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1 Introduction

The relation between mathematics and physics is way younger than both of the subjects:
they have existed separately for millennia before bonding together in the XVII century,
and together they have been from that time on; the advantages of the union became
evident as years passed by, the former developing new ideas for theories and structures
and the latter having at his disposal powerful tools to express the surrounding world.

It is no coincidence that physics was previously called “natural philosophy” most of its
principles arises with a philosophical flavour rather than a mathematical one, and these
philosophical observation are later made into mathematical statements, getting modified
and somehow sharpened.

In this guise, a principle becomes part of a mathematical structure, and as such one can
try to understand whether it’s coherent or not with the axioms of the structure itself:
Poincaré’s Recurrence Theorem, for instance, was firstly proved in the framework of clas-
sical mechanics. In the same paper in which the theorem is proven, the mathematician
remarks that

The world [...] tends at first towards a state where it remains for a long
time without apparent change; and this is consistent with experience; but it
does not remain that way forever, if the theorem cited above is not violated;
it merely stays there for an enormously long time, a time which is longer the
more numerous are the molecules. This state will not be the final death of
the universe, but a sort of slumber, from which it will awake after millions of
millions of centuries. According to this theory, to see heat pass from a cold
body to a warm one, it will not be necessary to have the acute vision, the
intelligence and dexterity of Maxwell’s demon: it will suffice to have a little
patience[l]

Thus the theorem shows there exists a contradiction between the Second Law of Ther-
modynamics and Classical Mechanics: anyway, one may hope this is due to flaws in the
theory of Classical Mechanics, and try to show that taking other points of view the con-
tradiction disappears.

This is the aim of the paper, which consists of two independent sections, the first one
approaching the problem by means of probability theory following a model proposed by
Ehrenfest, the second one employing quantum mechanics: as the purpose is to prove the
existence - or the lack - of a contradiction in these structures with respect to the Second
Law, a special emphasis is given to the mathematical aspects of the theories involved,
clarifying the physical correspondences whenever needed.

'H. Poincaré. Le mécanisme et 'expérience. Revue de Metaphysique et de Morale, 4, 534.






2 Stochastic approach

Consider the typical thermodynamic example of a box divided in half by an internal sep-
tum, and let an ideal gas be put in one of the two halves: we want to study the temporal
evolution of the system when the septum is taken away, exploiting a stochastic approach.
We will be using a modeling due to Ehrenfest: imagine the two halves of the box to be
two urns A and B, and put in each urn as many balls as many are the gas particles in
the respective half of the box; for instance, at time ¢ = 0, when the septum has just been
removed, all the balls are in A. Say that the total number of balls is 2N, and label each
ball by a different number.

Now, after a fixed time n randomly choose a number between 1 and 2N, pick the ball
with that number on from the corresponding urn and move it to the other urn. Repeat
the process at times 2n, 3n, ...

We want to study the evolution of this system, called an Ehrenfest chain, in its most
natural environment, that of the Markov chains.

The chapter is structured as follows:

1. The first paragraph contains some recalls of probability theory;

2. The second introduces Markov chains and some of their features;

3. The third formalizes the concepts of recurrence and transience in this context;
4. The fourth defines an equivalence class and analyzes some of its properties;

5. The fifth takes advantages of the results of the previous one to develop some fun-
damental identities;

6. The last paragraph is dedicated to the analysis of the Ehrenfest chain.

2.1 Recalls of probability theory
We summarize hereby some basic definitions of probability theory.

Definitions. (i) Let Q be a set and & a o-algebra of subsets of Q2: the couple (2, P)

1s called a probabilizable space.

(11.1) Let P a probability measure on &2, namely P : &2 — [0,1] with the requirements

PQ)=1, P(A)>0 YVAeZ (1)
and Y{A,}, sequence of mutually disjoint subsets of &

P(UnzlAn) = ZP(ATL) (2)

n>1
Then the triple (Q, &, P) is called a probability space.
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(ii.2)

(iii.1)

(iii.2)

A probability space is said to be complete if every subset of a megligible set for P
(i.e. A€ P sit. P(A)=0) is contained in & himself.

We won’t address this requirement more specifically, as it’s rather technical and it
will not be needed explicitly in the following sections; completion of the probability
space is nonetheless a compulsory request in order to avoid undesirable situation,
and in the following the probability spaces are always assumed to be complete.

Let (2, 2, P) be a probability space and (S,.7) a probabilizable space.
By a random element X we understand a function X : Q2 — S such that

{we: X(w)eBle ¥ VBeY (3)

Q and S are respectively called sample space and state space of X, while their
element are respectively called sample events and states.

Set S discrete, and .7 its power set. Then a function X : Q2 — S is said to be a
(discrete) random variable if

{weQ: X(w)=s}eP Vses (4)

Henceforth we will only be dealing with discrete random wvariable, abbreviating the
term by RV.

[Notation] From now on X denotes an RV, (2, &, P) a probability space and (S,.7) a proba-

(iv)

(v)

(vi)

(vii)

bilizable space with discrete state space.
Furthermore, we shorten statements as {w € Q: X(w) = s} by {X = s}, and write
P{X = s} rather than P({X = s}).

The expectation E(X) of an RV taking the values {s} is defined by

E[X] =) siP{X = s} (5)

k

Let B € & such that P(B) > 0. Then the mapping Pg(-) : & — [0, 1] defined by
Pg(A) = P(AN B)/P(B) (6)

is a measure on &. The value Pg(A) is called conditional probability of A given B
and is written as P(A|B).

Let { By}, be a partition of Q@ such that P(B,) > 0 ¥n.
If Ae &, then

P(A) =) P(B,)P(A|B,) (7)
We will refer to the above identity as Formula of total probability.

By a discrete stochastic process we understand a sequence of random variables shar-
g the same probability and probabilizable space, indexed by a discrete parameter
set.

We are now ready to introduce Markov chains.

8



2.2 Markov chains: definitions and first properties

In order to get a grasp of the idea behind Markov chains one may make an analogy with
the evolution of a classical physical system: if at time n all the physical coordinates -
the initial values - of the system are known, one doesn’t need any further information to
predict the evolution of the system at time n + 1; stochastically the system is described
at each n, n+1, ... by some X,,, X,,11, ..., and the corresponding assumption is that to
predict the probability of X, ., taking any fixed value one just needs knowing the proba-
bility of X,, taking the initial value.

Namely, one doesn’t need to investigate the probability distributions of X,,_; and such,
just as physically one doesn’t need to know the past of the system to predict its future
evolution: the present suffices.

On with the definition:

Definition (Markov chain). A discrete stochastic process X = {X,,,n > 0} on the state
space S is said to be a Markov chain, or MC, if for any sequence {x;}; C S

P{Xpi1=xp1 | Xp =2k, 0<k<n}=P{Xp1=2p1 | Xo =20} =pn, Ty, Tpny1)

(8)

We call the indexes of the sequence {X,,}, time points, and Vz,y € S we call p(n, x,y)
the one step transition probability from x to y at time n. When this probability is inde-
pendent of n we say that the Markov chain is homogeneous.

For homogeneous Markov Chain a notion of n-step transition probability from x to y is
given:

pi(zy) =P{X,=y | Xo=2}Vz,ye S,neN (9)

The initial distribution of an MC is defined as py(z) = P{Xy, =} Vo € S.
Please note that from now on we will only be dealing with homogenous MC, which will
be referred at just by MC.

We are ready to prove a preliminary result.

Proposition 2.2.1. Let {X,,,n > 0} be an homogeneous MC with an initial distribution
{po(z)} and n-step transition probabilities p"(x,y) Va,y € S. Then the following holds:

(i5) p" " (x,y) = > ,eq P (, 2)p"(2,y) (Chapman-Kolmogorov relation)

Proof. Ad (i). Fix m € N and let {Q"}.cs be the countable family of pairwise, dis-
joint measurable sets with generic element Q7 = {X,, = x}, observe U,cs@Q" = Q and
P(QI) >0VxreS.

Then the Formula of Total Probability holds, and we may safely write

P@Q)=> P@QMPQ; | QM) (10)

eSS



by choosing m = 0 we get
P{X, =y} = P(@Q))=>_ PQ)HPQy | Q) => po(z)p"(x,y) (11)
zeS zes

Ad (ii). Observe that by the formula of total probability and by definition of conditioned
probability the following holds VA, B € S:

P(A|B) = AmB Z P AmB\Qm)_ZP((AF;f;))ﬂQ?)
zeS (12>
_ (AO(BHQ?» (BﬂQm my p(ym
_; BB A P(B) ;PAIBHQ )P(Q3 | B)

This can be used to our advantage. In fact by the previous identity
P@™ | Q) =) PQy™ | QUNQDPQ | Q) (13)
zeS

But now
L. by the Markov property P(QI+™ | Q1 Q2) = P(Qi™ | Q)
2. by homogeneity P(QI+™ | Q) = P(Q1 | Q7)
Hence
P, y) = PQIT | Q) =
=Y P@QM I QPQ Q) = p"(x,2)p" (2, y) (14)

z€S z€S

In order to investigate the phenomenon of recurrence, we need to formalize the idea
of probability for an event to happen at time n: time must then be thought as a random
variable, and it’s called Markov time.

Definition (Markov time). Let &2, be the o-algebra generated by the events {X) €
B}i—o..n VB € . A random variable t : Q — N U {400} is called a Markov time

relative to { X} if
{t=n}e P, VneN (15)
An useful notion is that of hitting time of a set A € .7, defined as
ta=min{n>0:X, € A} (16)

The hitting time of a set is indeed a Markov time, as

{ta=n}={weQ:ts(w)=n}=

={we: X, (w) e A, X(w) ¢ A,0<Ek<n—-1} € &, (17)

We get to see how important the notion of hitting time in the next paragraph.

10



2.3 Recurrence and transience

Denote by P,(A) the probability of some event A with respect to the MC {X,}, taking
the initial value x € S, namely

P.(A) = P(A| Xo = 2) (18)
Then we define the following probabilities Vx,y € S:

(i) f*(x,y) = Pe{ty = n}
That is, the probability that the first passage from x to y occurs at time n;

(i) f*(z,y) = Pu{t, < +oo}
That is, the probability that a passage from z to y eventually occurs.

Now let v(x) : S — NU {400} such that

v(r) =) L(X,(Q) VreS (19)

n>1

where I, : . — {0,1} denotes the indicator function of z, namely

@@»ﬁ{;gjgg (20)

As time passes, v(x) increases its value by 1 if X,, may take the value z, thus making for
a (stochastical) visit counter to z. It doesn’t take in account the initial value of the MC,
though, so that the following definition is far more useful in applications:

o g(v,y) = P{v(y) = +oo}
That is, the probability of infinitely many visits to the state y for an MC starting
from .

The following proposition collects some useful identities related to the definitions we
have just given:

Proposition 2.3.1. Let z,y € S. Then
(1) f(,y) = 2 ps [ (2, 9)
(ii) PAv(y) =n} = f*(@,9)[f* ()" '[1 = f*(y, )], provided n > 1
(iii) g(z,y) = f*(z,9)9(y,y)
(i) g(z, x) = limy o0 f*(z, 2)]"

Proof. Ad (i). Observe that the sets {t, = n},>1 form a countable family of pairwise
disjoint sets, as t is an RV. Then

[ (@y) = Po{ty < +00} = Po{Unzi{ty =n}} = ) Pty =n} =) [(z,y) (21)

n>1 n>1

11



Ad (ii). First let us prove that

PAv(y) > n} = f(@,y)f (., n>1 (22)

Forn =1, P{v(y) > 1} = P,{t, < +oo} = f*(x,y), namely the probability of having at
least one visit to y is equal the probability of transition from x to y in a finite time. For
greater n we have to take into consideration the probability of y returning on itself in a
finite time: as an example for n = 2 we have

PAv(y) > 2} = P{t, < +oo} P {t, < +oo} = f*(z,y) f*(y,y) (23)

and thus we have by induction equation . Now observe

Pivly)=n} =) PAvly)=k}— Y Pfvly) =k} =

E>n k>n+1 (24>
= Po{v(y) 2 n} = Po{v(y) 2 n+ 1} = [ (@, y)[f*(v.9)]" 1 = [ (5. 9)]

Ad (iii). Let us denote by v(y,n) the number of visits to the state y up to the time n.
Then we may calculate g(x,y) as the probability of a transition from z to y at time n
times the probability that infinitely many visits are paid to y from that time on. Namely

g(x,y) =D Pe{ty = n}P{v(y) — v(y,n) = +o0} (25)

n>1

But we’re considering an homogenous MC, thus

> Pty =n}P{v(y) — v(y,n) = +oo} =

et (26)
= Pu{ty =n}P{v(y) = +o0} = f*(x,9)9(y,v)
Ad (iv). Take z =y in (22)). Then
o(w.) = Po(x) = +o0) = lim P{v(e) > n} = lim [Fe.a)] (27
|

Now we are all set to state the definition of recurrent state and prove an important
recurrence criterion.

Definition. A state x € S is called recurrent if f*(z,x) =1, and transient otherwise.

Theorem 1 (Recurrence criterion). A state x is recurrent if and only if

Zp"(x,x) = +00 (28)

n>0

12



Proof. First we claim that Vz,y € S we have

N n
N
Notoo 37 0™y, )

indeed observe that any n-step transition from x to y may be thought as a composition of
a transition from x to y in n —m steps (n > m) and a permanence of y in the same state
for the remaining m steps; in order to range over all the possible transitions m should be
allowed to vary from 0 to n — 1, namely

f(a,y) = (29)

n—1 n—1
P y) =Y Po{ty=n—mip™(y,y) = Y "z, 9)p" (4. v) (30)
m=0 m=0
then
S oty =D ) @)™ (v, y)
n:1]V—1 n:1Nm:0 N—-1 N—m <31)
=D ") > My =Y 0wy D> M)
m=0 n=m+1 m=0 n=1
Now define

L Abu}n = {300 f¥(x,y) }ny bo = 0, and observe b, — f*(z,y) = b asn — +oo by
(i) of the previous proposition;

2. {an}n = {0"(y,y)}n < 1, and observe a,, < 1Vn € N

Our claim can be now written as

mb —m
b= lim Zem=odnby (32)
N—=+oco Zm:O Ay,
In order to show that it is indeed true we examine the two cases
(i) Zmzo Gy = +00
(ii) Zmzo Ay < 400
Suppose (i). Then
N N
mON—m o am(b—bn_m
|b_Zm:0a N ’ — ’meoa ( N )‘ (33)

N N
Zm:() am Zm:ﬂ am

but now, for N sufficiently large, Ve > 03n = n(e) > 0 s.t. |b—by_m < €|, 0 <m < N—mn;
since € is arbitrary we may safely choose e = ¢-27N < ¢.27™ 0 < m < N — n, for some
¢ > 0. Then

o @b = byom)| o am2 ™ [ v @b — b))
N <€ N + N <
Zm:O m Zm:O m Zm:O Gm (34)

<—" 4 max |b — by

Sy m OSnST 3o O

—>N—+o0o 0

13



Now suppose (ii). Then ¥y >0 3N = N(n) > 0 s.t. >.!_ca, <nVg> N. Choose an 7
and pick N > N, then

N N
‘b . Zm:() ambN—m} < |Zm:0 am(b - bN—m) + N77 ‘ (35)

N N
Zm:O Qm Zmzo Qm Zmzo am,

Now recall that for N sufficiently large, Ve > 0 3n = 7i(e) > 0 s.t. [b —by-m < €], 0 <
m < N — n; pick an €, by choosing N sufficiently large we may satisfy N < N —n. Then
we may proceed as previously and prove

N N-—n
D amb—bym) < > (b —by_p) <e (36)
m=0 m=0
If € = e +n we have
N _
mb —m
b — Zm=?va Nom) o & (37)
Zmzo Gm o

The thesis follows taking the infimum on € on both sides of the equality.
Now that our first claim is proven, we can choose = y and observe that (i) = =z
recurrent, while (ii) = x transient, hence the thesis. |

This criterion enables us to prove that the visits paid to a transient state are always
finite, and to give an explicit expression for its expected value. The first result is quite
intuitive, and important nonetheless, whereas the second will be particularly useful in the
next paragraph.

Proposition 2.3.2. Let u, z be states, denote by u(u,z) = E,(v(x)), the expected number
of wisits to x for an MC starting from u. Let x be transient, then the following holds:

(1) g(u,z) =0

(ii) plu,z) = L2 < foo

Proof. Ad (i). By Proposition 5.2.2 (iii)-(iv) and the transience of  we have

g(u,x) = f*(u,m)g(x,x) = f*(u,x) lim [f*(m7x)}n =0 (38)

n—-+o0o

Ad (ii). By Proposition 5.2.2 (ii) we have

plu) = 3" nPu(a) = n) = ()L = f(.2)] Y nf (o)
PRGN i ) B
~ T e T T )

(39)

< 400

14



2.4 Communication between states

We want to study the structure of the state space of an MC. It turns out that there is an
equivalence relation linking communicating states, and more precisely:

Definition. We say that a state x leads to state y and write x — y if In > 0
p"(z,y) > 0. If both x — y and x <— y hold, we say that r and y communicate, and
write x <— Y.

The relation ‘communication" is indeed an equivalence relation in the state space of
an homogeneous MC, as it is

1. Reflexive: p°(z,z) =1 > 0Vz € S;
2. Symmetric: by definition;

3. Transitive: if x <— y and y +— z for some x, y, z € S, then I3m,n € N such that
p™(z,y)p"(y, z) > 0. Then by the Chapman-Kolmogorov relation we have

P, 2) = p" (wu)p™ (u, 2) = p" (@, y)p"(y, 2) > 0 (40)
ues

that is, * — 2. Similarly z — .

When the state space of an MC is an equivalence class with respect to «+—, we say
that the corresponding MC is wrreducible. It is natural to expect that an irreducible MC
over a finite state space contains just recurrent states: we state the result as a theorem
for its future importance.

Theorem 2. Let {X,}, be an irreducible MC with finite space S: then all the states of
{X,}n are recurrent, and the MC is said to be recurrent.

Proof. We divide the proof in two steps:
(i) S contains at least one recurrent state;
(ii) For any z,y € S if x is recurrent and & — y then y is recurrent.

Ad (i). Ad absurdum: suppose that all the states in S are transient, then Vz,y € S we
have from Proposition 5.2.3 (ii) that

+00 +o0
+ 00 > p(z,y) Z[ D =) PA{Xy =yt => p'(zy) (41)
n=1 n=1

Hence lim,, o p™(z,y) = 0. As this limit exists and the state space is finite we may
write

O—anrfoop (x,y) = hm PAX, GS}_nErfool_l (42)
z€S

Hence (i).
Ad (ii). As x — y, there exists m € N such that p”(z,y). Let us define

M = min{m : p"(x,y) > 0} (43)

15



We proceed claiming f*(y,x) = 1.

Indeed, assume the contrary: then 1 — f*(y, x) > 0, namely there is a positive probability
for a particle starting in y of never visiting x. Then p™ (x,y)(1 — f*(y,z)) > 0, that is,
there is a positive probability for a particle starting from x to get to y in M steps and
then never coming back to x.

But we know from Proposition 5.2.2 (iv) that P{v(z) = +00} = 1, hence a contradiction
and f*(y,z) = 1.

Observe that f*(y,z) = 1 = IN € N : p™(y,z) > 0. By an obvious extension of the
Chapman-Kolmogorov relation we have

PV M () = Y pN (g w)p™ (w,0)pM (0, y) >
u,vES (44)
N n M
> p~(y, 2)p" (z,2)p" (x,y) Vn € N
Hence
+oo N+M
> 0 ,v) Z P,y +ZPN+"+M (¥, y)
> N (y,y) = pN (y, 2)pM (2, y) Zp (, )
n=0

where we have used
(a) p"(y,z) > 0,p™(x,y) > 0 by construction;
(b) >2F% p(x,x) = +0o by the recurrence criterion.

We can use the recurrence criterion again to conclude that y is recurrent as well, and
thus complete the proof. [ |

In the next paragraph we work with irreducible MCs over finite state spaces, giving
the last definitions and proving one important identity.

2.5 Stationary distributions
Consider an MC {X,,}, over a finite state space. By Proposition [2.2.1](i)
P{X, =y} = po(z)p"(z,y) (46)
z€S

Now suppose that the system evolves so that P{X,, = y} = po(y) Yy € S. If this is the
case we denote 7(z) = po(z), and becomes
m(z) =Y w(w)p"(u, ) (47)
ues
Let us show that if the above equality is valid for n = 1, then it is Vn € N, provided

we're working in a finite state space. Indeed, if holds for n = 1, let us prove our

16



claim by induction: that is, we suppose it holds for n and show that then it does hold for
n + 1 too. The proof is straightforward:

> w(wp M u,x) =D ) w(u)p™(u,0)p(v,x) = Y w(w)p(v,x) = 7(x) (48)

ueS ueS veS veS

We're ready to give the definition of stationary distribution.

Definition (Stationary distribution). Let S be a finite state space, let w: S — [0, 1] such
that

(Z) Z:CES/]T(:E) =1
(i) 7(2) = Fnes T()plu, ) Yo € S
then {m(x)}ses is called a stationary distribution.

The definition has an immediate physical meaning, but before proceeding we’d rather
clarify some language issues.

Definitions. (i) We say that a physical quantity related to a particle obey to some
distribution {p*(x) }res if when a measurement of the said quantity is made it yields
the result x with a probability p*(x). We call x a state of the particle.

When there is no need to refer to a particular physical quantity, we will simply say
that the particle obeys to the distribution {p*(x)},es.

(11) Many particles make up a system; if all of them obey the same distribution {p*(x) }zes,
we say that the system obeys to the distribution {p*(z)}.es-

Now observe that no matter the value of n in (7)), 7(z) stays constant, that is, if a
particle obeys {7(z)}.ecs the probability of finding it in some state x is time independent;
a direct consequence of this fact is that if a system obeys to {m(x)},cs, the fraction of
particles in each of the possibile states of the system is “more or less” constant - namely,
we are assuming that if the number of particles N is large enough N7(z) € NVz € S.
Thus the notion of stationary distribution is closely related to that of macroscopic equi-
librium: even if there may be transitions of the single particles from one state to another,
the number of particles in the state is overall the same.

In view of the discussion on the Ehrenfest chain, we would like to give a definition of
mean recurrence time of a state x, that is, we would like to know on average how long
does it take to a particle in state x to get back to x during its temporal evolution. The
rough idea is to consider the ratio of the time elapsed in the complete evolution of the
system to the number of visits paid to x during that time: for our purposes the evolution
process is infinitely long, and the definition needs some mathematical refinements, but
essentially it still works.

We give the definition and then show it is indeed well-posed.

17



Definition. Let x,y states, {X,} an irreducible, recurrent MC. Recall that v(y) =Y, o1 I,(X5,)
denotes the number of visits paid to y after n steps, whereas E,[v(y,n)] denotes the ex-
pected number of wvisits paid to y after n steps for a particle starting with state x. It is
easy to see, by definition of v(y,n)

=3 () (49)

Define then
_ T I
P(w,y) = lim — Z_lp (2,y) (50)
Then the mean recurrence time 7(y) of the state y is, by definition,
L [ @y ifo(z,y) #0
7(y) == { +00 otherwise (51)

Now for some comments.

(i) First of all, note that 7(y) is by definition independent of the choice of z. That’s
actually the case: to prove it, let x,u, v states and observe

n

. Z () = PO PO LS ity ) iy, )

n

. » —
~\~ m=1

=a(n)

~ o)+ 1 3 3 (ple) =l )"0

m=1 veS
n)+ Sl v) — plu)) - 9" 0,9)
veS m=1

(52)

The exchange of sums is justified as they’re both finite. Now take the limit for
n — +oo, and for the moment assume that (-, y) exists no greater than 1 on both
sides of the equation - we will show it does in (ii). Then

7(2,y) = 2(u,y)| = [0+ D (p(x,v) = plu, v))7(v,y)| < ’ > (p(x,v) = plu,v))| =

veS vES

= > plw ) = 3wl v)

ves veS

(53)

(ii) For the definition to make sense, the limit denoted by r(zx,y) has to exist for any
two states x,y. We claim it does, and that furthermore v(z,y) € [0, 1]. Indeed

0< = Zp z,y) Zl—aneN (54)

moreover, it is easily seen that the sequence is non-decreasing, and made up of
positive terms. Then it converges.
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(iii) There is a simple identity linking the stationary distribution of an MC' to its mean

recurrence times, namely
1
r(a) = —— (55)

7(x)

indeed, recall that for a stationary distribution

m(x) = Zw(u)pm(u,x) Vm e N (56)

u€eS

then

w(r) = - 30 3wy () = Y ) D p () 57)

m=1 ues u€eS m=1

and by letting n — 400 we get our identity.

Now we have all the results we need to examine the Ehrenfest chain in detail.

2.6 Ehrenfest chain

First of all, let’s make sure we are working with an MC.

Recall that the total number of balls is 2N and focus on urn A: the possible states of
the urn - that is, the number of balls contained in it - ranges from 0 to 2N, extremes
included, spanning all the integers.

Let {X,,}» be the RVs related to the state of the urn at any time n € N: by construction

P{Xpi1=xp | Xp =2, 0<k<n}=P{Xp1 =211 | X =2,} (58)

in fact at time n 4+ 1 the number of balls in urn A either increase by 1 or decrease by
1, unless we're in the extremes, with a probability that varies according to the same
number before the extraction. The probability of the number of balls increasing equals
the probability of extracting a number corresponding to a ball not contained in the urn;
vice versa, the probability of losing a ball equals the probability of the extraction of a
number whose ball is contained in the urn: there aren’t any other possibilities. Note that
the process is time homogeneous.

The transition probabilities look like

m
1) = =
p(m,m ) 5N
2N —m
1)=""_7" (59)
p(m,m+1) 5N

p(m,k) =0, k£A#m=+1

To sum it up, we have a time homogeneous MC over a finite state space. Is it irreducible?
It is: as we have just seen each state communicates with the previous and following one,

namely N o1
p(m,m—l):%>0; p(m—l,m):Tm>O (60)

unless m = 0. But p(0,1) =1 > 0, and for m = 1 the inequalities above are verified: by
transitivity all the states are communicating, and the Ehrenfest chain is irreducible.
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By Theorem [2| an irreducible MC over a finite state space is a recurrent MC. Indeed
observe that to have a nonzero probability of a state recurring we need just two steps:

pQ(ma m) = Zp(ma l)p(lam) = p(m>m + 1)p(m + 17m) +p(m7m - 1)p(m - 17m)
les
2Nm —m?*+ N 2N —m 1
= e = g Mt gy > 0Vm=0,1,... 2N

(61)

Now we want to estimate the mean recurrence times of the states of the Ehrenfest chain:
it is most convenient to do so by computing the stationary distribution 7 (z) of the chain,

in order to exploit the relation
1

m(x)

T(z) =

Observe that 7(x) is well defined since we proved the chain to be irreducible and recurrent;
as for 7(z), we know that by definition two conditions must hold:

(1) D pesm(z) =1
(ii) m(z) = Y ,esm(w)p(u, ) Vo € S

Let’s focus on (ii). We have recursively

(62)

(0) = %m) — (1) = 2N7(0)
(1) = 7(0) + %W(Q) = 2(2) = %wm) (63)
(2) = 2]\27]; L)+ () = 2NN _é)@N =2 o)
We see that generally
m(x) = (25)7T(0), r=0,1,...,2N (64)

Now observe .
K
(@' ) =2k (65)
=0

Indeed, by the binomial theorem (z + y)* = Zf:o (k) 2'y*~* and by choosing v =y = 1

follows. l

Then (i) yields 7(0)2?" = 1. In conclusion

m(z) = (2N) 272N (66)

T

(2

Thus the mean recurrence time of the generic state x is

B 22Na:!(2N —z)!

(@) 2N
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Observe that for z = 0 and z = 2N the mean recurrence is time is enormous:
7=7(0) =7(2N) = 2N (68)

In order to give a rough estimate, take for instance N ~ 10%* and let 2!0 = 1024 ~ 103:
then 7 ~ 10(10*),

Now this is just the number of “extractions” it takes to have a recursion: by multiplying
it for a typical time of the system one can try to convert the result in seconds; we may
choose as a typical time the inverse of the collision frequency. Suppose to work with
Helium at STP, what we get is Aty e ~ 107135 E|

Then the mean recurrence time is Ty = Atyyp e - T 1010%-13) g ~ 100" g Observe
that for x = N the same computation yields, by making use of the Stirling approximation,

23 _ _
tre ™~ %10 Bg ~ 102!

Asking for the mean recurrence time of the state 0 or 2N is equivalent to ask the frequency
at which the gas is found all contained in one half of the box: the time we obtain is so
large that we may safely consider the process of a gas previously enclosed in an half of
the box spreading all over the box to be irreversible.

2see HyperPhysics, http://hyperphysics.phy-astr.gsu.edu
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3 Quantum approach

While the Ehrenfest chain has the advantages of giving a simple model, it lacks both ac-
curacy and depth: the dynamics of the system is totally neglected in favour of a stochastic
viewpoint, and the very ideas of “extractions" and discrete time are quite far from the
actual behavior of the system.

On the other hand, the quantum theory is less simple both in terms of understanding of
the model and mathematics implied, but it lets us push our analysis further by elaborat-
ing more information about the system and giving a fuller response.

The aim of the chapter is to build a wave function for a quantum gas of non-interacting
particles and show that a recurrence theorem holds, giving an estimate of the recurrence
time for a sample system.

The chapter is structured as follows:

1. The first paragraph introduces the problem from a physical point of view, empha-
sizing the concepts we need to formalize;

2. The second paragraph collects some results on tensors;
3. The third paragraph collects some results on groups;

4. The fourth paragraph proves and comments the recurrence theorem;

3.1 Quantum gases and exchange degeneracy

Consider a system of N non-interacting particles with the same mass, and label their
positions by rq, ..., r,, setting t as the time coordinate for the system. Spin is not relevant
by now, and we ignore it; we suppose the particles to be confined in a finite volume V.
The state function of the system may be written in the spatial coordinates framework as
some ¥ = (ry,. .., 1y, t) satisfying the Schrodinger equation

ihdpb = H (69)

where H is the Hamiltonian operator for the system. As the particles do not mutually
interact we may write it down as

H=> H, (70)

with the H;s being the Hamiltonians for the single particles.
The normalization request for the spatial parts reads out

/ [Y(re, ..t )P =1 VteR (71)
Vx..xV



with @3y denoting the 3N-dimensional Lebesgue measure.
We conclude ¢ (-, t) € L2 (VN d3N p) Vit € [0, +00).

For our purposes it is not restrictive to assume the Hamiltonian to be time indepen-
dent; furthermore, we consider only systems with a discrete energy eigenvalues set £.
When these hypotheses are made we know that the the general solution of the Schrédinger
equation may be written as

> apép(r)exp (—iEt) (72)
Ecg
Where r collects all the N-tuple of coordinates, h = 1, and
Hop(r) = E¢p(r) VE € € (73)

Now we would like to use at our advantage equation . In order to do so, consider the
ith particle’s stationary Schrédinger equation

Hipi(rs) = Eips(r;) (74)

and observe that the 7th Hamiltonian will regard the jth particle’s stationary wave func-
tion as a constant whenever i # j. Now observe that VE € & we can find an eigenvalue
N-tuple (Ey, ..., E,) such that Zfil E; = E, then it is easily seen that

N
op(r) =[] ei(r:) (75)
i=1
satisfies equation ((73]).

Mathematically this solution makes sense - indeed, it solves the equation of motion. But
what about the physical meaning? Our simple model of a quantum gas is that of a system
made up of N “equivalent" particles, that is, particles with the same physical properties
(e.g. mass, charge...): therefore the single particle Hamiltonians H; have all the same
form, and the domain is the same as well, namely L*(VY). They are, indeed, all the same
operator, and it is just us making a distinction by assigning each of them to a different
particle: but this is just a virtual difference, a problem of bookkeeping without any cor-
respondence in the physical reality.

Now we may expect this misunderstanding to have consequences on the mathematical
form of the solution too. That’s the direction we’ll be investigating on.

Before addressing the quandary, let’s clarify the meaning of ¢;(r;) for ¢ # j: it is the
wave function with energy E; assigned to the framework of the jth particle, namely it
satisfies

Hjpi(ry) = E;di(r;) (76)
as all the Hamiltonians have the same form and therefore the same eigenvalues.
A direct consequence of this fact is that any permutation of particle, any reordering of
the function’s indexes, yields another possible solution of the equation of motion. If a
permutation is defined, naturally, as a bijection of the form

o:{1,...,N} —={1,...,N} (77)
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we may conclude that if [, ¢;(r;) solves the stationary equation of motion then

N

[T eww () (78)

=1

does too, yielding the same eigenvalue.

We have found a degeneracy, but this is not a problem: the problem is that it cannot be
solved, for it doesn’t exist an operator who can distinguish any two of those degenerate
solutions, for we made up the degeneracy in first place: the particles are not distinguish-
able.

A good way to get out of this is to select from the set of all possible solutions a smaller
class of solutions who have the physical meaning we ask for. When making measurement
what we determine is not the wave function, but rather its absolute value: therefore we
would like wave functions whose absolute value does not to change under swaps, namely

N N

T el = 11T ] ol (79)

i=1 i=1

for any possible permutations.

Now the question is: is there a way to obtain solutions of this form from the solution
we got before? And how do we transfer the idea of swapping indexes to the idea of swap-
ping single particle wave functions? Is there a way to do so?

What we had was a good mathematical solution with physical problems. Now we have
the physical solution, but we lack the proper mathematical tools for an in-depth analysis.
The next paragraph is devoted to the construction of these tools.

3.2 Some recalls about tensors on Hilbert spaces

Firstly some basic definitions (and a fact) about tensors:

Definitions. Let Vi, ..., V,, (n > 1) vector spaces on K =R or C, L(V},...,V.*) the linear
space of multilinear maps from V' x ... x V.* to K, V* denoting the dual space of V.. Then

(i) if (w1, ...,un) € Vi X oo x Vi, LIV, V) S0 ® ... ® uy, is defined as
U @ oo @ Up (V1 ooy U) = (Ug, V1) oo (U, V) V(01 .00) €V X o x VE - (80)

where (,) is the pairing between elements of V' and V* respectively.
We call u; & ... ® u,, tensor product of (uy, ..., u,).

(i) The map ® : Vi x ... x Vi, = L(V*, ..., V¥) such that @((uq, ..., up)) = U ® ... @ Uy,
15 called tensor product map.

(11i) The vector subspace Im(®) of L(V}*,...,V.*) is denoted by V1 ® ...®@V,, and is called
tensor product of the spaces Vi, ..., V,,.
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(Universality) Let W a vector space, f : Vi X ... x V,, = W a multilinear mapping.
Then there exists an unique linear mapping f© = fo®: V1 ® ..V, - W.

From now on we will be working on N copies of the Hilbert space (H,(:]-)) on C,
denoting H @ ... @ H = H".
——

Ntimes
The next proposition collects some useful properties of H™.

Proposition 3.2.1. Let (H, (:|-)) an Hilbert space on C, consider its tensor product HN .
Then

o HY can be enriched with an Hermitean scalar product (+|-)s defined as

(u1 ®..R UN"Ul ®..R UN)@ = (U1’U1>...(UN’UN> \V/Ui,Ui € H, 1= 1, ,N (81)

o The completion of HN with respect to (+|-)g is an Hilbert space, which we will denote
by ’Hg and call Hilbertian tensor product;

o If{e;}icr is an Hilbert basis for H, then {e; ® ... ® e;y }iy.. inver is an Hilbert basis
for ’Hg.

The reason for which we want to work with spaces of this sort is that permutations
may be conveniently represented - in a sense that we’ll see more precisely in a while - on
the tensor product of vectorial spaces.

We have already observed that our wave function’s spatial part belongs to the space
L2V, d*N 11): we would like to prove that L*(V,d*" 1) can be seen - i.e.: is isomorphic to
- some Hilbertian tensor product. That’s the content of the following theorem.

Theorem 3. Let V a bounded subset of V, H = L*(V,d*u). Then HY is naturally
isomorphic to L2 (VN d3N ).

Proof. We know that H admits an Hilbert basis {e;};cs, then by proposition ”Hg
admits a basis {e;, ® ... ® iy }iy.inel-

As {e;, « ... - €iy tiy.iver 18 a basis for L2(VN, @3N ), it sounds quite natural to propose
an association of the form

HY Dey ®@...® ey 7 Ciy T Ciy € L2(VN d*N ) (82)

and try to extend it on the whole space.
In order to do so, observe that Vv € HL there exists a sequence of scalars such that

V=D inel ciiNe, @ . ® ey, ; then we define A HY — L2(VN,d*N ) as

Av) = Z AN Al ® ... R ey) = Z ctNes e (83)

11,...,iNEL 11,...,iNEL

observe that A(v) < 400 Yv € ”Hg , as the series on the right side must converge by
definition of A and by the fact that {e;, - ... - €;y }i,,..iyer 18 a basis for L2(VN, d*Vpu);
moreover A is linear by construction, then we may conclude it is continuous.
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Such an extension is unique. Indeed, let B be another linear, continuous extension of A,
then:

B(v) = Z N Beg, @ ... @ ey ) = Z AN Be @ ... @ egy)

T1yeeey inel i1, iNET

= Z N Aley, @ ... ® egy) = A(v)

i1, iNET

(84)

Now let’s show that A is an isomorphism.

w

0=A@)—Aw)=Aw—w)= > (™ —d e, ..e;, (85

01,0t NET
but {e;, - ... - €iy }iy...iner is a basis for L2 (VN d3N ), so that
N — Gl = 0 iy, iy €T (86)

v

therefore v = w.

e Surjectivity: pick y € L2(VN,d*" 11). We may write it in terms of the basis, therefore

_ 11,000IN F— i1,.0N . . e
Y= E Cy Ciy e -Ciy = E Cy Ale;, ® ... ® ey ) =

i1, iNETL i1, iNET

= fl( Z czl""’iNeil R..0 eiN) = fl(v)

U1y gtNET

(87)

for some v € ’Hg , by its completeness.

e Scalar product preservation: let (-|-)s the scalar product of HY, (:|) the one of
LAWY d3N ). Then

(AWAw) = > DY el dingy = (vjw)s  (88)

i1yeeiN €L J14eeyNET

This theorem lets us choose a more convenient domain for our wave function, that is
- we write it explicitly once and for all - L*(V,d’n) @ ... @ L*(V, d*n) = LN (V).

J/

~
Ntimes

Furthermore, we denote L*(V,d*p) x ... x L*(V, d*n) = ZN (V)
Nt;TrrLes
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3.3 The group of permutations

We defined a permutation as a bijection of a set of indexes {1,..., N} C N into itself:
with this definition we can permute indexes, but what we would like to have is an object
that swaps the wave functions generating in turn other wave functions, just as the original
permutation generates sets of indexes from sets of indexes.

First of all, let Iy = {1,..., N} and observe that the set of all permutations o : I, — I,
makes up a group when endowed with the usual composition rule for maps o.
The group structure is self-evident, indeed

(i) o is associative by definition;
(ii) the group unit is I,, the identity on Iy;
(iii) each o is invertible, as it is bijective.

We denote the group of permutations on Iy by Py.
The group structure allows us to explore representations of the group in other spaces.
More precisely,

Definitions. 1. Let (G1,01), (Gg,02) groups.

A group homomorphism from (Gq,01) to (Gg,09) is a mapping h which preserves
the group structure, that is

h(ga ©1 o) = h(ga) o2 h(gp) (89)

2. Let (G,o¢) a group, V' a vector space and (GL(V'),0) the group made up by the set
of automorphisms of V' with the usual composition rule for maps.
A representation of (G, og) on'V is a group homomorphism from (G, og) to (GL(V), o).

Now for the main goal, namely a representation of 2y on £ (V): we want to associate
to each 0 € Py some 0® € GL(ZLY(V)). That’s not hard when observing that we can
casily build a o* : ZN(V) = ZLVV) 1 (v1,...,un8) = Vp-1(1) @ ... ® Uy—1(n), and then
determine uniquely the linear map we looked for by universality:

c®: LNV) = LVOV) 01 @ @ UN = Upmr(1) @ e @ Vg1 (90)
And here’s the crucial result:

Theorem 4. The mapping

PNDo — o® € GL(ZLN(V)) (91)

is a representation of Py on LN(V).

Proof. Two steps:
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e Let us show the group structure is preserved, that is
Aoy 0 09) = A(0q) 0 A(os) (92)

to have it proven, we should show it holds for any v; ® ... ® vy € £V (V) applied
on the left and right side of the equation. Indeed
(A1) 0 A(09)) (1 ® ... @uy) = 0P (05 (1 @ ... ®wy)) = 0?(1}0;1(1) ® ... ® Up=1y))
= Uog o7 (1)) @+ B Up (o7 () T V(or002) 71 (1) © -+ © V(gr005) -1 ()
= A(O'l e} O'2>(’Ul ®..Q ’U]V)
(93)

by choosing as v; ® ... ® vy the Hilbert basis elements of £~ (V) and observing that
o® is bounded - an isometry, actually -, hence continuous, the thesis follows.

e Let us show 0® € GL(ZY(V)