km ∈ N :
kn
Ēn
− km
Ēm

= 0 (126)

hence (123), hence the final thesis.
Notice that we obtained something way stronger than (123):

∃τ > 0 : ∀n = 1, ...,M 1− cos[Enτ ] = 0 (127)

We’ll come back to this after the proof is finished.

Step 4. Now for the general case. We want to show

∀m,n = 1, ...,M ∃ηm,n > 0, km, kn ∈ N :
∣∣∣ km
Em
− kn
En

∣∣∣ < ηm,n

π
√

2M
(128)

We’ll prove this claim in a moment; for now observe that as a consequence we have that
∃τ such that (1 − cos[Enτ ]) < ε/M ∀n = 1, ...,M . Indeed, choose (m̄, n̄) such that
ηm̄,n̄ = max! and set

τ = 2π
[1

2

( km̄
Em̄

+
kn̄
En̄

)]
(129)

therefore we have the fundamental inequality∣∣∣ τ
2π
− kn
En

∣∣∣ < ηm̄,n̄
πM

∀n = 1, ...,M (130)

hence
|1− cos(Enτ)| =

∣∣∣1− cos
(

2πEn
τ

2π

)∣∣∣ ≤ E2
nη

2

M
(131)

hence (123), by choosing ε = (η ·max1≤n≤M En)2.
Now we prove (128). Choose m,n = 1, ...,M and observe that∣∣∣ kn

En
− km
Em

∣∣∣ =
1

Em

∣∣∣knEm
En
− km

∣∣∣ (132)

and let

[Em,n]
.
= max

{
n ∈ N :

Em
En
≥ 0
}

{Em,n}
.
=
Em
En
− [Em,n]

(133)
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Observe {Em,n} ∈ [0, 1) by construction and partition [0, 1) into Q subintervals of length
1/Q: [1, 1/Q), [1/Q, 2/Q), ..., [(Q1)/Q, 1). By the pigeonhole principle at least two of
the numbers in the set

{qEm,n}0≤q≤Q = {0, {Em,n}, {2Em,n}, ..., {(Q− 1)Em,n}, {QEm,n}} (134)

belong to the same interval, that is

∃p, q = 0, ..., Q, p 6= q : |{pEm,n} − {qEm,n}| < 1/Q (135)

then let kn = |p−q|, km = [Em,n]kn and observe that
∣∣∣knEm

En
−km

∣∣∣ < 1
Q
, Q being arbitrarily

large. This result is known as Dirichlet’s approximation theorem.
Observe then ∣∣∣ kn

En
− km
Em

∣∣∣ =
1

Em

∣∣∣knEm
En
− km

∣∣∣ < 1

EmQ
<

ηm,n

π
√

2M
(136)

for some suitable ηm,n, hence (128), (123), and lastly the main thesis. �

This result is impressive by itself, implying we may have recurrence phenomenons at
any accuracy scale, but it’s even more surprising when one takes a closer look at the
hypothesis of step 3, that is, the allowed energies of the system are in rational proportion.
Actually, this is the case for many simple physics models: as an example, for a system of
N boson-like particles under the action of a 3D harmonic potential with frequency ω we
have

qn =
E1

En
=

3N~ω
2

~ω(2n+3N)
2

=
3N

2n+ 3N
∈ Q (137)

applying the lemma with b = 2π we can get the exact recurrence time for the first M
energy levels: we have τ = 4π

3~ω~r = 4π
3ω
r, where we have restored the ~ previously set to

1 and r is uniquely determined by the requests

rn
.
= min{m ∈ N\{0} : m/qn ∈ N}

r
.
= LCM{ri : i = 2, ...,M}

(138)

as it is easily seen, r = 3N for every value of M, that is, the harmonic oscillator has an
exact recurrence time: any state of the harmonic oscillator returns exactly in his original
configuration regardless of its composition in terms of stationary solutions.
We can have a look at the recurrence time, then. As a typical value, set ~ω = KbT '
4 · 10−21J at room temperature, with N = 1023. Then

τ ' 1013s ' 3 · 105 years (139)

This is a good confirm of the 2nd principle’s validity on small timescales. In addition, it
should be noticed that this kind of calculation is strongly relying on the hypothesis of
ideality; suppose there is a small deviation from the predicted energy eigenvalue, due to
the fact that the particles are actually interacting somehow, or that they’re not points:
then after a time τ the little deviation is greatly emphasized - namely, by a factor 1013

- and errors of one part over a billion contribute with a factor of 104 in the imaginary
exponential, erasing the recurrence phenomenon by means of an essentially random phase
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and causing the real recurrence time to take essentially unpredictable values. Still, it’s re-
assuring that even for ideal systems the theory gives us a sufficiently large recurrence time.

Once the recurrence of the state is proven, it is easy to produce a similar proof of the
recurrences of the mean values of the states. As a complement, here’s a sketch of the
proof:

Proposition 3.4.1. Maintain the hypothesis of the recurrence theorem and let A be an
observable for the system.
Then ∀ε > 0,∀t0 ≥ 0 ∃T = T (ε, t0) ∈ (t0,+∞) such that

|〈ψ(t0)|Aψ(t0)〉 − 〈ψ(T )|Aψ(T )〉| < ε (140)

Sketch of the proof. The expectation value of A at time t may be written as

〈ψ(t)|Aψ(t)〉 =
∑
E,F∈E

aEa
∗
F (Π[φE(r)]|AΠ[φF (r)])e(−i(E−F )t) (141)

Therefore we have to prove∑
E,F∈E

|aEa∗F ||(Π[φE(r)]|AΠ[φF (r)])||(e(−i(E−F )t0) − e(−i(E−F )T ))| < ε (142)

As before we can label the elements of the numerable set E with integers and conclude
that ∀ε > 0 ∃M = M(ε) > 0 such that

+∞∑
n,m=M+1

|ana∗m||(Π[φn(r)]|AΠ[φm(r)])||(e(−i(En−Em)t0) − e(−i(En−Em)T ))| < ε

2
(143)

then set M = maxm,n=1,...,M{(Π[φn(r)]|AΠ[φm(r)])}, a = maxm,n=1,...,M |ana∗m| and ob-
serve

|(e(−i(E−F )t0) − e(−i(En−Em)T ))| =

= 2
∣∣∣ sin [(E − F )(T − t0)

2

]∣∣∣∣∣∣i cos
[(E − F )(T + t0)

2

]
− sin

[(E − F )(T − t0)

2

]∣∣∣
≤ 2
∣∣∣ sin [(E − F )(T − t0)

2

]∣∣∣
(144)

therefore
M∑

n,m=1

|ana∗m||(Π[φn(r)]|AΠ[φm(r)])||(e(−i(En−Em)t0) − e(−i(En−Em)T ))| ≤

≤ 2aM
M∑

n,m=1

∣∣∣ sin [(En − Em)

2
τ
]∣∣∣ (145)

where τ .
= T − t0. The claim is

∃τ > 0 :
∣∣∣ sin [(En − Em)

2
τ
]∣∣∣ < ε ∀n,m = 1, ...,M (146)

and it can be proven essentially just like we did in the previous theorem, invoking Dirich-
let’s approximation theorem and the continuity and periodicity of the sine function. �
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4 Conclusion
It has been shown that both the stochastic and quantum picture of a physical system
maintain the initial paradox generated by Poincaré’s Recurrence Theorem: we may as
well start wondering if the Second Law is wrong regardless of the physical model involved.

Poincaré proposed a solution during a talk he held in 1904, “The current state and the
future of mathematical physics”: he emphasized the difference between «the real objects,
that Nature will always hide from us» and «the images we are forced to put in their
place»; then when two contradictory theories are examined «it may happen that they
both express des rapport vrais3 and that there is no contradiction but in the images with
which we have dressed up reality».
The Second Law has been built up by induction, as any other physical principle, and in
this sense is true that the idea of having it valid on any timescale is merely an image we
dressed up reality with: things turn out to be more complicate than this.

Actually, Ludwig Boltzmann already gave up on giving a global meaning to the concept
of entropy, and he would rather think of it as something that makes sense just locally,
and that incidentally defines the direction of time:

Just as in a certain place on the earth we can call “down” the direction
toward the centre of the earth, so a living being that finds itself in such a
world at a certain period of time can define the time direction as going from
less probable to more probable states (the former will be the “past”, the latter
the “future”) and by virtue of this definition he will find that this small region,
isolated from the rest of the universe, is “initially” always in an improbable
state.

This viewpoint opens up the discussion to deeper questions regarding the nature of time,
which are beyond the means of this paper: nonetheless, it is fascinating to observe how
from a contradiction which becomes evident only sinking physical principles into mathe-
matical structures new thrilling hypotheses arise.
Moreover, it is understood that this new hypotheses will once again have to be translated
into mathematical statements, and then again examined: this is indeed a most notable
example of how new ideas in physics are generated under the influence of a formal math-
ematical system, and on the other hand of how new mathematical concepts are defined,
pushed up by the practical necessity of describing a physical process.

This is not the whole story, of course, and one should be careful not to be trapped by
mathematical models, which are always poorer than the reality they try to describe: still,
the history of science seems to suggest that a dialectic evolution involving mathematics
and physics is the most convenient path one should follow in order to investigate reality,
as impervious and confusing as it may sometimes seem to be.

3A rapport is for Poincaré a correlation between physical quantities.
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