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Abstract

The fundamental theorem of calculus relates the definite integral of a function
to the values of its antiderivative at the extrema of the interval of integration: we
may regard this fact as a localization phenomenon, the reduction of information
spread all over a set to a particular subset.
The thesis deals with localization on manifolds. The intuitive notion of sym-

metry of a space is formalized considering the action of a Lie group: integrals of
forms which respect this symmetry are seen to be localizable, this time over the
fixed point set of the action.
In Chapter 1 we review equivariant cohomology, the main tool needed to prove

the localization theorem; Chapter 2 is dedicated to the proof of the theorem and
the description of applications. We derive a formula for the volume of a class of
homogeneous Kähler manifolds.
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I. What is equivariant cohomology?
This chapter is devoted to the construction of a cohomology theory for G−spaces: we would
like to introduce a theory taking in input not only the space itself, but also the group G it
is acted upon, and its very action. We will present two equivalent ways of defining such a
theory: the Borel construction and the Weil model.

I.1. The Borel construction
The basic idea of the Borel construction is to consider the cohomology the orbit spaceM/G
of our G−space M ; a direct approach in this sense is however unsuccessful, for without
further hypotheses on the action M/G may lose many of the regularity conditions M has.
We will want, typically, to compute the equivariant cohomology of some manifold, and we
would like its orbit space M/G to stay a manifold: the slice theorem (see [6, p. 17]) tells
us this is the case when the group G is a compact and connected Lie group, and its action
free: we’ll state it, and prove some corollaries, in the next paragraph.
The assumptions of the slice theorem can be loosened a bit remembering we are working
up to homotopy. While it’s not possible to do much with the group G, one would hope it is
possible to find a substitute of M on which the action is free: observing that the (diagonal)
action on a product of G−spaces is free as soon as it is on just one of the spaces, we want
a space E such that:
• G acts freely on E;

• M × E has the same homotopy type as M .
In this section we’ll discuss existence an uniqueness of such an E.

Remark I.1.0.1. All along the section, both G−spaces and their orbit space will be taken
such that they have a CW structure; G is a compact, connected Lie group. The term map
is reserved for continuous functions.

I.1.1. The slice theorem
Let’s clarify the setting of the theorem. When we consider actions of compact groups on
manifolds, the orbits are submanifolds. The inclusion map of the orbits induces a splitting
of the tangent space at each point:

0 - Tx(G · x) - TxM - Vx - 0 (I.1.1)

moreover, for each g ∈ Gx, the stabilizer of x, the differential of the associated action at x
respects the splitting. We get a representation of Gx on Vx

Gx → GL(Vx) : g 7→ dxg (I.1.2)
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8 I. What is equivariant cohomology?

We use this representation to define the diagonal action of Gx on G× Vx. There is a fiber
bundle (G× Vx)/Gx to G/Gx with fiber Vx, with projection map just given by

[g, v] 7→ [g] (I.1.3)

we can define a G−action on the bundle via (G × Vx)/Gx → G/Gx : [g, v] → g′ · [g, v] =
[gg′−1, v], and regard G/Gx as a submanifold, the zero section of the vector bundle. With
this in mind, we can state the slice theorem:

Theorem I.1.1.1. There exists an equivariant diffeomorphism φ from an equivariant open
neighbourhood of G/Gx to an open neighbourhood G·x inM making the diagram commute:

G/Gx ⊂- (G× Vx)/Gx

G · x

'
?
⊂ - M

φ
?

(I.1.4)

As an application of the theorem, we want to show the following property. This will be
needed while discussing the localization theorem, in the second chapter:

Proposition I.1.1.2. The set of fixed points of the G−action is a submanifold of M .

To prove it, it is convenient to introduce the concept of type of an orbit:

Definition I.1.1.3. Let M be a manifold on which G acts smoothly, x ∈M . The type of the
orbit G · x is (Gx), the conjugacy class of Gx.

Recall that given x, y ∈ G·x, Gx and Gy are conjugate, so that the definition is well-posed.
Now I.1.1.2 is a corollary of the following:

Lemma I.1.1.4. The union of all orbits of a given type is a submanifold of M .

Proof. Fix a type (H), and a point x ∈ M(H) = {y ∈ M | Gy ∈ (H)}. We will show that
M(H) is a submanifold in a neighbourhood of G · x: pick y ∈ G · x such that Gy = H, and
consider orbits of type (H) in (G × Vy)/H. Recall that a G−action on (G × Vy)/H was
defined as

φg′ : [g, v] 7→ [gg′−1, v] (I.1.5)

and look at the conjugacy class of the stabilizer of some [g, v]. We have

g′ · [g, v] = [g, v] ⇐⇒ [gg′−1, v] = [g, v] ⇐⇒ ∃h ∈ H :
{
gg′−1 = hg

v = hv
(I.1.6)

so that G[g,v] = gHvg
−1, and all conjugates appear while g varies over G. Thus G · [g, v] is

of type (H) if and only if Hv = H. As a consequence

(G× Vy)/H ∩ (G× Vy)/H(H) = {[g, v] ∈ (G× Vy)/H : hv = v ∀h ∈ H} (I.1.7)

is a subbundle of (G × Vy)/H, with fiber the linear space F = {v ∈ V : hv = v ∀h ∈ H}.
Now apply the slice theorem, and observe that a neighbourhood of G · x is diffeomorphic to
a neighbourhood in this subbundle. The thesis follows.
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I.1.2. The universal bundle problem
We work in the setting of principal bundles:

Definition I.1.2.1. A principal G−bundle (E,B, π) is a fibration π : E → B, where

(i) E is a G−space on which G acts freely;

(ii) B is its orbit space;

(iii) π is the related quotient map.

Example I.1.2.2. Easy instances of such bundles are given by the real, complex and quater-
nionic projective spaces:

1. S0 ' Z2 y Sn  π : Sn → RPn;

2. S1 y S2n+1  π : S2n+1 → CPn;

3. S3 y S4n+3  π : S4n+1 → HPn.

The general notion of (iso)morphism between vector bundles specializes in terms of equiv-
ariant mappings:

Definition I.1.2.3. Let (E,B, π), (E′, B′, π′) be two principal G−bundles.

(i) A morphism between (E,B, π) and (E′, B′, π′) is an equivariant map φ : E → E′;

(ii) An isomorphism between (E,B, π) and (E′, B′, π′) is an equivariant homotopy equiv-
alence φ : E → E′, i.e. such that
• ∃γ : E′ → E such that φ · γ 'F id, γ · φ 'G id;
• F (·, t), G(·, t) are equivariant maps ∀t.

Remark I.1.2.4. Every morphism φ induces by equivariance a map between the orbits:

E
φ - E′

B
?

[x]→ [φ(x)]
- B′
?

so that equivariance is just the G−bundles version of fiber preservation, and an equivari-
ant homotopy equivalence is just an homotopy equivalence for which there exists a fiber
preserving homotopy, in the sense specified above.

New principal bundles can be obtained via pullback:

Proposition I.1.2.5. Let (E,B, π) be a principal G−bundle, B′ a space, f a map from B′

to B. Then f∗π : f∗E → B′ is a principal G−bundle.

f∗E - E

B′

f∗π
?

f
- B

π
?
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Proof. The pullback of a fibration is a fibration (see [2, p. 91]), so we just need to check that
the induced action of G on f∗E is free, and that f∗π is the related quotient map. Recall

f∗E = {(e, b′) ∈ E ×B′ : π(e) = f(b′)} (I.1.8)

then the induced action is given by g · (e, b′) = (g ·e, b′), and it is well defined since π(g ·e) =
π(e); by freeness of the original action this action is free, and the orbits have the form

G · (e, b′) = {(f, c′) ∈ f∗E : g · (f, c′) = (e, b′) for some g ∈ G}
= {(f, b′) ∈ f∗E : g · f = e for some g ∈ G} = {(f, b′) ∈ f∗E}

(I.1.9)

then f∗π, given pointwise by f∗π(e, b′) = b′, is the orbit map of this action.

The universal bundle problem consists in finding a principal bundle generating all the
other bundles via pullback. More precisely:

Definition I.1.2.6. A principalG−bundle (E ,B, p) is called universal if any principalG−bundle
(E,B, π) can be obtained by pulling back some map f : B → B.

Remark I.1.2.7. Uniqueness (up to homotopy) of universal G−bundles follows from the
definition: given two such bundles (E1, B1, p1), (E2, B2, p2) we obtain by definition maps
f, g such that

E1
γ- E2

φ- E1

B1

p1
? g- B2

p2
? f- B1

p1
?

where both squares are pullbacks; but pullbacks are unique up to homotopy, so that f ·H g '
id. We can then pullback along H to obtain an equivariant homotopy between φ · γ and id:

H∗E1 - E1

B1

p1
?

H
- B1

p1
?

the converse equivariant homotopy can be obtained analogously.

I.1.3. Universal bundles and contractibility
We want to construct explicitly an universal G−bundle. As a first step, we reduce our prob-
lem to finding a contractible space on which G acts freely: to do so, we need a preliminary
lemma.

Lemma I.1.3.1. Consider two principal G−bundles π : M →M/G and p : E → E/G, with
E contractible, and let G act onM×E via the diagonal action g ·(x, e) = (g ·x, g ·e) ∀(x, e) ∈
M × E. Then

(i) Π : (M × E)/G→M/G : [(x, e)] 7→ [x] is a fibration;
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(ii) Π : (M × E)/G→M/G has a section.

Proof. Ad (i). First, check that this assignment is well defined, i.e. [(x, e)] = [(x′, e′)] implies
[x] = [x′]: this follows by definition of the diagonal action, since the first equality implies in
particular x = gx′ for some g ∈ G.
To show that this map is a fibration, we exhibit a local trivialization.

(M × E)/G �π× M × E

M/G

Π
?
�

π
M

p1
?

We can find an open set U ⊂M/G such that its preimage in M is homeomorphic to U ×G
using the local triviality hypothesis on π : M →M/G; the preimage along p1 gives us a set
of the form (U ×G)×E. Now, the action of G on U ×G is given by g · ([x], g′) = ([x], gg′),
so that two elements ([x], g, e), ([x]′, g′, e′) are in the same orbit of the diagonal action if and
only if [x] = [x]′, and e = (gg′−1) · e′.
This means, in turn, that representatives of each equivalence classes are given by elements
of the form ([x], 1, e), and lastly that we can identify π×((U ×G)×E) with U ×E via the
assignment

[([x], g, e)] 7→ ([x], g−1 · e) (I.1.10)

having as inverse ([x], e) 7→ ([x], 1, e).
Ad (ii). Observe that the fiber of Π is E:

Π−1([x]) = {[(x, e)] ∈ (M × E)/G : e ∈ E} ' E (I.1.11)

in fact the assignment e 7→ [x, e] is clearly surjective, and injectivity follows by freeness of
the action.
Since E is contractible, Π is a weak homotopy equivalence, hence a homotopy equivalence.

In particular ∃σ : (M×E)/G→M/G: Π·σ ' idM/G, that is, we have a "homotopy section".
To turn this into a proper section, let Ht be an homotopy between Π · σ and the identity,
and consider the following homotopy extension problem:

(M × E)/G (M × E)/G

 

M/G
H0 = Π · σ

-

σ

�

-

M/G

Π
?

M/G
Ht

-

Gt -

M/G

Π
?

then s = G1 is a section of Π.

Remark I.1.3.2. Aside: notice that part (i) of the proof carries over verbatim to the follow-
ing, more general result:

Proposition I.1.3.3. Let G act smoothly on the spaces N , M , and let π : N → M be an
equivariant fibration. Then πG : (N × E)/G→ (M × E)/G is a fibration.
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Where we call equivariant fibration a fibration of G−spaces whose projection map is
equivariant.

Let’s proceed with our discussion. The section s together with the assignment q : (M ×
E)/G→ E/G : [(x, e)]→ [e] produces f = q ·s : M/G→ E/G,: it’s the map along which we
would like to pull back (E,E/G, p), our candidate universal bundle, to obtain (M,M/G, π).
It remains to show that f∗E 'M as G−bundles: this is the content of the next theorem.

M '? f∗E - E

M/G

f∗p
? f - E/G

p
?

(M × E)/G

q -

s -

Theorem I.1.3.4. Consider two principal G−bundles π : M → M/G and p : E → E/G,
with E contractible. Then there exists a map f : M/G → E/G such that f∗E ' M as
G−bundles.

Proof. As remarked in the discussion above, we set f = q · s. Observe that each equivalence
class [(x, e)] ∈ (M × E)/G defines an equivariant map h[x] : Π−1[x] → E just by setting
h(x) = e and extending equivariantly. We can easily check that h[x] is the same map
regardless of the chosen representatives: if (x′, e′) = (g · x, g · e) and we set h′[x](x′) = e′, we
get h′[x](x) = g−1 · h′[x](x′) = g−1 · e′ = e, so that h = h′.

We can then think of the section s as a map yielding one such function for every equiva-
lence class of M/G, i.e s([x]) = [(x, h[x](x))]. We then get an assignment h defined on the
whole space M via

h(x) = h[x](x) (I.1.12)
This assignment is continuous: pick an open set V ⊂ E, we want to show that ∀x ∈ h−1(V )
there exists an open neighbourhood W of x contained in V . Set y = h(x) and construct it
as follows:

• Observe that there exists a neighbourhood V1 of y inside V and a neighbourhood N
of 1 ∈ G with the property N · V1 ⊂ V . This follows just by continuity of the action
· : G×M →M ;

• Moreover, we can find a neighbourhood of x such that the points in its image cannot
be further than by an element in N . More precisely, let

M∗ = {(x, g · x) ∈M2 : x ∈M, g ∈ G} (I.1.13)

and define
τ : M2 ∩M∗ → G : (x, g · x) 7→ g (I.1.14)

this map is well defined by freeness of the action, and continuous: we can find a
neighbourhood W1 of x such that τ(W 2) ⊂ N ; if two elements in W1 are in the same
orbit of G, the g ∈ G linking them is small;



I.1. The Borel construction 13

• Consider the projection Π(W1 × V1) ⊂ (M × E)/G. This is an open set, so that its
preimage U under the section M/G→ (M ×E)/G is still open, and so is π−1U ⊂M .
Observe x ∈ π−1U , in fact

s(π(x)) = [x′, h(x′)], x′ ∈W1, h(x′) ∈ V1 (I.1.15)

for x′ such that [x] = [x′]. This means h(x) = h(g · x′) = g · h(x′): by construction,
g ∈ N , so that g · h(x′) ∈ V1. An analogous argument shows h(π−1U) ⊂ V1, proving
the claim.

Let’s proceed. Observe p · h = f · π:

M

f∗E -

-

E

h

-

M/G
?

f
-

π

-
E/G

p
?

in fact

f · π(x) = f([x]) = q · s([x]) = q · [(x, h(x))] = [h(x)] = p · h(x) (I.1.16)

we then obtain the dashed, continuous assignment t = (π, h) : X → f∗E by properties of
the pullback. We claim that t is a homeomorphism, in fact:

• t is injective:

(π(x), h(x)) = (π(x′), h(x′))⇒
{
π(x) = π(x′)
h(x) = h(x′)

⇒
{
x = g · x′ for some g ∈ G
h(x) = h(x′)

⇒ h(x′) = h(x) = h(g · x′) = g · h(x′)
⇒ g = id, x = x′

(I.1.17)

• t is surjective. Pick ([x], e) ∈ f∗E, recall

f∗E = {([x], e) ∈ X/G× E : f([x]) = p(e)} (I.1.18)

this means p(h(x)) = p(e), i.e. e = h(g · x) for some g ∈ G and x ∈ [x]. Then a
preimage of [(x, e)] is given by g · x for such g, in fact π(g · x) = [x], h(g · x) = e by
construction.

• t−1 is continuous. To see this, pick any x′ ∈ f∗E′ with its preimage x ∈ M , and
consider an open neighbourhood V of x; we want to prove openness of t by constructing
an open neighbourhood W of x′ such that t−1(W ) is contained in V . We do this in
steps, similarly as we did for h:
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– As before, there exists a neighbourhood V1 of x inside V and a neighbourhood
N of 1 ∈ G with the property N · V1 ⊂ V ;

– Also analogously, we can find a neighbourhood W1 of x′ such that τ(W 2
1 ) ⊂ N .

Set V2 = V1 ∩ t−1(W ): this is an open neighbourhood of x satisfying t(V2) ⊂W1;
– The next step is identifying an open neighbourhood W2 of x′ insideW1 such that
f∗p(W ) ⊂ π(V2):

V2 ⊂M
t- f∗E ⊃W2

M/G

f∗p�

π -

just set W2 = W1 ∩ (f∗p)−1π(V2), and observe that we have t(V2) ⊂ W2, since
by commutativity t(V2) ⊂ (f∗p)−1π(V2);

– Set W = W2. It is an open neighbourhood of x′, moreover for each y′ ∈ W we
can find an y ∈ V2 such that f∗π(y) = π(y); since both y′ and t(y) are in W and
in the same orbit of G, it holds y′ = g · t(y) for y ∈ S.
But g · t(y) = t(g ·y), then t−1(y′) = g ·y ∈ N×V2 ⊂ V . This shows t−1(W ) ⊂ V .

As a corollary, we have

Corollary I.1.3.5. A principal G−bundle (E,G, p) is an universal G−bundle if and only if
E is contractible.

Proof. Suppose E is contractible, then the theorem above tells us how to express any prin-
cipal G−bundle by pulling back E.
Conversely, we already saw that the total spaces of universal bundles necessarily share

the same homotopy type.

This statement reinforces the idea of the space E as a canvas, or, in other terms, of E/G
as a footprint of G, as precise as we can get it. Since E is homotopically always the same, no
matter what G we choose, we can think of all the information about principal G−bundles
as being stored in the orbit space E/G. This leads us to the following definition:

Definition I.1.3.6. The space E/G, unique up to homotopy, is called classifying space of G.

I.1.4. Construction of an universal G−bundle
Recall that every compact Lie group has a faithful linear representation (see [12, p. 26]),
i.e. it can be embedded as a subgroup of U(n) for some n ∈ N; it is then sufficient to find
a contractible space E on which U(n) acts freely, and then restrict its action to G.

Start by considering the Stiefel manifold V k
n , k > n. This is the set of all orthonormal

n−frames in Ck; recall that V k
n inherits a CW structure from SO(k) via the projection πk

of the last n columns of the matrices of SO(k) (see [16, p. 301]).
Observe
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Lemma I.1.4.1. There is a free action U(n) y V k
n ∀k > n.

Proof. Define for A = (aij)ij ∈ U(n) and any (v1, . . . , vn) ∈ Vn(Ck)

A · (v1, . . . , vn) = (
∑
j

a1jvj , . . . ,
∑
j

anjvj) (I.1.19)

this action is well defined, for

〈(A · v)i, (A · v)j〉 =
∑
k,k′

aikājk′δkk′ = (AA∗)ij = δij (I.1.20)

It is also free. Suppose Av = v, then

δij = 〈vi, vj〉 = 〈(Av)i, vj〉 =
∑
k

aikδkj = aij (I.1.21)

Now, if V k
n were contractible, we would have found our universal bundle. Denote by

πj(V k
n ) = 0 the jth homotopy group of V k

n , and observe
Lemma I.1.4.2. πj(V k

n ) = 0 for 2k > 2n+ j.
Proof. We prove the claim by induction on n. For n = 1 we get V k

1 ' S2k−1, so that
πj(V k

1 ) = 0 for j < 2k − 1, and the claim holds.
Let’s show n − 1 ⇒ n. Observe that the map pn : V n

k → V n−1
k : (v1, . . . , vn) 7→

(v1, . . . , vn−1) is a fibration: in fact, given a homotopy lifting problem
V n
k V n

k

 

X
f0
-

g -

V n−1
k

pn
?

X
ft
-

-

V n−1
k

pn
?

with ft(x) = (f1
t (x), . . . , fn−1

t (x)), g(x) = (g1(x), . . . , gn(x)), we can lift f by gt(x) =
GS(f1

t (x), . . . , fn−1
t (x), gn(x)), GS being the Gram-Schmidt algorithm. The fiber is a

sphere:
p−1
n (x) = {v ∈ Ck : ‖v‖ = 1, v ⊥ x1, . . . , xn−1} ' S2(k−n)+1 (I.1.22)

now choose X = Sj , with j 6 2(k − n + 1). Pick any g0 : Sj → V n
k , induce an f by

commutativity and solve the homotopy lifting problem with input the homotopy ht from f
to the trivial map. Then g1 maps into the fiber, and is nullhomotopic for j < 2k − 2n+ 1,
i.e. j 6 2k − 2n.

The idea is then to construct for fixed n an infinite Stiefel complex Vn via the chain of
inclusions

. . . ⊂ - V k
n
⊂

ιk
- V k+1

n
⊂ - . . .

sending (v1, . . . , vn) to ((0, v1), . . . , (0, vn)). This is formally accomplished by declaring Vn
to be the direct limit of the V k

n ’s, i.e. the space

Vn =
∐
k>n

V k
n / ∼ (I.1.23)

where ∼ is constructed at follows:
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• Denote ιi+1
k the composition ιk+i · · · · · ιk ∀i > 0;

• Denote ι0k = idV kn ;

• Identify two points x ∈ V k
n , y ∈ V k+i+1

n if and only if y = ιi+1
k .

This equivalence relation is only well defined as long as the inclusions are compatible, i.e.
ιjk+i · ιik = ιi+jk , which is clearly the case: we’re just adding a tuple of zeros before each
component of v ∈ V k

n , and it doesn’t matter whether we do it in one or two steps. Vn
also inherits a CW structure, topologizing it with the final topology with respect to the
inclusions and taking as characteristic maps those of the V k

n ’s.
All homotopy groups of Vn are then zero: the image of any map f : Si → Vn is contained

into some subcomplex V k
n , whose homotopy group is trivial for k large enough. Then Vn is

contractible, and (Vn, Vn/G, π) a universal G−bundle.

Example I.1.4.3. (i) If we take G = S1 = U(1), we have V k
1 = Sk, and ιk is the equatorial

inclusion; then V1 = S∞. The action of S1 on each V k
1 yields the principal bundles

(Sk,CP k, π), and we can identify the k−skeleton of S∞/G with CP k. Then S∞/S1 =
CP∞, and (S∞,CP∞, π) is a universal S1−bundle;

(ii) Analogously, (S∞,RP∞, π) is a universal Z2−bundle;

(iii) It is easy to see that E(G ×H) ' EG × EH. A universal bundle for the n−torus is
then just given by Πn

i=1(S∞i ,RP∞i , πi).

I.1.5. The homotopy quotient

We are now ready to define the equivariant cohomology of a G−space M . The idea is to
substitute

M/G (M × E)/G (I.1.24)

and then study the cohomology of this last object. There are several advantages:

• E is contractible, so we’re not changing the homotopy type of M ;

• the action of G on M ×E is free no matter the patologies of the original action, since
E → E/G is a principal bundle;

• last but not least, E is unique up to homotopy: this definition doesn’t have any
inconsistencies.

Definition I.1.5.1.

For a G−space M , we call MG = (M × E)/G the homotopy quotient of M , and

H∗G(M) = H∗(MG) (I.1.25)

the equivariant cohomology ring of M .
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Remark I.1.5.2. • If MG really is the appropriate substitute of M/G when the action
is not free, we expect it to have the same homotopy type of M/G when the action
is already free. This is true: we showed during the proof of Lemma I.1.3.1 that
Π : MG → M/G is a fibration with contractible fiber, in particular a homotopy
equivalence;

• To get a handle on the theory, it is instructive to have a look at the cohomology of
a single point. If we set M = ∗, we get MG ' E/G. This object is already quite
complicated for G = S0: we get the cohomology of RP∞, i.e. Z2[x], with |x| = 2.
This largeness can be somehow justified by observing that points of M/G are orbits
of the action, and that the orbit containing some x ∈ M corresponds to the quotient
G/Gx, Gx being the stabilizer of x. Now, if x lies on a free orbit, we get Gx = 0, and
computing its the equivariant cohomology yields

H∗G(G) = H∗(GG) = H∗((G× E)/G) ' H∗(E) = 0 (I.1.26)

in general, it holds H∗G(G/Gx) = H∗(E/Gx) = H∗Gx(∗): the equivariant cohomology
becomes more and more interesting as the action degenerates, and, in this sense,
measures how pathological the action is.
The equality H∗G(G/Gx) = H∗(E/Gx) follows from observing that two elements (g ·
Gx, e), (g′ · Gx, e′) of G/Gx × E are in the same orbit if and only if g · Gx = g′ · Gx,
equivalently e = h · e′ for h ∈ Gx. Then (G/Gx × E)/G ' E/Gx, which proves the
claim;

• Equivariant cohomology is not a cohomology theory: the cohomology of a point is
general too "large". Still, several well-know properties of e.g. singular cohomology,
such as the Mayer-Vietoris sequence or the sequence of a pair, can be translated into
an equivariant context.
As an example, let’s try to derive the exact sequence of a pair of spaces (M,Z). We
have a diagram of the form

Z
ι - M

Z × E

i
? ι× id- M × E

i
?

(Z × E)/G

πZ
?

- (M × E)/G

πM
?

in order to induce an inclusion on the quotient, we need Z to be an equivariant subset
of M : we can then use the sequence for a pair of spaces applied to ZG, MG to get the
result. One needs to adapt similarly the Mayer-Vietoris argument, using equivariant
open subsets;

• Consider the fibration M ↪→ (M × E)/G→ E/G:
– Looking at the inclusion of the fiber, we can interpret equivariant cohomology as

extending topological information from the manifold to its homotopy quotient;
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– The projection map induces

π∗ : H∗G(∗) ' H∗(E/G)→ H∗((M × E)/G) ' H∗G(M) (I.1.27)

which we can use to regard H∗G(M) as a module over H∗G(∗): for an a ∈ H∗G(∗),
ω ∈ H∗G(M), one defines a · ω := π∗(a) · ω, using the ring structure of H∗G(M).

Let’s see an example of computation. We consider equivariant cohomology with complex
coefficients.

Example I.1.5.3. Consider the action of S1 on S2 given by rotation with respect to a fixed
axis:

fθ : S2 → S2 :

 cos(ψ)
sin(ψ) sin(φ)
sin(ψ) cos(φ)

 7→
 cos(ψ)

sin(ψ) sin(φ+ θ)
sin(ψ) cos(φ+ θ)

 (I.1.28)

this action is free on every point but the north and the south pole, which are fixed points.
We can use the equivariant Mayer-Vietoris sequence to compute the equivariant cohomology
of the sphere: choose as equivariant neighbourhood U+, U− two overlapping spherical caps,
each containing one of the poles

U+ =


 cos(ψ)

sin(ψ) sin(φ)
sin(ψ) cos(φ)

 ∈ S2 : ψ <
3π
4

 , U− =


 cos(ψ)

sin(ψ) sin(φ)
sin(ψ) cos(φ)

 ∈ S2 : ψ >
π

4


(I.1.29)

their intersection is then a belt V around the equator, which doesn’t contain either of the
poles. Observe that U+ and U− deformation retract to the fixed points, and V to the
equator, so that 

H∗S1(U+) = H∗S1(+) = C[+], deg[+] = 2
H∗S1(U−) = H∗S1(−) = C[−], deg[−] = 2
H∗S1(V ) = H∗(S1/S1) = H∗(∗)

(I.1.30)

for k > 1, the Mayer-Vietoris sequence reads

0 - Hk
S1(S2) - (C[+])k ⊕ (C[−])k - 0 (I.1.31)

while for k = 0, 1 we have

0 - H0
S1(S2) - C⊕ C

j∗- C - H1
S1(S2) - 0 (I.1.32)

where j∗ is the restriction, acting as j∗(z1, z2) = z1 + z2. Thus H0
S1(S2) = C, H1

S1(S2) = 0.
We obtain:

Hk
S1(S2) =


C, k = 0
C2, k even
0, otherwise

(I.1.33)

Now consider the trivial action of S1 on S2. In this case

(S2 × ES1)/S1 ' S2 ×BS1 (I.1.34)
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so that H∗S1(S2) = H∗(S2)⊗H∗(CP∞). Taken grade-by-grade, these two cohomology ring
are the same: but these object have a more natural interpretation as H∗G(∗)−modules, as
shown in the last remark, or H∗G(∗)−superalgebras, which will be introduced in the second
section. We postpone the discussion on the isomorphism until the end of the chapter.



20 I. What is equivariant cohomology?

I.2. The Weil model
The purpose of this section is to show how to compute the equivariant cohomology of M
by a pure algebraic construction. As remarked in the introduction, rather than defining a
new space and computing the cohomology of the associated complex, we will just define a
new complex from scratch, and define its cohomology as the equivariant cohomology of M .
Some algebraic machinery is required, and provided in the next pages.
Remark I.2.0.1. In this section, M is always assumed to be a manifold. G is, as before, a
compact and connected Lie group.

I.2.1. Some motivations
We motivate, and prepare the setting for, the algebraic definitions in the following subsec-
tions.
Consider a G−space M , and consider the map φg : M →M : m 7→ g ·m for fixed g ∈ G.

Then the assignment
g 7→

(
φ−1
g

)∗
(I.2.1)

defines a representation of G on Ω(M), the de Rham complex of M . We need to invert the
pullback in order to satisfy the group homomorphism condition, which arises combining the
two involutive operations:

gh 7→
(
φ−1
gh

)∗
=
(
(φgφh)−1

)∗
=
(
φ−1
g

)∗ (
φ−1
h

)∗
(I.2.2)

We can use the exponential mapping to induce a representation of g on Ω(M). Explicitly,

g 3 ξ 7→ d
dt |t=0

(
φ−1

exp (tξ)

)∗
(I.2.3)

regarding t 7→ exp (tξ) as a path having tangent vector ξ in t = 0. Now observe that this
operation coincides with the Lie derivative with respect to the vector field having φ−1

exp (tξ)
as flux, namely

ξ̂(·) = − d
dt |t=0φexp tξ(·) (I.2.4)

Definition I.2.1.1. Let ξ ∈ g. We call the vector field

M 3 x 7→ − d
dt |t=0φexp tξ(x) ∈ TxM (I.2.5)

the fundamental vector field associated to ξ. Also this vector field will be denoted by ξ.
Similarly, we define the contraction by ξ as the contraction with the associated funda-

mental vector field, and denote it by ιξ. Lie derivative, contraction and exterior differential
satisfy the Weil equations: 

[Lξ, d] = 0
[Lξ, ιη] = ι[ξ,η]

[Lξ, Lη] = L[ξ,η]

{d, ιξ} = Lξ

{ιξ, ιη} = 0
{d, d} = 0

(I.2.6)
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Where [, ] denotes the commutator and {, } the anticommutator. Notice that whenever the
operation of degree zero (Lξ : Ωk(M)→ W k(M)) is involved, we have the usual commuta-
tor; for the other two derivations, having degree ±1, the anticommutator appears.

All in all, g acts on Ω(M) via two derivations, related one another and with the derivation
already present on Ω(M) either via commutators or anticommutators, according to their
degree. We would like to turn the tables, and transform these equations into defining
properties: a rich structure, called Lie superalgebra, which models the action of a Lie algebra
on Ω(M). Untangling the relations I.2.6 will lead us to define a rather baroque construction,
with two spaces isomorphic to g, but on different levels, and a third space which we’ll equip
with an algebra structure, only to ask it to be trivial: nonetheless, every single piece of
information we define will turn out to be necessary; the multiple algebraic features of these
Lie superalgebras just show how intrisically rich the G−space structure is.

I.2.2. Superalgebras
We need a preliminary notion:

Definition I.2.2.1. A supervector space is a vector space V with a Z2−gradation:

V = V0 ⊕ V1 (I.2.7)

Elements of V0 are called even, elements of V1 are called odd.

Remark I.2.2.2. (i) This definition work regardless of the field the vector space is defined
on. But henceforth we will specialize the discussion to R and C;

(ii) A vector space V can be made into a supervector space by setting V0 = V , V1 = ∅. In
this sense, the former definition is just a generalization of the concept of vector space;

(iii) Given a Z−graded vector space V = ⊕i∈ZVi, we can induce a supervector space struc-
ture by setting

V0 = ⊕i∈ZV2i, V1 = ⊕j∈ZV2j+1 (I.2.8)

We’ll refer to such supervector spaces as Z−graded supervector spaces, taking this
identification for granted.

Now the plan is to let the Z2−grading propagate in usual algebraic definitions and iden-
tities, obtaining their super version.

Definition I.2.2.3. (i) A superalgebra A is a supervector space equipped with a bilinear
product · satisfying

Ai ·Aj ⊂ Ai+j , i = 0, 1 (I.2.9)

with i+ j to be intended as a modulo 2 sum;

(ii) The supercommutator on A is defined as

[a, b] = a · b− (−1)ijb · a, ∀a ∈ Ai, b ∈ Aj , ∀i, j (I.2.10)

and A is called super commutative if [a, b] = 0 ∀a, b ∈ A;
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(iii) The super anticommutator on A is defined as

{a, b} = a · b+ (−1)ijb · a, ∀a ∈ Ai, b ∈ Aj , ∀i, j (I.2.11)

and A is called super anticommutative if {a, b} = 0 ∀a, b ∈ A;

(iv) A (super) anticommutative (super) algebra (A, [, ]) satisfies the superJacobi identity if
and only if

(−1)ik[a, [b, c]] + (−1)jk[c, [a, b]] + (−1)ij [b, [c, a]] = 0, ∀a ∈ Ai, b ∈ Aj , c ∈ Ak, ∀i, j, k
(I.2.12)

Such an A is called a Lie superalgebra;

(v) The endomorphisms of a superalgebra A satisfying the superLeibniz rule

D(a · b) = (Da) · b+ (−1)ika · (Db), ∀a ∈ Ai, b ∈ Aj ,∀i, j (I.2.13)

for a k ∈ Z2 are called even or odd derivations, according to k being 0 or 1.
Remark I.2.2.4. (i) Z−graded superalgebras are defined accordingly;

(ii) Derivations in Z−graded superalgebras have degree in Z, and are called even or odd
according to their degree being 0 or 1 mod 2.

(iii) The mechanical procedure of substituting commutativity by graded commutativity
goes under the name of Quillen’s law.

Example I.2.2.5. (Ω(M),∧) is a commutative (Z−graded) superalgebra:

[v, ω] = v∧ω−(−1)ijω∧v = v∧ω−(−1)2ijv∧ω = 0, ∀v ∈ Ωi(M), ω ∈ Ωj(M), ∀i, j (I.2.14)

Armed with such notions, we turn to the old problem of including the properties I.2.6,
together with the overlying structure, in an unique algebraic object.
Definition I.2.2.6. Consider a Lie group G and its Lie algebra g. Then the Lie superalgebra
g̃ of G is the Lie superalgebra

g̃ = g− ⊕ g0 ⊕ g+ (I.2.15)
with the grading g0 = g0, g1 = g− ⊕ g+, and:
(i) g− isomorphic to g as a vector space via a 7→ ia;

(ii) g0 isomorphic to g as an algebra via a 7→ la;

(iii) g+ a 1−dimensional vector space.
A multiplication is defined as follows:

[, ] : g0 × g0 → g0 : (la, lb) 7→ l[a,b]

[, ] : g0 × g− → g− : (la, ib) 7→ lada(b)

[, ] : g0 × g+ → g+ trivial
[, ] : g− × g− → g0 trivial
[, ] : g+ × g− → g0 : (d, ia) 7→ la

[, ] : g+ × g+ → g0 trivial

(I.2.16)

observe it respects the grading, it is anticommutative and satisfies the superJacobi identity.
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Remark I.2.2.7. The set of rules I.2.16 mimics the Weil equations I.2.6. The Lie super-
algebra of G expresses how its Lie algebra acts on the de Rham complex Ω(M) of some
G−space M : we just need to connect the elements of g to the corresponding fundamental
vector fields of M .
The only new element in this system of equations is ada, the adjoint representation of g

on itself. This is given just by the commutator:

g 3 ξ 7→ adξ = [ξ, ·] (I.2.17)

and can be shown to be the differential at 1 of the adjoint representation of G on g, i.e.

G 3 g 7→ Adg = d1(ψg) (I.2.18)

with ψg the conjugation by g in G.

I.2.3. G∗−algebras

So far we managed to generalize the idea of action on the de Rham complex: as we saw,
the Lie superalgebra of G expresses the action of g on Ω(M) when the fundamental vector
fields are given. The next step is to abstract from Ω(M): this will lead to the concept of
G∗−algebra.

Definition I.2.3.1. (i) A G∗−module V is a supervector space together with a linear rep-
resentation ρ of G on V and an action γ of the Lie superalgebra g̃ on V as endomor-
phisms.
We require the two operations to be compatible, i.e.

d
dt |t=0ρ(exp (tξ))(v) = γ(lξ)(v) ∀ξ ∈ g, ∀v ∈ V (I.2.19)

(ii) A G∗−algebra A is a commutative superalgebra A together with a G∗−module struc-
ture, in which G acts by automorphisms and g̃ by derivations.

Remark I.2.3.2. (i) It is not a priori clear how the derivative in I.2.19 is defined. This
can be done in two different ways: either if the G∗−module (or algebra) already has
a topology in which the limit can be taken, or if each of the orbit spaces are finite
dimensional vector spaces. We will always find ourselves in one of these two hypotheses;

(ii) When g̃ acts on A as derivations, we require the action it to mirror the grading of
A: elements from g0 should correspond to even derivation, elements from g± to odd
derivations. But we also want the (possible) Z−grading to be respected:

g− 3 iξ 7→ γ(iξ) : Ai → Ai−1

g0 3 lξ 7→ γ(iξ) : Ai → Ai

g+ 3 iξ 7→ γ(iξ) : Ai → Ai+1

(I.2.20)

Morphisms of G∗−algebras and modules are maps which preserve the action:
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Definition I.2.3.3. (i) Let A and B be G∗−modules. f : A → B is a morphism of
G∗−modules if and only if ∀x ∈ A, ξ ∈ g

[lξ, f ] = 0
[iξ, f ] = 0
[d, f ] = 0

(I.2.21)

(ii) A morphism of G∗−modules has degree k if and only if

f : Ai → Bi+k ∀i (I.2.22)

(iii) Let A and B be G∗−algebras. f : A→ B is a morphism of G∗−algebras if and only if
f is an algebra homomorphism and satisfies equations I.2.21. Degree of G∗−algebras
morphisms is defined accordingly.

Remark I.2.3.4. (i) At first sight, it may seem that the morphism doesn’t need to respect
the ρ action; as a byproduct of I.2.19, however, it does. In fact, from I.2.19 and
observing [id = ρ(1), f ] = 0 we obtain

[ρ(exp (tξ)), f ] = 0 (I.2.23)

and for our choice of G - compact and connected - the exponential mapping is a
surjection. We obtain

[ρ(g), f ] = 0 ∀g ∈ G (I.2.24)

i.e. preservation of the G action.

(ii) As for derivations, morphisms of Z−graded G∗−algebras and modules have degree in
Z, and are defined to be even or odd according to their degree mod 2 being 0 or 1;

With this definition, the set of G∗−algebras and G∗−modules is a category. We will
find the algebraic equivalent of our universal bundle E in this category, giving an algebraic
equivalent of the conditions of free action and contractibility.

I.2.4. Cohomology of G∗−algebras. Aciclicity.

Observe that 0 = γ([d, d]) = γ(d)2, and γ(d) has degree 1 by hypothesis. Then a Z−graded
G∗−algebra together with the differential γ(d) is a cochain complex, and we can consider
its cohomology H∗(A).

Remark I.2.4.1. (i) H∗(A) with the cup product has a superalgebra structure, which is
Z−graded if A is;

(ii) We know that for a morphism of G∗−algebras f : A → B it holds [d, f ] = 0. Then
f descends to a morphism on cohomology: f∗ : H∗(A) → H∗(B). Notice it is not
contravariant;
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(iii) One may wonder whether H∗(A) inherits a G∗ structure: since [ιξ, d] 6= 0, it is in
general not possible for the g̃ action on A to descend on cohomology; a G−action can,
however, be defined.

To do this, observe

d
dtρ(exp(tξ)) = d

dτ |τ=0ρ(exp((t+ τ)ξ)) = ρ(exp(tξ)) · Lξ (I.2.25)

then
0 = d

dt(ρ(exp(tξ))ρ(exp(−tξ))) = ρ(exp(tξ)) · Lξ · ρ(exp(−tξ))− Lξ
d
dt(ρ(exp(tξ)) · d · ρ(exp(−tξ))) =ρ(exp(tξ)) · Lξ · d · ρ(exp(−tξ))

− ρ(exp(tξ)) · d · ρ(exp(−tξ)) · Lξ

(I.2.26)

then

d
dt(ρ(exp(tξ)) · d · ρ(exp(−tξ))) = ρ(exp(tξ)) · [Lξ, d]︸ ︷︷ ︸

=0

·ρ(exp(−tξ)) = 0 (I.2.27)

Finally, surjectivity of exp for compact, connected Lie groups shows that ρ(g)d =
dρ(g) ∀g ∈ G, i.e. a G−action is well defined.
It is not an interesting action, however, since

d
dt(ρ(exp(tξ)ω) = d(ρ(exp(tξ)ιξω) + ρ(exp(tξ))ιξdω (I.2.28)

meaning that on the level of cocycles (dω = 0) the derivative is 0. Since ρ(exp(0ξ))ω =
ω, we conclude that the action is trivial.

Contractibility - one of the key properties of the universal bundle - translates in the
G∗−algebras language to acyclicity.

Definition I.2.4.2. A G∗−algebra A over a field K is acyclic if and only if

Hm(A) =
{
K, m = 0
0, otherwise

(I.2.29)

Remark I.2.4.3. If M is a G−space, Ω(M) is a Z−graded G∗−algebra. By construction,
its cohomology H∗(Ω(M)) coincides with H∗(M), letting γ(d) correspond to the usual
differential, and we see that the aciclity condition mimics the contractibility condition.
The fact that the cohomology of Ω(M) as a G∗−algebra coincides with the usual de Rham

cohomology ofM also justifies, a posterior, the fact that there is no sensible action of either
G or g on the complex - this information just get lost when restricting to cochains.
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I.2.5. Type (C) G∗−algebras

In this subsection we provide an algebraic version of the freeness of the action: we’ll give
the definition, and then try to show how it relates to the corresponding geometric notion.

Definition I.2.5.1. A G∗−algebra A is said to be of type (C) if there are elements θi ∈ A1,
i = 1, . . . ,dimG, such that

γ(ia)θb = δba (I.2.30)

Such elements are called connection elements of A.

We expect this definition to generalize the concept of the de Rham complex of a G−space
on which G acts freely; however, strictly speaking, this is not the case: when working with
forms, it is easier to work on the infinitesimal level, passing from G to g, and reformulating
the freeness condition in terms of g. This yields a weaker definition:

Definition I.2.5.2. Let M be a G−space. The action of G is locally free if and only ∀ξ 6=
0 ∈ g, the corresponding fundamental vector field ξ is nowhere vanishing.

Remark I.2.5.3. As promised, this is just an infinitesimal version of the freeness condition.
Given a free action, we have

exp(−tξ) · x = x⇒ ξ = 0 (I.2.31)

differentiating with respect to t, we get the condition

ξ(x) = 0⇒ ξ = 0 (I.2.32)

Beware: on the left hand side we have the fundamental vector field of ξ, and not ξ itself.
This is precisely our definition of locally free action.

Observe that we can associate to a basis ξ1, . . . , ξn of g a set of 1−forms θ1, . . . , θn on M :
we do so by requiring

ιξiθ
j = δji (I.2.33)

with ξi here denotes the fundamental vector field relative to the element of the basis. Ob-
serve that such an assignment is only made possible from the fundamental vector fields being
non-vanishing everywhere: the local freeness of the action is equivalent to the existence of
such θ’s, which we call connection forms of M . The connection elements defined above
generalize this notion, giving an algebraic generalization of the locally free action condition.

This generalization - surprisingly, perhaps - captures an important property of the con-
nection elements, which only arises when we endow the manifold with a G−invariant metric.
We can do this without loss of generality: every manifold is metrizable (see [27, p. 166]),

so that we can select some metric g̃ on M , and by compactness of G induce a G−invariant
metric g via

g(v, w) =
∫
G
g̃(DxLh(v), DxLh(w))dµ(h) ∀v, w ∈ TxM, ∀x ∈M (I.2.34)
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with µ a Haar measure for G (see e.g. [12]). Invariance follows from invariance of the
measure:

g(DxLh′v,DxLh′w) =
∫
G
g̃(DxLh·h′(v), DxLh·h′(w))dµ(h) =

=
∫
G
g̃(DxLh·h′(v), DxLh·h′(w))dµ(h · h′) = g(v, w)

(I.2.35)

The good thing about having a metric is that we receive a notion of orthogonality: the
connection elements ofM identify a subbundle C of T ∗M , and by considering the orthogonal
subspaces in each point we obtain a complementary subbundle, the horizontal bundle of M .
Forms ω in the horizontal bundle are characterized by the requirements

ιξiω = 0, i = 1, . . . , n (I.2.36)

and called, accordingly, horizontal. Observe now

Lξiιξjθ
k = ([Lξi , ιξj ] + ιξjLξi)θl

= ι[ξi,ξj ]θ
l + ιξjLξiθ

l

= ckijιξkθ
l + ιξjLξiθ

l

= clij + ιξjLξiθ
l

(I.2.37)

with {ckij} structure constants of g. On the other hand

Lξiιξjθ
k = Lξiδ

k
j = 0 (I.2.38)

then we can write
Lξiθ

l = −
∑
j

clijθ
j + ω (I.2.39)

for a horizontal ω. Now, suppose that the horizontal bundle is G−invariant; since g is
G−invariant as well, C is G−invariant, so that ω in I.2.39 must be zero: in fact, sub-bundle
invariance reads

v ∈ C ⇒ (φetξ)∗v ∈ C (I.2.40)

then we can express (φetξ)∗v as a linear combination of the θ’s:

(φetξ)∗v =
∑
j

fj(etξ)θj (I.2.41)

deriving with respect to t yields the Lie derivative on one side, and on the right again an
element of C: comparing with I.2.39 yields then ω = 0.

In conclusion, we obtain the equation

Lξiθ
l = −

∑
j

ckijθ
j (I.2.42)

and as a consequence, using Cartan’s formula,

ιξidθ
l = −

∑
j

ckijθ
j (I.2.43)
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hence
dθl = −1

2
∑
j

ckijθ
iθj + µl (I.2.44)

where µl is a two-form satisfying ιξiµl = 0, i = 1, . . . , n. The µ’s are called curvature forms
associated to the connection forms of M .

The next proposition shows that we can proceed analogously in the context ofG∗−algebras.

Proposition I.2.5.4. Let A be a type (C) G∗−algebra, and (θ1, . . . , θn) its connection ele-
ments. Then

γ(lξb)(θa) =
∑
d

cabdθ
d (I.2.45)

Proof. We want to mirror the reasoning of the geometric case. Start by building an assign-
ment from the basis ξ1, . . . , ξn of g to the connection elements θ1, . . . , θn of the G∗−algebra
A: pick the basis ξ1, . . . , ξn of g∗ dual to the chosen basis of g, and then consider the
homomorphism given by extension of the assignments

ξi 7→ θi i = 1, . . . , n (I.2.46)

call this map h, and observe that we may rewrite I.2.30 as

γ(ia)(h(ξb)) =
〈
ξa, ξ

b
〉

(I.2.47)

Now we want to reconstruct I.2.42. Observe that the homomorphism

hg = ρ(g) · h · coAdg−1 (I.2.48)

also satisfies I.2.47. In fact:

γ(ia)(hg(ξb)) = ρ(g) · ιAdg−1ξah(coAdg−1ξb)

= ρ(g) ·
〈
Adg−1ξa, coAdg−1ξb

〉
= ρ(g) ·

〈
ξa, ξ

b
〉

= δba

(I.2.49)

Where we used:

• γ(iv)(h(w)) = 〈v, w〉 ∀v ∈ g, w ∈ g∗. This follows from I.2.47;

• the compatibility relation ιξ · ρ(g) = ρ(g) · ιAdg−1ξ. This follows from I.2.19: in fact

d
dtρ(etξ)ιAd

e−tξ
ρ(e−tξ) =

= (ρ(etξ)Lξ)ιAd
e−tξ

ρ(e−tξ) + ρ(etξ)ιadξ(Ad
e−tξη)ρ(e−tξ) + ρ(etξ)ιAd

e−tξ
(ρ(e−tξ)L−ξ) =

= ρ(etξ)([Lξ, ιAd
e−tξ

]− ι[ξ,Ad
e−tξη])ρ(e−tξ) = 0

(I.2.50)

• The fact that the action ρ(g) is trivial on A0.
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Consider now the average ĥ of h over the group with respect to the Haar measure:

ĥ(w) =
∫
G
hg(w)dµg (I.2.51)

the resulting ĥ is such that ĥg = ĥ, by its very construction. This means ρ(etξb) · ĥ =
ĥ · coAdetξb : deriving on both sides in t = 0 we conclude

γ(lξb)(h(ξa)) = ĥ · coadξb(ξa) = −ĥ(ξa(adξb(·))) = −ĥ(
∑
i

cabdξ
d) (I.2.52)

that is
γ(lξb)(θa) =

∑
d

cabdθ
d (I.2.53)

Remark I.2.5.5. This is exactly I.2.42! From here, we can proceed analogously and define
curvature elements for the G∗−algebra A. Notice that in this derivation there isn’t an
equivalent of the assumption that the horizontal bundle be G−invariant: this is not needed
either when we move from the space of all horizontal differential forms to the horizontal
closed differential forms - which is exactly what A should be generalizing.

I.2.6. Equivariant cohomology of G∗−algebras

We are now equipped with the algebraic equivalent A of a contractible space E on which G
acts freely. Remember the idea of the geometric construction:

M  M × E  (M × E)/G (I.2.54)

here we are working with Ω(M), rather than M , and we need to give an algebraic version
of the procedure above. This will be

Ω(M) Ω(M)⊗A (Ω(M)⊗A)bas (I.2.55)

it is not very surprising that the tensor product is the right substitute for the cartesian
product of spaces: one already appreciates such an interplay between the two concepts
when studying the singular homology of a product of spaces. The new ingredient are the
basic elements of the tensor product of G∗−algebras, which should convey the concept of
equivalence classes of forms with respect to the G−action.
As before, we give the algebraic definition and then show its relation to the geometric notion.

Definition I.2.6.1. Let A be a G∗−algebra. An element ω ∈ A is called basic if and only if
it satisfies the equations {

γ(lξi)ω = 0, i = 1, . . . , n
γ(iξi)ω = 0, i = 1, . . . , n

(I.2.56)

We denote by Abas the set of basic elements of A.
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Remark I.2.6.2. Basic elements form a subcomplex of A. In fact:{
γ(lξi)(γ(d)ω) = γ(d)(γ(lξi)ω) = 0, i = 1, . . . , n
γ(iξi)(γ(d)ω) = γ(lξi)ω − γ(d)(γ(iξi)ω) = 0, i = 1, . . . , n

(I.2.57)

the cohomology of this subcomplex is the basic cohomology of A:

H∗bas(A) = H∗(Abas, γ(d)) (I.2.58)

similarly, one shows that a morphism of G∗−algebras induces a morphism on the level of
basic cohomology.

The next proposition gives I.2.56 a geometric interpretation:

Proposition I.2.6.3. Suppose G acts freely on M , let π : M → M/G be the orbit map.
Then

π∗Ω(M/G) = {ω ∈ Ω(M) : ιξiω = Lξiω = 0, i = 1, . . . , n} (I.2.59)

Proof. Suppose ω ∈ π∗Ω(M/G). Then ω = π∗η for some η ∈ Ω(M/G), and

ιξiω = ιξiπ
∗(η) = π∗(ιπ∗ξiη) = 0 (I.2.60)

since
π∗(ξi)x = d

dt |t=0π(φexp(tξi)(x)) = 0 ∀x ∈M (I.2.61)

by Cartan’s formula, we also get Lξiω = 0.
Suppose now that ω satisfies ιξiω = Lξiω = 0, i = 1, . . . , n. By connectedness of G, the

condition Lξiω = 0 for each i is equivalent to the G−invariance (φg)∗ω = ω ∀g ∈ G.
By the slice theorem (see [6, p. 17]), π : M → M/G is a fibration with fiber G, so that it
suffices to show ω ∈ ker(j∗ : Ω(M)→ Ω(G)). To see this, denote multiplication in G by ψ

j · (ψh−1) = φh−1 · j ∀h ∈ G (I.2.62)

where we defined j to take g ∈ G, seen as the fiber over x ∈ M , to φg−1(x). Now, use
G−invariance of ω:

j∗(ω) = j∗(φ∗h−1(ω)) = (j · ψh−1)∗ω ∀h ∈ G (I.2.63)

in particular, this implies j∗(ω)h = j∗(ω)e ∀h ∈ G. We know that a basis of TeG is given
by ξ1, . . . , ξn; if we can show that j∗ξi = ξi - on the right we have the fundamental vector
field associated to ξi -, we are done:

j∗(ω)e(ξi1 , . . . , ξik) = ωx(ξi1 , . . . , ξik) = 0 (I.2.64)

since ιξiω = 0. To see why j∗ξi = ξi, observe that

j∗ξi = d
dt |t=0j(exp(tξi)) = − d

dt |t=0φexp tξ(x) (I.2.65)

exactly the definition of the fundamental vector field related to ξi.
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In conclusion, in the case where the action is already free basic elements really coincide
with equivalence classes of forms, in the sense specified by the proposition. For A = Ω(M),
basic elements are usually called basic forms.

The last step of the construction is - finally! - the definition of this algebraic equivariant
cohomology of M .

Definition I.2.6.4. Let A be a type (C), acyclic G∗−algebra. We call (Ω(M) ⊗ A)bas the
homotopy basic subcomplex of M , and

H∗G(M) = H∗bas(Ω(M)⊗A) (I.2.66)

the equivariant cohomology ring of M .

Some questions naturally arise:

• Is the definition well posed? Namely, is it true that there isn’t any dependence on the
specific A we choose?

• The name homotopy basic subcomplex suggests that, in the case where the action is
already free, (Ω(M)⊗A)bas coincides with (Ω(M))bas. Is this the case?

• Last but not least: does this algebraic equivariant cohomology coincides with the
geometric equivariant cohomology defined in the first section?

All these questions have positive answer, but will not be discussed in these pages. The
interested reader may consult [14]: the first two points are discussed at page 48, while the
last point, the Equivariant de Rham Theorem, is shown to hold at page 28.

Our aim is now to give a concrete example of type (C), acyclic algebra, which will result
in the construction of the Weil model. Together with the Cartan model, this version has
the advantage of taking into play S(g∗), the algebra of polynomials over g: this allows, in
turn, a more concrete visualization of equivalence classes of cochains.

I.2.7. The Weil model
The idea here is to define an acyclic complex, and later on add the G−structure. The type
(C) property will follow as a byproduct.

Definition I.2.7.1. Let V be an n−dimensional vector space, consider its exterior algebra
Λ(V ) and its symmetric algebra S(V ).

(i) The Koszul algebra K of V is the tensor product Λ(V )⊗S(V ), graded assigning degree
k to elements of Λk(V )⊗ S0, and 2k to elements of Λ0(V )⊗ Sk(V );

(ii) The Koszul operator dK is the derivation extending the assignments{
Λ1(V )⊗ S0(V ) 3 x⊗ 1 7→ 1⊗ x ∈ Λ0(V )⊗ S1(V )
Λ0(V )⊗ S1(V ) 3 1⊗ x 7→ 0

(I.2.67)

this extension is unique, since such elements generate K;
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(iii) The Koszul complex of V is the couple (K, dK).

Lemma I.2.7.2. The Koszul complex of V is an acyclic chain complex.

Proof. To see d2
K = 0, observe that d2

K is itself a derivation:

d2
K(uv) = dK(dK(u)v + (−1)|u|u(dK(v))) =

= d2
K(u)v + (−1)(|u|+1)dK(u)dK(v) + (−1)|u|dK(u)dK(v) + u(d2

K(v)) =
= d2

K(u)v + u(d2
K(v))

(I.2.68)

as such, it suffices to check whether it vanishes on generators: but it is clear from the
definition of dK that d2

K(1⊗ x) = d2
K(x⊗ 1) = 0 for x either in Λ1(V ) or S1(V ).

Now let’s show that this complex is acyclic. To compute the cohomology in degree greater
than zero, consider the derivation H extending the assignments{

Λ1(V )⊗ S0(V ) 3 x⊗ 1 7→ 0 Λ0(V )⊗ S1(V ) 3 1⊗ x 7→ x⊗ 1 (I.2.69)

one directly checks that Q = H ·dK+dK ·H is an even derivation, satisfying Q(x⊗1) = x⊗1,
Q(1⊗ x) = 1⊗ x. But then, in general Q(u) = |u| · u, which in turn implies

u = 1
|u|
Q(u) = dK(H(u))

|u|
+ H(dK(u))

|u|
(I.2.70)

when working with cycles we have u ∈ ker dK , and the equation above provides a preimage
of u: then cohomology in degree greater than 0 must be zero.
Cohomology in degree zero equals the field: by properties of derivations dK(1) = 0.

Now we need to make G act on K, to get the G∗−algebra structure. We still have a
somewhat large degree of freedom, the choice of V : we set it to be equal to g∗, just as a
vector space, and then try to define an action.

Definition I.2.7.3. The Weil algebra W of G is the Koszul algebra of g∗:

W = Λ(g∗)⊗ S(g∗) (I.2.71)

Now we need to put a G∗−algebra structure on W, that is, an action of G on W via
automorphisms, and of the super Lie algebra g̃ via derivations (cf. I.2.3). There is a natural
choice for the action of G onW, the extension of the coadjoint representation on g∗; we still
denote by Ad∗. Since the action γ of g̃ should satisfy

d
dt |t=0 Ad∗etξ = γ(lξ) (I.2.72)

we can set γ(lξ) as the derivation extending the coadjoint representation of g on g∗: then
right hand side and left hand side are derivations agreeing on generators, hence identical
everywhere.
We already have a differential, dK , and we need to check

γ(lξ) · dK = dK · γ(lξ) (I.2.73)
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Fix a basis ξ1, . . . , ξn of g, and denote respectively by θ1, . . . , θn and z1, . . . , zn the induced
generators ξ1⊗ 1, . . . , ξn⊗ 1 and 1⊗ ξ1, . . . , 1⊗ ξn; to check I.2.73, write the action of γ(lξ)
on generators in terms of the structure constants, i.e.{

γ(lξi)θj = −cjikθk

γ(lξi)zj = −cjikzk
(I.2.74)

then I.2.73 is seen to be satisfied on generators, and hence everywhere. Also the relation
[γ(lξi), γ(lξj )] = γ(l[ξi,ξj ]) follows by construction, making use of the Jacobi identity.
It remains to define the action γ(iξ), in such a way that it is coherent with all the rest. Since
in the end we will want a type (C) structure, we require from the very beginning that some
elements of W play the role of the connection elements: we already prepared the notation
in this sense, and now set, by definition,

γ(iξa)θb = δba (I.2.75)

the value of γ(iξa) on the z’s is forced by compatibility, in particular by Cartan’s formula:

γ(iξa)zb = γ(iξa)dθb = (dγ(iξa) + γ(iξa)d)θb = γ(lξa)θb = −cbakθk (I.2.76)

and now we can extend γ(iξa) as a derivation over the whole W. There are still a pair of
equations to be checked, namely {γ(ιξi), γ(ιξj )} = 0 and [γ(lξi), γ(ιξj )] = γ(ι[ξi,ξj ]): these
identities can be seen to hold by using the structure constants and the Jacobi identity.

The discussion above shows:

Proposition I.2.7.4. The Weil algebra W is an acyclic, type (C) G∗−algebra.

So far, we obtained at least that there exist type (C), acyclic G∗−algebras; taking exactly
the Weil algebra as such a G∗−algebra has other advantages, though: for example, we get
some insight on the cohomology of a single point, which we already realized to be quite
complex.
We don’t need much more machinery: let’s make explicit a concept we already touched,

that of horizontal elements:

Definition I.2.7.5. Let A be a G∗−algebra. An element ω ∈ A satisfying

γ(iξi)ω = 0, i = 1, . . . , n (I.2.77)

is called horizontal. We denote the set of horizontal elements by Ahor.

After a "change of variables", W is seen to have a nice characterization in terms of hori-
zontal elements. We assume the Einstein convention until the end of the section: whenever
a latin index is repeated, a sum is implied.

Theorem I.2.7.6. There is an isomorphism

W = Λ(g∗)⊗Whor (I.2.78)
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Proof. As remarked above, this follows essentially from a change of variables. Define

µi = zi + 1
2c

i
jkθ

jθk (I.2.79)

we can express the z’s in terms of the µ’s: then we can pick θ1, . . . , θn, µ1, . . . , µn as a set
of generators of W. The µ’s have the advantage of being horizontal:

γ(ιξl)µi = γ(ιξl)θi + 1
2c

i
jkγ(ιξl)(θjθk) = −ciljθj + 1

2c
i
ljθ

j − 1
2c

i
jlθ

j = 0 (I.2.80)

moreover, the horizontal elements of W are exactly those generated by the µ’s: in fact

ιξa(
∑
i,j,k,k′

cijθ
i1 . . . θikµj1 . . . µjk′ ) = 0⇒ ιξa(θi1 . . . θik) = 0 (I.2.81)

and the latter can hold for each a if and only if θi1 . . . θik = 0. This proves the claim.

This results produces a neat visualization of the equivariant cohomology of a point:

Corollary I.2.7.7. H∗G(∗) = (C[µ1, . . . , µn])G, the G−invariant polynomials in µ1, . . . , µn.

Proof. We know from the theorem above Whor = S(g∗) = C[µ1, . . . , µn]; then Wbas =
(C[µ1, . . . , µn])G, the elements in W which are horizontal and G−invariant. Furthermore

H∗G(∗) = H∗(Wbas) (I.2.82)

so that we only need to show dKω = 0 ∀ω ∈ Wbas. Let’s start by computing dK(µk): from
the very definition, we have

dµk = dzk + 1
2c

k
ijd(θiθj) = 1

2c
k
ij(dθi)θj −

1
2c

k
ijθ

i(dθj) =

= 1
2c

k
ij(µi −

1
2c

i
pqθ

pθq)θj − 1
2c

k
ijθ

i(µj − 1
2c

j
pqθ

pθq) =

= −ckijθiµj + 1
2(cijpckiq + ciqjc

l
ip)θpθqθj + 1

2c
i
pqc

k
ijθ

pθqθj =

= −ckijθiµj

(I.2.83)

using the Jacobi identity twice. One similarly computes

γ(lξi)µk = −ckijµj (I.2.84)

Then d = θiγ(lξi) when acting on some µj ; but every basic element η is generated by the
µ’s, and satisfies γ(lξi)η = 0, so that

dη = θiγ(lξi)η = 0 (I.2.85)

This concludes the proof.
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Remark I.2.7.8. We may think of (C[µ1, . . . , µn]) = S(g∗) as the tensor product S(g∗)⊗ C
or equivalently S(g∗)⊗ Ω(∗), using C as ground field: then H∗G(∗) = H∗((S(g∗)⊗ Ω(∗))G).
This is a particular instance of a theorem of Cartan (see [14, p. 45]):

H∗G(M) = H∗(CG(M), dG) (I.2.86)

on the left we have our usual equivariant cohomology, and on the right another algebraic
formulation, the Cartan model: in this model we pick as chain complex

CG(M) = (S(g∗)⊗ Ω(M))G (I.2.87)

the G−invariant elements of S(g∗)⊗Ω(M)), which we may regard as G−invariant polyno-
mials from g to Ω(M); as before, elements of S(g∗) have their grading doubled, while Ω(M)
keeps the usual grading. The G−invariance for an element ω ∈ S(g∗)⊗ Ω(M) reads

ω(Adg−1(ξ)) = g∗ω(ξ) (I.2.88)

and the differential dG of ω is the element

η : ξ 7→ d(ω(ξ))− ιξ(ω(ξ)) (I.2.89)

one computes d2
G(ω)(ξ) = −Lξ(ω(ξ)), and this is seen to be zero by deriving I.2.88 in t = 0.

We conclude the analysis of H∗S1(S2) for two different S1 actions (see I.1.5.3).

Example I.2.7.9. The first action of S1 on S2 we defined is a rotation around the equator:

fθ : S2 → S2 :

 cos(ψ)
sin(ψ) sin(φ)
sin(ψ) cos(φ)

 7→
 cos(ψ)

sin(ψ) sin(φ+ θ)
sin(ψ) cos(φ+ θ)

 (I.2.90)

this action has the northern and southern poles as fixed point, and with the help of the
Mayer-Vietoris sequence we computed

Hk
S1(S2) =


C, k = 0
C2, k even
0, otherwise

(I.2.91)

The plan now is to use the Cartan model to interpret elements of the ring as polynomials
over the Lie algebra of S1, R. We want to enforce condition I.2.88; observe that Adg(ξ) =
ξ, ∀g ∈ S1,∀ξ ∈ R, since S1 is abelian, so that we require our polynomials ω(ξ) to be
constant on each orbit of the action.
We can then use the isomorphisms in the Mayer-Vietoris sequence to determine what the

generators looks like. The map

(ι+)∗S1 − (ι−)∗S1 : Hk
S1(S2)→ Hk

S1(N)⊕Hk
S1(S) (I.2.92)

is injective for each k, and isomorphism for k > 0. Here +, − are the northern and southern
pole and ι̂ = ι+, ι− the inclusions.
Both (ι+)∗S1 and (ι−)∗S1 are morphisms of C[ξ]−algebra, and so must be (ι+)∗S1 − (ι−)∗S1 .
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We can then describe H∗S1(S2) as a subalgebra of C[N ]⊕C[S] by analyzing the image ι̂: in
grade 0 we have an exact sequence

0→ H0
S1(S2)→ι̂ H0

S1(N)⊕H0
S1(S)→j∗ H0(∗)→ 0 (I.2.93)

with j∗(z1, z2) = z1 − z2. By exactness, the image of ι̂ in degree zero is then given by those
polynomials in C[N ] ⊕ C[S] whose constant components coincide; ι̂ is an isomorphism on
all the other levels, so that this is the only restriction we need to impose. We can obtain
the value of the constant component of the polynomials by evaluating them at 0, so that

H∗S1(S2) ' {(f, g) ∈ C[N ]⊕ C[S] : f(0) = g(0)} (I.2.94)

Now analyze the case of the trivial action, for which we know H∗S1(S2) = C[ξ] ⊗ H∗(S2).
Pick a nonzero element ν ∈ H2(S2), then a pair of generators of the C[ξ]−algebra Hk

S1 is
given by {

φ = 1⊗ 1 ∈ C[ξ]0 ⊗H0(S2)
γ = 1⊗ ν ∈ C[ξ]0 ⊗H2(S2)

(I.2.95)

We conclude that the cohomology rings are isomorphic when considered as modules over
C[ξ], just via the assignment

(f(N), g(S)) 7→ (f(ξ)− g(ξ))
2ξ ⊗ 1 + (f(ξ) + g(ξ))

2 ⊗ ν (I.2.96)

having as inverse

a(ξ)φ+ b(ξ)ν = (a(N)− b(N) ·N, a(S) + b(S) · S) (I.2.97)

It is, anyway, impossible to construct an isomorphism respecting the C[ξ]−algebra structure.
In fact we have {

γ2 = 0
(f, g)2 = (f2, g2), (f, g) ∈ C[N ]⊕ C[S]

(I.2.98)

so that an isomorphism ψ should satisfy 0 = ψ(ν2) = (f2, g2) for f, g 6= 0, hence a contra-
diction.



II. The localization theorem and its
consequences

Now that all the basic definitions are in place, we can move forward and prove the lo-
calization theorem: in its algebraic formulation, the theorem states that the equivariant
cohomology of the space is the same as that of its fixed points, as long as we forget about
torsion components. When we add geometric information on the manifold, the theorem
yields an explicit integration formula.

The first part of the chapter is dedicated to the proof of the theorem and of this formula.
In the second part, we examine the consequences of the localization theorem in the setting
of symplectic geometry.

II.1. The localization theorem
For the moment, we restrict our attention to torus actions, setting G = T . Moreover, the
manifold M on which we work is always assumed to be compact and orientable, unless
otherwise stated.
When considering a torus, H∗T (M) can be regarded as a C[u1, . . . , ul]−module, l being

the dimension of T : we start by introducing the concepts of support and localization for
such objects.

II.1.1. Support and localization of a C[u1, . . . , ul]−module
The notion of support of a C[u1, . . . , ul]−module is introduced in order to handle torsion
information on such modules.

Definition II.1.1.1. Let H be a C[u1, . . . , ul]−module. The support of H is the set

suppH =
⋂

f :fH=0
Vf ⊂ Cl (II.1.1)

with Vf = {z ∈ C l : f(z) = 0}.

Remark II.1.1.2. The kind of information this notion conveys is similar to that of support
of a function: it provides the points where, in a suitable sense, the object we’re considering
is not zero.
For H, this can be clearly seen when we have something of the form

H = C[u1, . . . , ul]/p1 ⊗ · · · ⊗ C[u1, . . . , ul]/pk (II.1.2)

with p1, . . . , pk ∈ C[u1, . . . , ul]. Notice this is not the most general case, for H has here a
natural algebra structure.

37
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For an element [a1]⊗ · · · ⊗ [ak] ∈ H, the evaluation map

[a1]⊗ · · · ⊗ [ak] 7→ a1(x) . . . ak(x) (II.1.3)

is well defined for all x ∈ suppH, and it yields zero if and only if [a1] ⊗ · · · ⊗ [ak] = 0. In
this case, the support of H is the locus of points where no nontrivial element of H vanishes,
expressing the usual concept of "points where the object is not zero".
Finally, observe that the definition of support for functions consists in the closure of the
set where the function is not zero; a closure is here not necessary, since all of the Vf ’s are
already closed sets.

We list some key features and properties of the support:

Proposition II.1.1.3. Let H be a C[u1, . . . , ul]−module. Then:

(i) suppH = Cl ⇐⇒ H is free;

(ii) suppH = ∅ ⇐⇒ H = 0;

(iii) if H is graded, suppH is C−invariant;

(iv) Let F,G be C[u1, . . . , ul]−modules such that

F →ι G→π H (II.1.4)

is exact. Then
suppG ⊂ (suppF ∪ suppH) (II.1.5)

Proof. Ad (i). suppH = Cl ⇐⇒ (fH = 0⇒ f = 0), which is equivalent to freeness.
Ad (ii). ⇒: there exist z1, z2 ∈ Cl such that the polynomials f(z) = (z−z1), g(z) = (z−z2)
satisfy fH = 0 = gH. Let then ω = z1 − z2 and observe

H 3 h = ω

ω
h = ω

ω
h+ x− z1

ω
h = x− z2

ω
h = 0 ∀h ∈ H (II.1.6)

so that H = 0. Conversely, H = 0 is annihilated by all the polynomials, so that its support
is empty.
Ad (iii). If H = ⊕i∈NH is a graded module, any f ∈ C[u1, . . . , ul] such that fH = 0 must be
homogeneous in grade. In fact, the module structure must be compatible with the grading,
so that

ukjhi ∈ Hi+2k ∀hi ∈ Hi, ∀i (II.1.7)

consider for simplicity f = uj11 . . . ujll + uk1
1 . . . ukll such that fH = 0, let j = ∑

ji and
k = ∑

ki. Then ∀hi ∈ Hi, ∀i it holds

Hi+2j 3 (uj11 . . . ujll )hi = (uk1
1 . . . ukll )hi ∈ Hi+2k (II.1.8)

so that either the two elements are separately zero or j = k. In any case, the torsion
polynomial must be homogeneous in grade, and the presence of more terms or coefficients in
f does not invalidate the argument. But the zeroes of such polynomials are linear subspaces
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of Cl, hence so is their intersection.
Ad (iv). We show, equivalently,

z /∈ (suppF ∩ suppH)⇒ z /∈ suppG ∀z ∈ Cl (II.1.9)

to see this, pick f, h ∈ C[u1, . . . , ul] such that fF = 0 = hH, f(z) 6= 0 6= h(z). Then for
each ω ∈ G, π(hω) = 0, and, by exactness, there exists η ∈ F such that ι(η) = hω. But
fη = 0, so that 0 = ι(fη) = fι(η) = fhω. Since ω was arbitrary we conclude (fh)G = 0,
and by construction fh(z) 6= 0. Thus, z /∈ suppG.

As a corollary we get

Corollary II.1.1.4. Let H 6= 0 be a torsion C[u]−module. Then suppH = 0.

Proof. The only C−invariant subspaces of C are 0 and C itself.

The next concept we introduce is that of localization: it is the algebraic equivalent of
restricting to an open set, and the tool we use to selectively ignore some of the torsion
sub-modules of H.

Definition II.1.1.5. Let H be a C[u1, . . . , ul]−module, f ∈ C[u1, . . . , ul]. The localization of
H at f is the C[u1, . . . , ul]−module given by

Hf = H ⊗ C[u1, . . . , ul]f (II.1.10)

with C[u1, . . . , ul]f the ring of rational functions having a power of f as denominators.

Remark II.1.1.6. (i) "Localization of H at f" is short for "Localization of H at Cl − Vf ":
we take away from the domain the points on which the rational functions wouldn’t be
defined. An analogous procedure generates Q from Z, by localizing outside zero;

(ii) Suppose fH = 0 for some polynomial f . Then

Hf 3 a⊗ b = a⊗ f b
f

= fa⊗ b

f
= 0 (II.1.11)

so that Hf = 0. Localizing outside of the support kills the module, and we can use
this fact to ignore specific torsion component, as promised before.

II.1.2. The algebraic localization theorem
The plan is now to take H∗T (M) as our C[u1, . . . , ul]−module, and relate its support to
the Lie algebra of T . As a first step in this direction, recall that the u1, . . . , un may be
interpreted as coordinate on the Lie algebra of T , as stated in I.2.7.7; observe then that the
complexification of the Lie algebra of T , t ' Rl, is tc = t⊗R C ' Cl, so that we may think
of suppH∗T (M) as contained in tc.
Let’s see a consequence of this new perspective:

Lemma II.1.2.1. If there is a T−map M → T/K, where K is a closed subgroup of T , then

suppH∗T (X) ⊂ kc (II.1.12)
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Proof. Consider the following diagram:

X - T/K H∗T (X) � H∗K(∗)

 

{∗}
?

-

H∗T (∗)

6
�

(II.1.13)

The inclusion of the base ring H∗T (∗) → H∗T (X) factors through H∗K(∗). As a closed sub-
group of T , K is the product of a torus with finite groups; the finite groups only generate
torsion components and their contribution is lost when considering complex coefficients, and
we can regard H∗T (X) as a module over C[u1, . . . , uk], where k is the dimension of the torus
component of K.
By commutativity of the diagram, the H∗T−module and H∗K−module structures are com-
patible; the support of H∗T (X) as a H∗T−module, obtained by intersections, must therefore
be included in the support of H∗T (X) as a H∗K−module, which is in turn included in kc.

Remark II.1.2.2. Topologically, such T−maps arise when X is a orbit of T , having K as
stabilizer. For fixed points, the lemma does not provide any useful information; on the
other hand, when the stabilizer is not the whole group we gain some insight about where
the torsion takes place.

Now we have all we need to prove the algebraic localization theorem:

Theorem II.1.2.3. Let M be a compact manifold on which T acts smoothly, F the set of
fixed points of the action. Then the kernel and cokernel of the pullback

ι∗ : H∗T (M)→ H∗T (F ) (II.1.14)

have support in ∪kc, where the union runs over all the proper isotropy subgroups of the
action.

Proof. As a first step, we claim

suppH∗T (M − F ) ⊂ ∪kc (II.1.15)

We can use the slice theorem to remove an equivariant tubular neighbourhood of F and
obtain a compact T−space M − U homotopy equivalent to M − F . Cover M − U with
equivariant neighbourhoods of its orbits, and extract a finite subcover V1, . . . , Vm.
Consider the equivariant Mayer-Vietoris sequence of the pair (V1, V2):

· · · → Hk−1
T (V1 ∩ V2)→ Hk

T (V1 ∪ V2)→ Hk
T (V1)⊕Hk

T (V2)→ . . . (II.1.16)

We know from II.1.2.1 that both suppHk−1
T (V1∩V2) and suppHk

T (V1)⊕Hk
T (V2) are contained

in ∪kc, and applying II.1.1.3(iv) we obtain

suppHk
T (V1 ∪ V2) ⊂ suppHk−1

T (V1 ∩ V2) ∪ suppHk
T (V1)⊕Hk

T (V2) ⊂ ∪kc (II.1.17)

the claim follows now by induction. As a direct consequence, and again using II.1.1.3(iv),
we obtain that the same result holds for pairs of spaces contained inM−F , and by excision
it holds

H∗T (M,F ) = H∗T (M − U, ∂U) (II.1.18)
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with U an equivariant tubular neighbourhood of F . Then suppH∗T (M,F ) ⊂ ∪kc. On the
other hand, we have the exact sequence of the pair (M,F ), namely:

. . . →Hk
T (M,F ) η- Hk

T (M) ι∗- Hk
T (F ) µ- Hk−1

T (M,F ) - . . . (II.1.19)

We conclude observing that by exactness

• fH∗T (M,F ) = 0 ⇒ f ker ι∗ = 0, since ∀a ∈ ker ι∗ ∃b ∈ H∗T (M,F ) such that η(b) = a,
so that fa = fη(a) = η(fa) = 0;

• fH∗T (M,F ) = 0 ⇒ f coker ι∗ = 0, since ∀[α] ∈ coker ι∗ µ̃([α]) = µ(α) = 0 ⇒ [α] = 0,
so that µ̃(f [α]) = fµ̃([α]) = 0⇒ f [α] = 0;

so that supp ker ι∗ ⊂ ∪kc, supp coker ι∗ ⊂ ∪kc

Remark II.1.2.4. (i) This first form of the localization theorem tells us that all the infor-
mation regarding the free part of H∗T (M) is already contained in H∗T (F ). We can go
further: observe that

H∗T (F ) = H∗T (∗)⊗H∗(F ) (II.1.20)

since H∗T (F ) = H∗bas(W ⊗ Ω(F )), and, as we’re working on the fixed point set,
Ω(F )bas = Ω(F ). Then the rank of H∗T (M), i.e., the number of free generators it
has, can be identified with the dimension of H∗(F ), the ordinary cohomology ring of
F , usually way easier to compute;

(ii) We also know where the torsion takes place, and with respect to what kind of polyno-
mials we need to localize to delete it: it suffices to pick any f ∈ C[u1, . . . , ul] vanishing
on ∪kc to obtain a free localized module (H∗T (M))f .

Example II.1.2.5. We computed in the last chapter the cohomology ring of H∗S1(S2) with
two different actions. Using the localization theorem, we could have immediately seen that
both of them have two generators: when the action is a rotation, the two generators arise
from the geometric fact that the fixed point set has two connected components; for a trivial
action, the fixed set has only one component - but this is more complex than a point, and
this fact is expressed by that fact that it provides alone both the generators.

II.1.3. The equivariant Thom class

In the following subsections we prepare the ground for the topological localization theorem:
we need to connect the algebraic result we just proved with the topology of the space. One
of the objects realizing this connection are the characteristic classes, which try to measure
the nontriviality of a vector bundle; another is the Thom class, a sort of bump function
around the submanifold with some pleasant integration properties.
Both Thom class and characteristic classes arise first in a non-equivariant context; in both

cases, we’ll describe the classical definition and then discuss its equivariant generalization.
We start with the Thom class. The classical recipe reads as follows:
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1. Given an oriented, n−dimensional manifold M , we have a powerful tool available,
Poincaré duality. In its De Rham formulation, it takes the form of a non denegerate
pairing between the cohomology of the space and its compactly supported cohomology:

Hk(M)×Hn−k
0 (M)→ C : ([ω], [η]) 7→

∫
M
ω ∧ η (II.1.21)

2. Now pick a compact, oriented submanifold N with codimension k. Integration of
k−forms ω of M over N is defined by restriction:∫

N
α :=

∫
N
ι∗α ∈ C (II.1.22)

and we obtain a linear map over Hd(M):

[ω] 7→
∫
N
ω (II.1.23)

3. Now we put the two things together: we use Poincaré Duality to find the unique
cohomology class [τ(N)] in Hn−k

0 (M) such that∫
M
ω ∧ τ(N) =

∫
N
ω, ∀[ω] ∈ Hd(M) (II.1.24)

[τ(N)] is then called the Thom class of N , and any form η such that [η] = [τ(N)] is
called a Thom form of N .

As it turns out, Thom forms have a natural interpretation in terms of integration along the
fiber: consider a tubular neighbourhood U of the submanifold N , and regard it as a subset
of the the normal bundle π : NN → U , when we think of NN itself as a subset of M . The
integration along the fiber is a map π∗ : Ωl(U)0 → Ωl−k(N)0 characterized by the equality∫

U
π∗β ∧ µ =

∫
N
β ∧ π∗µ, ∀β ∈ Ωn−l

0 (U) (II.1.25)

π∗ descends to a map π∗ : H l(U)0 → H l−k(N)0:∫
N
β ∧ π∗dµ =

∫
U
π∗β ∧ dµ = (−1)n−l−1

∫
U
π∗dβ ∧ µ

= (−1)n−l−1
∫
N
dβ ∧ π∗µ =

∫
N
β ∧ dπ∗µ, ∀β ∈ Ωn−l

0 (U)
(II.1.26)

If we pick a τ̂ ∈ Ωk(U)0, π∗τ̂ is a function over the submanifold; moreover, U deformation
retracts into N , so that the inclusion ι of N as the zero section of the normal bundle has
the property π∗ι∗ ' id. Then∫

U
α ∧ τ̂ =

∫
U
π∗ι∗α ∧ τ̂ = (π∗τ̂)

∫
N
α, ∀α ∈ Ωn−k(U) (II.1.27)

The form τ̂ ∈ Ωk(U)0 may be extended to all of M by just setting it to be zero outside of
U , thus defining τ ∈ Ωk(M). If π∗τ̂ = 1 we obtain from II.1.27∫

M
α ∧ τ =

∫
N
α, ∀α ∈ Ωn−k(N) (II.1.28)
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i.e., if τ is closed, it is a Thom form of N . We may then visualize the Thom form of a
submanifold as a closed form with support in a neighbourhood of the submanifold itself,
whose integrals over the fibers are normalized to 1.

Abstracting from the construction of the integration over the fiber, we can define the
push-forward of a class:

Definition II.1.3.1. Let M , N be two compact, orientable manifolds, respectively of dimen-
sion m and n, f : N → M a map. The push-forward of f is the unique homomorphism
f∗ : H∗(N)→ H∗+m−n(M) satisfying∫

N
f∗α ∧ β =

∫
M
α ∧ f∗β, ∀α ∈ Hk(M), β ∈ Hn−k(N) (II.1.29)

Remark II.1.3.2. (i) From II.1.29 we immediately obtain functoriality: (f · g)∗ = f∗ · g∗;

(ii) Notice that integration over the fiber was defined over forms, while the pushforward is
in general defined only on cohomology, that is, on closed forms. The reason for this is
that while uniqueness can be enforced in the same way - namely, by equation II.1.29
-, and existence on the level of closed forms is automatically provided by Poincaré
Duality, existence of morphisms over general forms must be proven directly.
For the integration over the fiber, this is done by explicitly integrating out the "degrees
of freedom" of the fiber in local coordinates, and then patching the maps given in such
a way via a partition of unity (see [10, p. 61] for details). Such a concrete construction
is clearly not always possible;

(iii) It is instructive to consider the case M = U , a tubular neighbourhood of N . If
ι : N → U , is the inclusion and π : U → N the fibration map, observe π∗ι∗ ' id, so
that fora Thom form τ of N∫

U
β ∧ π∗α ∧ τ =

∫
U
π∗(ι∗β ∧ α) ∧ τ =

∫
N
ι∗β ∧ α, ∀β ∈ Ωl

0(U), α ∈ Ωn−(l+k)(N)
(II.1.30)

so that ι∗(α) = π∗(α) ∧ τ . As a byproduct, we obtain the identity ι∗(1) = τ , and by
functoriality π∗ · ι∗ = id: ι∗ : H∗(N)→ H∗+k0 (U) is known as the Thom isomorphism;

(iv) Denote by e(N) the Euler class of the normal bundle induced by a tubular neighbour-
hood around N . e(N) is related to the Thom class of N via the identity ι∗τ(N) = e(N)
(see e.g. [10, p. 132]), and putting this together with the last remark we obtain the
identity

ι∗ι∗(1) = e(N) (II.1.31)

Now move to the equivariant setting. Here we cannot produce the Thom class with the
same construction, because we miss the main tool, the isomorphism given by Poincaré Dual-
ity; however, fiber integration is still well-defined, and descends to a map on the equivariant
cohomology of the spaces:

Lemma II.1.3.3. Consider a G−manifold M and a G−invariant submanifold N of M . In-
tegration on the fibers of the normal bundle of N , regarded as an equivariant tubular
neighbourhood U of N , descends to a morphism

π∗ : H l
G,0(U)→ H l−k

G,0 (N) (II.1.32)
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Proof. Making use of the Cartan model, we regard elements of H l
G,0(U) as equivalence

classes of invariant polynomials from g to Ω(U)0. Given an [ω(ξ)] ∈ H l
G,0(U), there are two

things we need to check:

(i) π∗(ω(ξ)) is still invariant;

(ii) dGπ∗(ω(ξ)) = π∗dG(ω(ξ)).

Ad (i). Observe that g · π = π · g ∀g ∈ G. The polynomial obtained by letting π∗ act on
ω(ξ) is

(π∗ω)(ξ) = π∗(ω(ξ)) ∀ξ ∈ g (II.1.33)

so that the invariance condition I.2.88 reads

π∗(g∗ω(ξ)) = g∗(π∗ω(ξ)) (II.1.34)

which follows in turn from equivariance of U : g · π = π · g.
Ad (ii). The differential dG acts on ω(ξ) as follows:

(dGω)(ξ) = d(ω(ξ))− ιξ(ω(ξ)) (II.1.35)

we know that dπ∗ = π∗d, so it remains to check π∗(ιξ(ω(ξ))) = ιξ(π∗(ω(ξ))). Write just ω for
ω(ξ) - the ξ does not play any role in the following - and observe that for β ∈ Ωnl(N)0, ω ∈
Ωl+1(U)0 ∫

N
β ∧ π∗ιξω =

∫
U
π∗β ∧ ιξω = (−1)n−l

∫
U

(ιξπ∗β) ∧ ω (II.1.36)

where we used that fact that ιξ acts as a derivation, and deg(π∗β ∧ ω) = n+ 1. Moreover,
π∗ commutes with ιξ, and

(−1)n−l
∫
U
π∗(ιξβ) ∧ ω = (−1)n−l

∫
N

(ιξβ) ∧ π∗ω =
∫
N
β ∧ ιξπ∗ω (II.1.37)

and (ii) follows.

Fiber integration is essentially the only tool that we can still employ in equivariant coho-
mology, and we use it to define both Thom forms and pushforwards:

• The equality π∗τ = 1 is taken as a characterization of a Thom form. The authors of
[14] construct it explicitly in Chapter 10;

• Every map f : N →M can be thought as a composition of a inclusion and a projection:

f : N ↪→ N ×M →M

n 7→ (n, f(n)) 7→ f(n)
(II.1.38)

so that f∗ = π∗ · ι∗ and it suffices to define ι∗. We pick one of the previous remarks as
a definition, and set ι∗(·) = π∗(·) ∧ τ , with τ a Thom form. There is an intermediate
passage that should be emphasized: here we denote by π∗ the composition

H∗T (N)→ H∗+kT,0 (U)→ H∗+kT (M) (II.1.39)
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where the first step is the usual fiber integration, and in the second step we extend
the forms to the whole manifold by zero.
As before, for M = U , an equivariant tubular neighbourhood of M , we obtain by
functiorality an isomorphism ι∗ : H∗T (N) → H∗+kT,0 (U), the equivariant Thom isomor-
phism.

Putting the last two definitions together we obtain∫
N
β =

∫
N
ι∗β ∧ 1 =

∫
M
β ∧ ι∗(1) =

∫
M
β ∧ τ (II.1.40)

thus recovering property II.1.24.

II.1.4. Equivariant characteristic classes
Let’s start with a definition.
Definition II.1.4.1. Consider a G−manifold M and the map π : M → ∗. The induced map

π∗ : H∗G(∗) ' S(g∗)G → H∗G(M) (II.1.41)

is called Chern-Weil map and denoted by k .
Now we consider a particular k : pick a complex vector bundle E → X over a manifold

X. Call M its bundle of unitary frames: the elements of M are pairs (x, (e1, . . . , en)),
with (e1, . . . , en) an orthonormal basis of Ex, and U(n) acts on M on the right, via A ·
(x, (e1, . . . , en)) = (x, (e1, . . . , en) ·A).

Observe that this action is free. The Chern-Weil map reads

k : S(u(n)∗)U(n) → H∗U(n)(M) ' H∗(X) (II.1.42)

and the element of its image are called characteristic classes of E. The same reasoning
applies to real vector bundles, just by considering orthogonal frames and the action of the
orthogonal group O(n).
Remark II.1.4.2. Characteristic classes are natural, in the following sense: pick two complex
vector bundles p1 : E1 → X1 and p2 : E2 → X2 such that there exists a vector bundle
morphism (φ, f):

E1
φ- E2

X1
?

f
- X2

?
(II.1.43)

This induces an equivariant map ϕ : M1 →M2, so that we get a commuting diagram

H∗U(n)(M1) � ϕ∗
H∗U(n)(M2)

S(u(n)∗)U(n)
k2

-

k1

�

(II.1.44)

The characteristic classes of the two bundles are then related by ϕ∗, i.e. k1(a) = ϕ∗k2(a) ∀a ∈
S(u(n)∗)U(n). The remark holds unchanged for a pair of real vector bundles.
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Let’s stick to the complex case and consider a first example. Elements of u(n) are matrices
satisfying the condition C = −C∗, which we may write as C = iA, with A self-adjiont. The
adjoint representation is just given by conjiugation, and if we let elements of u(n)∗ act on
u(n) via A(B) = tr(AB), we see that the same holds for the coadjoint representation: an
element p ∈ S(u(n)∗)U(n) should satisfy

p(UAU−1) = p(A) (II.1.45)

this equation already hints at a choice of p, the determinant. We move in this direction,
and consider the characteristic polynomial:

p(A) = det(λ−A) = λn − c1(A)λn−1 + · · ·+ (−1)ncn(A) (II.1.46)

p(A) is clearly an invariant polynomial, and so must be the coefficients ci(A). They are
called Chern classes of the vector bundle E.

One of the main ingredients of the geometric localization theorem is the equivariant Euler
class of the bundle. Before introducing it, let’s have a look at the usual Euler class.
Consider then a real, orientable vector bundle of even dimension 2l: we have a notion of
orientation preserving action, expressed by an action of SO(2l); recall that elements of
so(2l) are 2l × 2l matrices characterized by the equality At = −A. The invariant we look
for may be constructed as follows:

• Associate to every matrix A ∈ so(2l) the linear map

ωA : R2l × R2l → R : (v, w) 7→ 〈v,Aw〉 (II.1.47)

it is an antisymmetric map: ωA ∈ Λ2(R2l).

• Then consider the map ωnA ∈ Λ2n(R2n). It must be proportional to the volume element
e∗1 ∧ · · · ∧ e∗n, which is a SO(2l) invariant: we define the Pfaffian of A via the equation

1
n!
√

(2π)n
ωnA = Pfaff(A)e∗1 ∧ · · · ∧ e∗n (II.1.48)

Notice that to every A corresponds an unique ωA, so that the definition is well-posed;

• Finally, define the Euler class of the vector bundle:

Definition II.1.4.3. Let π : E → X be a real, orientable vector bundle of even dimen-
sion 2l. The Euler class of E is the characteristic class

k (Pfaff) ∈ H2l(E) (II.1.49)

and it is denoted by e(E).
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The quantity Pfaff(A) is in principle quite a mysterious object. We can make it more
familiar by finding a suitable coordinate change for A, so that

A =



(
0 λ1
−λ1 0

)
0 . . . 0

0
(

0 λ2
−λ2 0

)
. . . 0

...
... . . . ...

0 0 . . .

(
0 λl
−λl 0

)


(II.1.50)

Then ωA takes the simple form λ1e
∗
1∧ e∗2 + · · ·+λle

∗
2l−1∧ e∗2l, and we get Pfaff(A) = λ1·····λl√

(2π)n
.

It is easy to check that detA = λ2
1 · · · · · λ2

n, hence the relation
√

(2π)n Pfaff2 = det.

Now let’s consider the equivariant setting. Pick a G−manifold X, and consider a complex
vector bundle π : E → X such that G acts as a vector bundle automorphism, i.e. making
the following diagram commute ∀g ∈ G:

E
g∗- E

X

π
?

g
- X

π
?

(II.1.51)

this will always be the case when working with the normal bundle induced by an equivariant
tubular neighbourhood. Now pass to the bundle M of unitary frames: we get an induced
action of G and the U(n) action we had before, and they commute.

We would like to obtain equivariant characteristic classes, elements ofH∗G(X): we consider
then the action of U(n) on the bundle (E×EG)/G→ (X ×EG)/G, which is still free, and
consider the Chern-Weil map of this bundle:

k : S(u(n)∗)U(n) → H∗((X × EG)/G) = H∗G(X) (II.1.52)

this is the equivariant Chern-Weil map of the bundle E → X.

Remark II.1.4.4. In the same spirit of equivariant cohomology, for which already points can
give large contributions, equivariant characteristic classes of bundles of the form E → ∗ are
not necessarily trivial, and generated by the map

k : S(u(n)∗)U(n) → S(g∗)G (II.1.53)

in this specific case, the Chern-Weil homomorphism can be obtained easily by considering
the action of G on E given by representing G in U(n). We then have a homomorphism
G→ U(n), which induces the Chern-Weil map by naturality of the Chern classes:

(E × EG)/G - (E × EU(n))/U(n)

(∗ × EG)/G ' BG
?

- BU(n) ' (∗ × EU(n))/U(n)
?

(II.1.54)
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II.1.5. The geometric localization theorem

In this last section we apply the notions we have introduced to derive the geometric local-
ization theorem. With the new machinery, we can prove the following corollary of II.1.2.3:

Corollary II.1.5.1. Let M be a compact manifold on which T acts smoothly, F the set of
fixed points of the action. Then the kernel and cokernel of

ι∗ : H∗T (F )→ H∗+kT (M) (II.1.55)

have support in ∪kc, where the union runs over all the proper isotropy subgroups of the
action.

Proof. Consider the long exact sequence of the pair (M,M − F ):

· · · → Hk−1
T (M − F )→ Hk

T (M,M − F )→e∗ Hk
T (M)→ Hk

T (M − F )→ . . . (II.1.56)

during the proof of II.1.2.3 we saw

suppH∗T (M − F ) ⊂ ∪kc (II.1.57)

and following the same argumentation we obtain that kernel and cokernel of e∗ have support
in ∪kc.

Moreover, by excision
Hk
T (M,M − F ) ' Hk

T (U,U − F ) (II.1.58)

where U is an equivariant tubular neighbourhood of F . Now we can construct, following the
idea of [16, p. 244], an increasing sequence of compact, equivariant tubular neighbourhoods
Fk which deformation retract to F and such that every compact set is eventually contained
in one of these sets. We obtain then an isomorphism

lim−→H
∗
T (U,U − Fk) ' H∗T,0(U) (II.1.59)

with lim−→ denoting the direct limit. On the other hand, the maps induced by the inclusions
(U,U − Fk)→ (U,U − Fk−1) are all isomorphisms, so that

Hk
T (U,U − F ) ' H∗T,0(U) (II.1.60)

and by the equivariant Thom isomorphism H∗T (N) ' H∗+kT,0 (U). Then kernel and cokernel
of the map

φ : H∗T (N)→' H∗T,0(U)→' H∗+k(U,U − F )→' H∗+k(M,M − F )→e∗ H∗+kT (M)
(II.1.61)

have support in ∪kc. We claim that φ = ι∗, and to verify it we need to check that the last
two compositions amount to extending by the zero form a class in H∗T,0(U) to a class in
H∗+kT (M). But this just follows from the definition of cohomology of a pair in the De Rham
setting: it is the homology of the complex with elements

CkT (M,M − F ) = (CkT (M)⊕ Ck−1
T (M − F ), d(M,F )) (II.1.62)
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with d(M,F )(ω, θ) = (dω, ι∗ω − dθ), and CkT (M) the Cartan complex of M . The map e∗ is
induced by the projection on the first factor,

β : CkT (M,M − F )→ CkT (M) : (ω, θ)→ ω (II.1.63)

and the extension by zero of the form takes place when we work with the excision, in the
isomorphism H∗+k(U,U − F )→' H∗+k(M,M − F ). Then the claim holds, and the thesis
follows.

Now, recall that ι∗ι∗(1) = e(F ), the equivariant Euler class of the normal bundle at F :
the corollary, together with the algebraic localization theorem, tell us that e(F ) is invertible
up to torsion - that is, after localizing with respect to a suitable polynomial.
The geometric localization theorem goes further, giving us a precise formula for the poly-
nomial we need to pick: to prove it, we need some concepts from the representation theory
of a Lie group. We recall the basic concepts:

Definition II.1.5.2. Let G be a Lie group, V a vector space. A representation of G on V is
a group homomorphism

ψ : G→ Aut(V ) (II.1.64)
A representation is called irreducible if it doesn’t have proper invariant subsets, i.e. proper
linear subspaces W of V such that ψ(g)W ⊆W ∀g ∈ G.

We are interested in the case G = T , an n−torus. Consider generators t1, . . . , tn of T : if
ψ is a representation of T on an m−dimensional C−vector space V , abelianity of T implies

ψ(ti) · ψ(tj) = ψ(tj) · ψ(ti), ∀i, j (II.1.65)

Regarding Aut(V ) as Gl(m,C), we have that the matrices {ψ(ti)}i all commute, and can
be simultaneously diagonalized: we get a splitting of ψ into m irreducible representations
of T on 1 dimensional vector spaces.
How do these irreducible representations look like? Start with the case n = 1, i.e. T = S1.

A 1−dimensional representation of S1 is a homomorphism S1 → GL(1,C) ' C − {0};
such representations can always be made unitary by renormalization, so that we obtain an
homomorphism θ : S1 → U(1). Considering the differential in 0 we induce a homomorphism
between the Lie algebras:

R
θ∗- R

S1

exp
?

θ
- U(1)

exp
?

(II.1.66)

the exp maps on the sides send t ∈ R to eit, either seen as an element of S1 ⊂ C or of U(1).
The map θ∗ is a linear map from R to R, i.e. it must be θ∗(u) = au, α ∈ R ∀u ∈ R. By
imposing commutativity we obtain

1 = θ(1) = θ(exp(2π)) = exp(2aπ) = e2πia (II.1.67)

so that a ∈ Z, a fact that we can use to characterize all the θ’s: they have the form

θn : S1 → U(1) : eiu 7→ einu, l ∈ Z (II.1.68)
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1−dimensional representations τ of an n−torus are realized by fixing a 1−dimensional rep-
resentation for each of the S1−components:

τ : T → U(1) : (eiu1 , . . . , eiun) 7→ (eil1u1 , . . . , eilnun) (II.1.69)

and are thus uniquely identified by a tuple (l1, . . . , ln) ∈ Zn. Splitting the m−dimensional
representation ψ into m 1−representations amounts then to assigning to ψ m n−tuples of
integers:

ψ ⇐⇒


τ1 ∼ (l11, . . . , l1n)
...
τm ∼ (lm1 , . . . , lmn )

(II.1.70)

Denote li = ∑
j l
j
i . Then ψ can be explicitly described with the following assignment:

ψ(eiu1 , . . . , eiun) =


eil1u1 0 . . . 0

0 eil2u2 . . . 0
...

... . . . ...
0 0 . . . eilnun

 (II.1.71)

the elements l1, . . . , ln are called weights of the representation ψ. The corresponding map
ψ∗ on the Lie algebra is

ψ∗ : Rn → u(n) : (u1, . . . , un) 7→ diag (l1u1, . . . , lnun) (II.1.72)

Now we have everything we need to prove the geometric localization theorem. Let us fix
some notation:

• The spaces (F1, . . . , Fk) are the connected components of F ;

• The maps ιi : Fi →M are the inclusions of such components in M ;

• The maps πi : Fi → ∗ and πM : M → ∗ are the the maps collapsing their domain to
a point;

• ei is the equivariant Euler class corresponding to the normal bundle of Fi in M , and
its inverse is formally denoted by 1

ei
.

Then the theorem can be stated as follows:

Theorem II.1.5.3. Let M be a compact n−dimensional manifold, T an l−torus acting on
M . Let F be the set of fixed points of the action.

Then there exists a nontrivial polinomial f ∈ C[u1, . . . , ul] such that ∀ω ∈ H∗T (M)f

πM∗ ω =
∑
i

πi∗

(
ι∗iω

ei

)
(II.1.73)

Proof. We start by showing that all the Euler classes ei can be simultaneously inverted in
a nontrivial localization. Consider then the equivariant normal bundle of Fi in M , let fi be
the codimension of Fi in M : the action of T on each fiber doesn’t fix any vector, so that
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the representation of T splits, as discussed before, into nontrivial 1−dimensional complex
representations. Notice that this forces fi to be even. Set fi = 2li.
The equivariant Euler class is an element of Hfi

T (Fi), and since the action of T on Fi is
trivial we have an isomorphism H∗T (Fi) ' H∗T (∗)⊗H∗(Fi). Let fli be the pure polynomial
component of ei: then localizing with respect to f = fli we obtain a well defined inverse

1
ei

= 1
fli

(
1 + α

fli
+ α2

f2
li

+ · · ·+ αq

f qli

)
(II.1.74)

where α = fli − ei and q is the largest integer smaller than or equal to dim(Fi)/2, and we
use the fact that Hk(Fi) = 0 for k > dim(Fi), since the fixed point set is a manifold (see
I.1.1.2).
Now show that fli is not the trivial polynomial: we can obtain the component H2li

T (∗)⊗
H0(Fi) of ei by considering the map induced by the inclusion j : {x0} → Fi, for some
x0 ∈ Fi, so that fli = j∗(ei). On the other hand

j∗(ei) = j∗(e(Fi)) = e({x0}) (II.1.75)

by naturality of characteristic classes, and we can shift to problem to studying the equivari-
ant Euler class of a normal bundle over a point: as discussed in II.1.4.4 it is a polynomial
defined by the composition of the Chern-Weil map k with the Pfaffian. But the Chern-Weil
map is induced by II.1.71: it picks a polynomial over U(fi),

A 7→ p(A) (II.1.76)

and it precomposes it with ψ to obtain a polynomial over Rl:

(u1, . . . , ul) 7→ diag (l1u1, . . . , lnun) 7→ p(diag (l1u1, . . . , lnun)) (II.1.77)

As for the Pfaffian, we derived in the section on characteristic classes the equation (2π)n Pfaff2 =
det, where the determinant was considered for matrices over R.
Now, when considering matrices acting between even dimensional real spaces, we may re-
gard them as acting over C vector spaces by halving the dimensions; the determinants over
the two different fields are related by the equation

det
R

(·) = | det
C

(·)|2 (II.1.78)

so that, up to sign, the Pfaffian corresponds to the norm of the determinant over C. We
can dispose of the sign by coherently choosing an orientation of the normal bundle over the
point, so that the equivariant Euler class is given by the polynomial

(u1, . . . , ul) 7→ det(diag (l1u1, . . . , lnun)) = Πl
i=1liui (II.1.79)

i.e. the product of the weights of the representation of T over the normal bundle of x0.
Nontriviality of the representation guarantees that none of the li is zero, so that fli =
e({x0}) 6= 0.

Then the right hand side of II.1.73 is well defined: we just need to localize with respect
to

f = Πk
i=1fli (II.1.80)
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Linking it to the the left hand side is considerably easier: the maps ι∗, ι∗ induced by the
inclusion ι : F →M may be written as{

ι∗ = ∑
i ιi∗

ι∗ = ∑
i ι
∗
i

(II.1.81)

and ι∗ι∗ = ∑
i ι
∗
i ιi∗. Moreover

ι∗i ιi∗(ω) = ι∗i (π∗(ω) ∧ τi) = (π · ι)∗(ω) ∧ ι∗τi = ω ∧ ei (II.1.82)

τi being a Thom class of Fi. We obtain

∑
i

ιi∗
ι∗i
ei

= id (II.1.83)

apply πM∗ to both sides, and observe πM · ιi = πi to obtain the claim:

πM∗ ω =
∑
i

πi∗

(
ι∗iω

ei

)
∀ω ∈ H∗T (M)f (II.1.84)

We turn back to our beloved example of the S1 action on S2 to show an easy application
of the theorem. (see I.1.5.3, I.2.7.9)

Example II.1.5.4. We want to use formula II.1.73 to compute the surface area of the sphere.
Recall that the volume form of the sphere may be obtained by contracting the volume form
dx1 ∧ dx2 ∧ dx3 in R3 with a radial vector field. We obtain a form

ν = x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2 (II.1.85)

This form is invariant under the action of S1, so that ν(ξ) = 1⊗ ν ∈ C[u]⊗ (Ω∗(S2))S1 . If
it were closed, we would get

(πM∗ (ν))(ξ) = πM∗ (ν(ξ)) =
∫
S2
ν(ξ) = vol(S2) (II.1.86)

But 1⊗ ν is not closed. In fact

(dS1ν)(ξ) = d(ν(ξ))− ιξν(ξ) = −ιξν(ξ) (II.1.87)

and the fundamental vector field at a point is given by the assignment cos(ψ)
sin(ψ) sin(φ)
sin(ψ) cos(φ)

 7→ d
dt |0

 cos(ψ)
sin(ψ) sin(φ+ t)
sin(ψ) cos(φ+ t)

 =

 0
sin(ψ) cos(φ)
− sin(ψ) sin(φ)

 (II.1.88)

or, in cartesian coordinates, ξ(x1,x2,x3) = (0, x3,−x2). Then one computes

ιξν(ξ) = x1(x1dx1 + x2dx2 + x3dx3)− dx1 6= 0 (II.1.89)
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To solve this problem, we want to add a term ξ ⊗ ω, with ω ∈ Ω0(S2), such that d(ω(ξ)) =
ιξν(ξ):

dS1(ν + ω)(ξ) = d(ν(ξ))− ιξν(ξ) + d(ω(ξ))− ιξω(ξ) = −ιξν(ξ) + dω(ξ) (II.1.90)

What kind of function could ω be? We know that ξ = 0 at the north and south pole, which
should then be critical points; moreover, contracting with ξ takes care of vectors tangent to
the orbits: the function ν should then grow only orthogonally to them. A reasonable ansatz
could be

ω : S2 → R : (x1, x2, x3)→ ax1 + b, a, b ∈ R (II.1.91)
if we consider ω as the restriction of a function ω̂ : R3 → R, we can obtain dω by considering
the pointwise projection of dω̂ = adx1 to the tangent space of S2. For every point, the
projection of dω̂ in the radial direction is just given by 〈(a, 0, 0), (x1, x2, x3)〉 = ax1; we
obtain the projection to the tangent space of S2 by subtracting this component to dω̂:

dω = dx1 − ax1(x1dx1 + x2dx2 + x3dx3) (II.1.92)

this is exactly ιξν(ξ) if we set a = 1! Notice that the component ξ ⊗ ω is in the kernel of
πM∗ , which sends Ωk(S2) into Ωk−2(∗). Then for νeq(ξ) = 1 ⊗ ν + ξ ⊗ ω we still have the
equality we want, (πM∗ (νeq))(ξ) = vol(S2).

Now look at the left hand side of II.1.73: the action of S1 on the normal bundles of the
poles is just given by considering the differential of the action at the poles: for the northern
one, the action of an eiτ ∈ S1 has differential

d
dt |0e

iτ ·

 cos(vt)
sin(vt) sin(φ)
sin(vt) cos(φ)

 = d
dt |0

 cos(vt)
sin(vt) sin(φ+ τ)
sin(vt) cos(φ+ τ)

 = v

 0
sin(φ+ τ)
cos(φ+ τ)

 = eiτ

 0
v sin(φ)
v cos(φ)


(II.1.93)

if we regard the tangent space at the northern pole as C, we see that the action of S1 is just
multiplication by a phase: eiτ · z = zeiτ ∀z ∈ C. Since det(eiτ ) = eiτ , we conclude that the
equivariant Euler class eN at the northern pole is 1

2π .
The only difference when considering eS is in the computation of the differential:

d
dt |0e

iτ ·

 cos(π − vt)
sin(π − vt) sin(φ)
sin(π − vt) cos(φ)

 = d
dt |0

 cos(π − vt)
sin(π − vt) sin(φ+ τ)
sin(π − vt) cos(φ+ τ)

 = −v

 0
sin(φ+ τ)
cos(φ+ τ)

 = −eiτ
 0
v sin(φ)
v cos(φ)


(II.1.94)

that is, an element eiτ acts as multiplication by the complex phase −eiτ , so that eS = − 1
2π .

Observe that we need to localize with respect to the polynomial ξ · (−ξ) = −ξ2, but this
does not affect the computation, since νeq is of degree 1.
Lastly, ι∗N (νeq) and ι∗S(νeq) are restrictions to the point. The process kills the ν component,

and yields respectively {
ω(1, 0, 0) = 1 + b

ω(−1, 0, 0) = −1 + b
(II.1.95)

and πi∗, induced by the trivial fibration, is the identity. Then the left hand side reads
1 + b

1/2π + −1 + b

−1/2π = 4π (II.1.96)
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We also see that the choice of b is not relevant.
The map ω is called moment map of the action: we will study these objects in greater

detail in the next section.

II.1.6. The case G 6= T

So far we only talked about abelian, compact and connected Lie groups; in this section we
let the abelianity hypothesis fall, and discuss generalizations of the previous results. We
need some preliminary definitions:

Definition II.1.6.1. Let G be a compact, connected Lie group.

(i) A maximal torus of G is a maximal connected Abelian subgroup of G;

(ii) TheWeyl group of G is the quotientW (G) = NG(T )/T , whereNG(T ) is the normalizer
of a maximal torus T in G.

Remark II.1.6.2. It is not a priori clear that the Weyl group W (G) does not depend on the
chosen maximal torus. This is a consequence of a theorem from Cartan (for the proof, see
e.g. [12, p. 119]):

Theorem II.1.6.3. Let G be a compact, connected Lie group, and let T be a maximal torus.
Then every maximal torus is conjugate to T , and every element of G is contained in a
conjugate of T .

As a consequence, if we pick another maximal torus T ′ we get T ′ = gTg−1 for g ∈ G,
hence N(T ′) = gN(T )g−1, and we can identify the quotients N(T ′)/T ′ and N(T )/T .

We sketch the proof of an important property of the Weyl group: finiteness.

Proposition II.1.6.4. W (G) is finite.

Sketch of the proof. Let T be a maximal torus, and consider the action of its normalizer
N(T ) → Aut(T ) given by conjiugation. Every element φ of Aut(T ) induces a map on the
level of Lie algebras, and we have a commutative diagram (n = dimT )

Rn
dφ- Rn

T

exp
?

φ
- T

exp
?

(II.1.97)

Regard T as Rn/Zn. By commutativity, dφ sends Zn ' ker exp into Zn, so that we can
identify it with a map inGL(n,Z), and this characterizes φ as well: thus Aut(T ) ' GL(n,Z).
Since GL(n,Z) is discrete, the identity component N(T )0 must be sent into the trivial map:

∀g ∈ N(T )0, t ∈ T gtg−1 = t (II.1.98)

so that elements ofN(T )0 commute with those of T . Now, if there existed g ∈ N(T )0−T , the
exponential mapping from the Lie algebra of N(T )0 would give us a 1−parameter subgroup
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g(t): the closure of the group generated by g(t) and T is still Abelian and connected. One
directly shows it is a submanifold of G, hence a torus of dimension bigger than the maximal
torus: a contradiction.
Thus N(T )0/T ' ∗; by compactess N(T ) has only finitely many connected components,

and the thesis follows.

There is some further input we need, regarding the cohomology of G/T :

Theorem II.1.6.5. Let G be a compact, connected Lie group, and T a maximal torus of G.
Then the odd Betti numbers of G/T are all zero, and its Euler characteristic equals |W |,
the order of W (G).

Proof. See [9, p 66]

We can use this theorem to relate the equivariant cohomology of G with that of one of
its maximal tori:

Theorem II.1.6.6. Let G be a compact, connected Lie group, T a maximal torus of G and
W its Weyl group. Let M be a simply connected, orientable G−manifold. Then

H∗G(M) ' (H∗T (M))W (II.1.99)

the subring of W−invariant elements of H∗T (M).

Proof. We make use of the fibrations (recall ET = EN(T ) = EG, since T ⊆ N(T ) ⊆ G)
W → G/T → G/N(T )
W → (M × ET )/T → (M × EN(T ))/N(T )
G/N(T )→ (M × EN(T ))/N(T )→ (M × EG)/G

(II.1.100)

The first one is actually a covering, sinceW is finite: the induced map π∗ : H∗dR(G/N(T ))→
H∗dR(G/T ) is injective, since by the Thom isomorphism

π∗(ω) = dη ⇒ ω = π∗(π∗(ω) ∧ τ) = π∗(dη ∧ τ) = dπ∗(η ∧ τ) (II.1.101)

its image is given by the W−invariant elements of H∗dR(G/T ), so that we get

H∗dR(G/N(T )) ' (H∗dR(G/T ))W (II.1.102)

moreover (see again [9]) W acts on H∗dR(G/T ) as the regular representation, so that we can
relate the Betti numbers of the two spaces:

bi(G/T ) = |W |bi(G/N(T )) (II.1.103)

we can use this to compute the Euler characteristic of G/N(T ):

χ(G/N(T )) = 1
|W |

χ(G/T ) = 1 (II.1.104)

The odd Betti numbers of G/N(T ) vanish, and we obtain that the cohomology of G/N(T )
with coefficients in a field is acyclic.
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We can use the same argument in the second fibration to obtain the isomorphism

H∗N(T )(M) ' (H∗T (M))W (II.1.105)

Now pass to the last fibration: since M is simply connected, so is (M × EG)/G, and
the associated spectral sequence computes the equivariant cohomology of M with respect
to N(T ). We showed that H∗(G/N(T );R) is acyclic, thus H∗N(T )(M) ' H∗G(M). This
concludes the proof.

Equipped with the isomorphism II.1.99, we can defined the support of the H∗G−module
H∗G(M) as the support of a module over (H∗T )W = (C[u1, . . . , ul])W , and run through the
same proofs. There is, however, one point where having G = T was quite important,
namely in discussing the representation theory of T : if we want to compute equivariant
characteristic classes, we should consider in the general case the characteristic map

k : S(u(n)∗)U(n) → S(g∗)G ' S(t∗)W (II.1.106)

The computation of the equivariant Euler characteristic class doesn’t change much: we pick
a polynomial over u(n) and precompose it with the map

T ↪→ G→ U(n) (II.1.107)

the crucial point comes when considering non-triviality of the equivariant Euler class. We
argued by saying that points on the fiber of the normal bundle of the fixed point set could
not be, by definition, fixed points for the action of T : but if we consider the fixed point
space of the G−action, it is a priori possible to find points in fiber which are not fixed points
not for G, but for T . Then the theorem holds provided that the fixed point of the G−action
and of the restricted T−action coincide.

Example II.1.6.7. Again to rotations of S2. This time, instead of considering just the action
of S1, we consider rotations around any possible axis: this defines an action of SO(3) on
S2.

A maximal torus of SO(3) is given (see [25] for details) by rotations around a fixed axis,
for example

T =
{
A ∈ SO(3) : A =

(
1 0
0 R

)
, R ∈ SO(2)

}
(II.1.108)

The normalizer of this set is given by matrices satisfying

At ·
(

1 0
0 R

)
·A =

(
1 0
0 R′

)
, R,R′ ∈ SO(2) (II.1.109)

one obtains
N(T ) =

{
A ∈ SO(3) : A =

(
1 0
0 T

)
, T ∈ O(2)

}
(II.1.110)

and finally

W = N(T )
T

=

w0 =

 1 0 0
0 1 0
0 0 1

 , w1 =

−1 0 0
0 0 1
0 1 0

 ' Z2 (II.1.111)
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observe that there is a well defined action of W on invariant polynomials f ∈ H∗T (S2):

f(Ad(nt)−1 ξ) = (nt)∗f(ξ) ⇐⇒ f(Adt−1(Adn−1 ξ)) = t∗(n∗f(ξ)) ⇐⇒ f(Adn−1 ξ) = n∗f(ξ)
(II.1.112)

where n ∈ N(T ), t ∈ T . We already computed in examples I.1.5.3, I.2.7.9 H∗T (S2) '
H∗T (S2), and we know

H∗SO(3)(S2) ' (H∗S1(S2))W (II.1.113)

now, how do the W−invariant polynomials look like? The adjoint action of w1 can be
computed observing(

0 1
1 0

)( cos(vt) sin(vt)
− sin(vt) cos(vt)

)(
0 1
1 0

)
=
(

cos(vt) − sin(vt)
sin(vt) cos(vt)

)
(II.1.114)

so that Adw−1
1
ξ = −ξ. The action on elements of the sphere is a reflection:−1 0 0

0 0 1
0 1 0

 ·
 cos(ψ)

sin(ψ) sin(ϕ)
sin(ψ) cos(ϕ)

 =

 − cos(ψ)
sin(ψ) cos(ϕ)
sin(ψ) sin(ϕ)

 (II.1.115)

The W−invariance condition links the value of orbits of the upper and lower hemisphere
which have the same distance from the equator; combining this restriciton with S1−invariance,
we obtain polynomials which are either symmetric or antisymmetric with respect to the
equator. In other words, condition

f(−ξ)

 cos(ψ)
1√
2 sinψ

1√
2 sinψ

 = f(ξ)

− cos(ψ)
1√
2 sinψ

1√
2 sinψ

 , ∀ψ (II.1.116)

implies

f(−ξ)

 cos(ψ)
sin(ψ) sin(ϕ)
sin(ψ) cos(ϕ)

 = f(ξ)

 − cos(ψ)
sin(ψ) sin(ϕ)
sin(ψ) cos(ϕ)

 , ∀ψ,ϕ (II.1.117)

Now, such polynomials define a cohomology class in H∗S1(S2) only if they are closed under
the Cartan differential CS1 . The typical element of CkS1 , k > 0, has the form

ξk ⊗ f + ξk−1 ⊗ ν, f ∈ C∞(M), ν ∈ Ω2(M) (II.1.118)

and closure reads
df = ιξν (II.1.119)

Now, passing from f to df flips the symmetry of the polynomial:

d
dt |0f−ξ(γ(t)) = ± d

dt |0fξ(−γ(t)) = ∓ d
dt |0f−ξ(γ(t)) (II.1.120)

and the same happens when passing from ν to ιξν:

ι−ξν−ξ(x) = ±ι−ξνξ(−x) = ∓ι−xiνξ(x) (II.1.121)
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but f and ν have opposite symmetries: if k is even, k−1 is odd, and vice versa. Thus II.1.119
equates a symmetric and an antisymmetric polynomial, which should then separately be
constant. This implies k = 0, i.e., there aren’t closed polynomials of degree greater than or
equal to 1. In degree zero, however, everything still works. We get

Hk
SO(3)(S2) =

{
C, k = 0
0, otherwise

(II.1.122)

The result shouldn’t be surprising: SO(3) acts transitively on S2, and without fixed points.
Thus

H∗SO(3)(S2) ' H∗(S2/SO(3)) ' H∗(∗) (II.1.123)



II.2. Applications 59

II.2. Applications
Now we turn to some applications. We’ll restrict to symplectic manifolds, and later on to
Kähler manifolds: the richer structure we impose on the manifold will successfully lead to
an easier employment of the localization formula.

II.2.1. The symplectic setting
In the next two sections we study an application of the localization theorem to symplectic
manifolds, and related symplectic actions. For starters, recall the definitions:

Definition II.2.1.1. (i) A symplectic manifold is a pair (M,ω), where M is an even-
dimensional manifold and ω a closed, non-degenerate 2−form;

(ii) We call an action φ : G → Diff(M) : g 7→ φg of a Lie group G on the symplectic
manifold (M,ω) symplectic if it preserves the symplectic form ω, i.e.

φ∗g(ω) = ω, ∀g ∈ G (II.2.1)

For a symplectic manifold (M,ω), non-degeneracy of ω induces a pairing between T∗M
and T ∗M :

T∗M 3 χ←→ ιχω ∈ T ∗M (II.2.2)

We can use the pairing to analyze forms in terms of the associated vector fields, and vice
versa. An example of the first instance is given by the symplectic gradient:given a smooth
function f onM , we can consider the vector field χf associated to its gradient, i.e. satisfying

ιχfω = df (II.2.3)

This vector field χf is called symplectic gradient of f , or Hamiltonian vector field associated
to f . A bilinear operation, the Poisson bracket, is then defined as follows:

Definition II.2.1.2. Let (M,ω) be a symplectic manifold. The Poisson bracket of two func-
tions f , g on M is the function {f, g} defined by

{f, g} = ω(χf , χg) (II.2.4)

By directly computing the Jacobi identity one shows

Lemma II.2.1.3. (C∞(M), {·, ·}) is a Lie algebra.

Manifolds M such that (C∞(M), {·, ·}) is a Lie algebra are called Poisson manifolds.

The characterization of vector fields in terms of the associated forms leads to the definition
of (locally) Hamiltonian vector fields:

Definition II.2.1.4. Let (M,ω) be a symplectic manifold, χ ∈ T∗M .

(i) We say that χ is Hamiltonian, and write χ ∈ H(M), if ιχω is exact;

(ii) We say that χ is locally Hamiltonian, and write χ ∈ Hloc(M), if ιχω is closed.
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The spaces H(W ) and Hloc(M) sit in a short exact sequence with the first de Rham
cohomology group of M .

Lemma II.2.1.5. Let (M,ω) be a symplectic manifold. Then there is a short exact sequence
of vector spaces

0→ H(M) ↪→ Hloc(M)→ H1
dR(M) 7→ 0 (II.2.5)

Proof. Consider the map φ : Hloc(M)→ H1
dR(M) : χ→ ιχω. It is well defined, since ιχω is

closed by definition of Hloc(M), and its kernel is exactly H(M), the vector fields such that
ιχω is exact. By non-degeneracy of the pairing, the map is also surjective.

Moreover, symplectic group actions from compact Lie groups act via locally Hamiltonian
vector fields:

Proposition II.2.1.6. Let G be a compact Lie group acting on the symplectic manifold
(M,ω). Then the action is symplectic if and only if the fundamental vector fields of the
actions are locally hamiltonian.

Proof. Suppose that the action is symplectic, let ξ ∈ g. We have

0 = d
dt |0(etξ)∗ω = Lξω (II.2.6)

Cartan’s formula implies then dιξω = 0.
Conversely, dιξω = 0 implies Lξω = 0, hence

d
dt |τ (eτξ)∗ω = (eτξ)∗Lξω = 0 (II.2.7)

but (e0·ξ)∗ω = ω, and for compact G the exponential map is surjective. The thesis follows.

We saw that a symplectic manifoldM automatically carries a Poisson manifold structure.
The notion of Hamiltonian action describes a symplectic action that respects the Poisson
brackets - this does not follow directly from the definition, though: we prove it directly
afterwards.

Definition II.2.1.7. Consider a symplectic group action φ of the Lie group G on the manifold
M , and the maps {

g→ Hloc(M) : ξ 7→ ξ

C∞(M)→ H(M) : f 7→ χf
(II.2.8)

where ξ denotes the fundamental vector field associated to ξ. Suppose there exists a Lie
algebra morphism µ̃ such that the diagram commutes:

C∞(M) � µ̃
g

0 - H(M)
?

⊂ - Hloc(M)
?

- H1
dR(M) - 0

(II.2.9)

then φ is called a Hamiltonian action.
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Remark II.2.1.8. Observe that whenever an action is Hamiltonian, commutativity of II.2.9
implies that so are its fundamental vector fields; suppose, conversely, that a symplectic
action has corresponding Hamiltonian vector fields: then the problem reduces to finding a
lift of the map h : ξ 7→ ξ:

g

0 - R - C∞(M)

µ̃
?

- H(M) -

h
-

0

(II.2.10)

the obstruction being given by the R component on the left: exactness of the sequence can
be proven by identifying constant functions with R and examining the assignment f → χf .

The relation between a Hamiltonian action and the Poisson manifold structure of M is
clarified by the next proposition.

Proposition II.2.1.9. Consider a Lie group G acting on a symplectic manifold M . Then

(i) g∗ is a Poisson manifold;

(ii) If the action is Hamiltonian, there exists a Poisson manifolds morphism

µ : M → g∗ (II.2.11)

Proof. Ad (i). We can use the Lie bracket in g to define a Lie algebra structure on C∞(g∗)
by setting

{f, g}(η) = η([dfη, dgη]) (II.2.12)

where we identified dfη with an element of (g∗)∗ ' g. Then (C∞(g∗), {·, ·}) is a Lie algebra,
and g∗ a Poisson manifold.

Ad (ii). If the action is Hamiltonian, we can find a Lie algebra morphism µ̃ : g→ C∞(M).
Define

µ : M → g∗ : x 7→ (ξ 7→ µ̃(g)(x)) (II.2.13)

We need to show
{f, g} · µ = {f · µ, g · µ}, ∀f, g ∈ C∞(g∗) (II.2.14)

we can compute this directly. Fix x ∈M , then

{f, g}µ(x) = µ(x)
(
[dfµ(x), dgµ(x)]

)
= µ̃([dfµ(x), dgµ(x)])(x)

= {µ̃(dfµ(x)), µ̃(dgµ(x))} = ω(χµ̃(dfµ(x)), χµ̃(dgµ(x)))(x)
= ω(χf ·µ, χg·µ)(x) = {f · µ, g · µ}(x)

(II.2.15)

where we used commutativity of diagram II.2.9 to obtain

χµ̃(dfµ(x))(x) = ιdfµ(x)ω(x) = χf ·µ(x) (II.2.16)

The maps µ̃ and µ are called moment and comoment maps; it is clear from the definition
that each moment map induces a comoment map, and viceversa.
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Definition II.2.1.10. Consider a hamiltonian group action φ of the Lie group G on the
manifold M . The derived Poisson manifold morphism

µ : M → g∗ (II.2.17)

is called moment map of the action φ.
The Lie algebra morphism µ̃ : g→ C∞(M) is called comoment map of φ.

II.2.2. The Duistermaat-Heckman formula
The main purpose of this subsection is proving the correspondence between comoment maps
and equivariant extensions of a symplectic form.

Theorem II.2.2.1. Let (M,ω) be a symplectic manifold, G a Lie group, φ a hamiltonian
action of G on M . Then there is a bijection between equivariant closed extensions of ω and
comoment maps of φ.

Proof. We make use of the Weil model. Recall how it was defined: we use the chain complex

(Ω(M)⊗W)bas ⊂ Ω(M)⊗W (II.2.18)

where W = λ(g∗) ⊗ S(g)∗. Given a basis ξ1, . . . , ξn of g, we denoted by θ1, . . . , θn and
z1, . . . , zn the corresponding elements of λ(g∗) and S(g)∗, and the differential dK on W was
defined for all i by {

dKθ
i = zi

dKz
i = 0

(II.2.19)

now denote by D the differential on Ω(M)⊗W, and suppose we are given a comoment map
µ̃. Let fi = µ̃(ξi). We claim that (summing over repeated indices)

ωeq = ω −D(fi ⊗ θi) (II.2.20)

is a basic, closed extension of ω. Closedness is already apparent:

Dωeq = dω −D2∑
i

fi ⊗ θi = 0 (II.2.21)

To check that ωeq is basic, observe

ωeq = ω −
∑
i

(dfi ⊗ θi + fi ⊗ zi) (II.2.22)

so that
ιξjωeq = ιξjω − (ιξjdfi)⊗ θi − dfi ⊗ δij + cijkfi ⊗ θk (II.2.23)

but by definition of comoment map we have ιξjω = dfj and

ιξjdfi = dfi(ξj) = (ιξiω)(ξj) = ω(ξi, ξj) = f[i,j] = ckijfk (II.2.24)

hence ιξjωeq = 0, and by Cartan’s formula Lξjωeq = 0. Then ωeq is closed and basic, and it
corresponds in Cartan’s model to an equivariant extension of ω.
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Conversely, any closed, basic extension has the form

ωeq = ω + gij ⊗ (θi ∧ θj) + hi ⊗ zi + ηi ⊗ θi (II.2.25)

and respects{
0 = ιξkωeq = ιξkω + 2gki ⊗ θi + ciklhi ⊗ θl + ηk

0 = Dωeq = (dgij)⊗ θi ∧ θj + (dhi)⊗ zi + (dηi)⊗ θi − ηi ⊗ zi
(II.2.26)

hence {
ιξkω + ηk = 0 = 2gij + cikjhi

dgij = 0 = dhi − ηi = dηi
(II.2.27)

and we get a comoment map by setting fi = −hi. The other components reflect the Lie
algebra homomorphism property and commutativity of II.2.9, and may be identified as{

ηi = −dfi
gij = −1

2f[i,j]
(II.2.28)

Remark II.2.2.2. (i) The theorem gives an explicit formulation of the equivariant exten-
sion in the Weil model. It’s not hard to find a formulation for the Cartan model as
well, provided G = T , an l−torus.
Let then u1, . . . , ul be coordinates on the Lie algebra t of T and u1, . . . , un the dual
coordinates; the equivariant extension of the symplectic form ω is given by

ωeq = 1⊗ ω − ui ⊗ fi (II.2.29)

where fi = µ̃(ui), the image of the basis vectors under the comoment map.
Notice that we can think of each ui ⊗ fi as a map from M to t∗:

fi : x 7→ {a = aiu
i 7→ fi(x)ai} (II.2.30)

and this is nothing but the moment map of µ̃i : t → C∞(M) : ∑j a
juj 7→ µ̃(aiui),

where summation is not implied in the second expression. We obtain the decomposition

ωeq = ω − f (II.2.31)

with f the moment map of the action.

(ii) We can also employ some reverse engineering: in II.1.5.4 we found a map completing
the volume form to an equivariant closed form. S2 has dimension 2, so that we can
take the volume form to interpret it as a symplectic manifold: we then have that the
action is Hamiltonian, with moment map given by the height map on the sphere. We’ll
discuss non-uniqueness later.

The Duistermaat-Heckman formula follows now as a corollary.
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Corollary II.2.2.3. Let φ be a Hamiltonian action of the l−torus T on the symplectic,
compact 2m−manifold (M,ω), and suppose that the fixed point set P of the action is
discrete. Then ∫

M

ωm

m! e
−f =

∑
p∈P

e−f (p)

ep
(II.2.32)

where the ep terms correspond to the equivariant Euler classes of the normal bundles around
the points, and f is a moment map for φ.

Proof. We have from the previous remark that ωeq = ω− f is an equivariantly closed form.
Consider the terms ωeq

(eωeq)j =
(

m∑
i=0

ωi

i!

)
(−f )j
j! (II.2.33)

and apply the integration formula II.1.73. πM∗ annihilates all the forms with degree different
from the dimension of M , so that we get

πM∗ ((eωeq)j) =
∫
M

ωm

m!
(−f )j
j! (II.2.34)

by a similar reasoning, on the right hand side there isn’t any ω component, leaving us with
the evaluation of f at the fixed points. We obtain∫

M

ωm

m!
(−f )j
j! =

∑
p∈P

(−f )j/j!
ep

(II.2.35)

the thesis follows by summing over the j’s.

Remark II.2.2.4. In its original formulation, the Duistermaat-Heckman formula relates the
Lebesgue measure on g∗, seen as some Rn, to the volume form on a symplectic manifold.
To simplify the discussion, consider the case T = S1. We pick a Hamiltonian action of

S1 on the symplectic manifold (M,ω), and define a measure mDH on g∗ ' R by

mDH(U) =
∫
µ−1(U)

ωm

m! (II.2.36)

where µ : M → g∗ is the moment map associated to the action and 2m the dimension of
M . This is called the Duistermaat-Heckman measure on g∗, and the Duistermaat-Heckman
theorem states that its Radon-Nykodim derivative with respect to the Lebesgue measure
on g∗ is a polynomial when restricted to the regular values of µ.
For our case g∗ ' R, the differential of µ at a point p ∈M is the map

d
dt |0γ(t) 7→ { ξ 7→ d

dt |0µ̃(ξ)(γ(t)) } (II.2.37)

where γ(t) is a path in M with γ(0) = p, and µ̃ is the comoment map of the action. Critical
points are then identified with the points around which µ̃(ξ) is a constant for all g ∈ g; by
definition of the comoment map, this means that the associated fundamental vector fields
vanish in the critical points of µ, i.e., they are the critical points of the action.
In conclusion, the Radon-Nykodim derivative is a polynomial when restricted to non-fixed
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points of the action. If the fixed points make up a discrete set {p1, . . . , pn} we get a piecewise
polynomial: we can use the fundamental theorem of calculus to integrate each of the pieces
and obtain

mDH(U) =
∫
µ−1(U)

d
dxmDH(U)dx = f(p1, . . . , pn) (II.2.38)

that is, the measure of the set only depends on the fixed points of the action.

II.2.3. Relation with the stationary phase approximation
In this section we explain the relation between formula II.2.32 and the stationary phase
approximation. The formula then shows that the approximation is in fact exact in the case
prescribed by the localization theorem, and we obtain in return a concrete interpretation of
the kind of information it conveys.

Consider the case of an S1 action, and look at II.2.32. If u is a generator of the Lie
algebra of S1, we have f = fu, with f ∈ C∞(M). When read in chart domains, and with
the help of a partition of the unity, the integral on the left hand side takes the form∫

Rn
a(y)ef(y)udy (II.2.39)

where a(y) ∈ C∞(Rn) is a smooth function with compact support, and we still denoted by
f the coordinate version of the function on M . If we write u = ik, with k ∈ R, we obtain a
more familiar object - at least for physicists: it’s a superposition of waves, whose amplitude
and frequency is weighted by a(y) and f(y), and sharing a common parameter k.

Now, what’s the approximation? Fix a y1 ∈ Rn, and suppose the parameter k is very
large when compared with the growth of the f and a: if we regard the integral à la Riemann
- a sum over volumes of n−rectangles - it follows that a little tilt in the value of y0 will
be enough to change the sign of the exponential, since the change in f is amplified by k,
without changing significantly the value of a, which changes more slowly. In other words,
the contributions given by the two n−rectangles will compensate one another.
This reasoning relies on the fact that a little tilt in y1 yields a non-zero change in f , which

is then amplified: when this does not happen, there is no balancing of the contribution in
y0, and we expect the value of the integrand in this point to give a leading contribution to
the evaluation of the integral. All in all, we expect something like∫

Rn
a(y)eif(y)kdy ≈ g(y0, y1, . . . , yn) (II.2.40)

where (y1, . . . , yn) are the critical values of f , which we assume to be finite, and g is some
smooth function.

This already gives an idea of where we’re going: but we can do better, and formalize the
process to obtain more details on g. We need a classical result in Morse theory (for the
proofs see e.g. [23]): recall that a Morse function is a function whose critical points are
not degenerate - the Hessian matrix Hf in those points should be invertible. We have the
following:

Lemma II.2.3.1. Let f ∈ C∞(Rn), fix y0 ∈ Rn. Then:
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(i) There exist functions f i, . . . , fn such that{
f i(y0) = ∂f

∂xi
|y0 i = 1, . . . , n

f(y) = f(y0) + yif
i(y), where y = (y1, . . . , yn)

(II.2.41)

(ii) (Morse’s Lemma) If f is a Morse function and y0 is a critical point of f there is a local
change of coordinates z = z(y) such that{

z(y0) = 0
f = f(y0)− z2

1 − · · · − z2
l + z2

l+1 + · · ·+ z2
n

(II.2.42)

where l is the index of Hf at y0, the maximal dimension of a linear subspace on which
Hf (y0) is negative definite.

Now consider open local chart domains as in the lemma for the critical points of f , call
them U1, . . . , Un. We can find an open set V ⊃ Rn−∪iUi which does not contain the critical
points of f , and consider a partition of unity {λi}i=0,...,n to express the integral as∫

Rn
a(y)eikf(y)dy =

n∑
i=1

∫
Rn
λi(y)a(y)eikf(y)dy +

∫
Rn
λ0(y)a(y)eikf(y)dy (II.2.43)

We start by evaluating the first term. Referring to the second point of the lemma, we’ll just
write f = f(y0) + Q(z)

2 : we can change coordinates to obtain

eikf(y0)
∫
Rn
b(z)ei

kQ(z)
2 dz (II.2.44)

where b(z) = λi(z)a(z)
∣∣∣det

[
∂y
∂z

]∣∣∣. If we use the first part of the lemma on b, we get two
terms

b(yi)eikf(yi)
∫
Rn
ei
kQ(z)

2 dz + eikf(yi)
∫
Rn
bi(z)ziei

kQ(z)
2 dz (II.2.45)

anyway, notice
zie

i
kQ(z)

2 = ± 1
ik

∂

∂zi
ei
kQ(z)

2 (II.2.46)

so that we can integrate by parts, and the second summands yields a term of order 1
k ;

applying again the lemma, we can iterate the procedure to obtain a term of order k−N , for
N arbitrarily large. The first summand is a product of elements∫

R
exp

(
±ikx

2

2

)
dx =

√
2π
∓ik

=
√

2π
k
e±i

π
4 (II.2.47)

moreover, we can choose the partition of unity so that λi(y0) = 1, and lastly

1 = |detHQ(yi)| =
∣∣∣∣∣det

([
∂y

∂z

]t
Hf (yi)

[
∂y

∂z

])∣∣∣∣∣ (II.2.48)

Then we have∫
Rn
λi(y)a(y)eikf(y)dy = a(yi)eikf(yi)√

|det (Hf (yi))|

(√
2π
k

)n
eiεi

π
4 +O(k−N ) (II.2.49)
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with εi equal to n− 2li, and li the index of Hf (yi). The remaining term∫
Rn
λ0(y)a(y)eikf(y)dy (II.2.50)

can be estimated as follows: consider the vector field

X = ∂f

∂xi
∂

∂xi
(II.2.51)

and observe

X(eikf(y)) = ik
∑
i

(
∂f

∂xi

)2
eikf(y) (II.2.52)

then we can define a vector field η on the support of λ0 by

η = 1
ik
∑
i
∂f
∂xi

2
∂

∂xi
(II.2.53)

to obtain η(eikf(y)) = eikf(y). Everything is well defined because there are no critical points
of f in the support of λ0 by construction; extend η to zero outside of the support, observe
that λ0η is smooth. We have∫

Rn
λ0(y)a(y)eikf(y)dy =

∫
Rn
λ0(y)a(y)η(eikf(y))dy (II.2.54)

integrating by parts yields again a dependence of order k−N , and we obtain the global
formula ∫

Rn
a(y)eikf(y)dy =

∑
i

a(yi)eikf(yi)√
|det (Hf (yi))|

(√
2π
k

)n
eiεi

π
4 +O(k−N ) (II.2.55)

we can patch all the contributions and obtain the approximation

∫
M

ωm

m! e
ikf =

∑
i

ωm(yi)eikf(yi)

m!
√
|det (Hf (yi))|

(√
2π
k

)n
eiεi

π
4 +O(k−N ) (II.2.56)

Now compare this with II.2.32. Observe that the equivariant Euler class ei is a polynomial
of degree m = n

2 in C[u], so that it has the form εiu
m, with εi ∈ C. Writing u = ik, we have

∫
M

ωm

m! e
ikf =

∑
i

eikf(yi)

εi

(√
1
k

)n
(II.2.57)

that is, the approximation is exact. It’s also apparent from the formula the remarkable
amount of information encoded from the equivariant Euler classes, taking contributions
from the values of the volume form, the determinant of the Hessian of the moment map and
its signature.
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II.2.4. Existence and uniqueness of moment maps
We conclude the discussion on the Duistermaat-Heckman formula proving some results on
moment maps: in fact, we conveniently shifted the problem of finding an equivariant exten-
sion for the symplectic form to that of finding a moment map for a symplectic action. It
is then natural to ask when does such a map exist. We’ll produce a criterion, and obtain
some results about uniqueness on the way.

The main technical tool for this kind of investigation is the Lie algebra cohomology,
defined as follows:

Definition II.2.4.1. Let G be a Lie group with Lie algebra g. The Lie algebra cohomology
of g is defined as

H∗(g;R) = (Hom(Λg), δ) (II.2.58)

with δk : Homk(Λg)→ Homk+1(Λg) given by

δk(c)(χ1, . . . , χk) =
∑
i<j

(−1)i+jc([χi, χj ], χ1, . . . , χ̂i, . . . , χ̂j , . . . , χk) (II.2.59)

for k > 0, and 0 for k = 0.
(Hom∗(Λg), δ) is called the Chevalley-Eilenberg complex.

We can get sufficient conditions by studying the first Lie algebra cohomology groups of
g. Let’s start with uniqueness:

Proposition II.2.4.2. Let G be a Lie group, and suppose H1(g;R) = 0. Then moment maps
for Hamiltonian actions of G are unique.

Proof. Let G act on the manifold (M,ω). We have two Lie algebra homomorphisms µ̃1, µ̃2
making the diagram commute:

g

0 - R - C∞(M) -

µ̃i

�

H(M)

h- (II.2.60)

by exactness, their difference ν̃ = µ̃1− µ̃2 may be regarded as an element of g∗ = Hom1(Λg).
It is closed, in fact

δν(X,Y ) = −ν([X,Y ]) = {µ̃1(X), µ̃1(Y )} − {µ̃2(X), µ̃2(Y )} (II.2.61)

which vanishes by definition of the Poisson bracket on C∞(M) and commutativity of the
diagram. Then ν ∈ ker (δ1) = H1(g;R) = 0.

Remark II.2.4.3. As we saw in the proof of the proposition, H1(g;R) has a natural algebraic
interpretation as [g, g]0 ⊆ g∗, the annihilator of [g, g]. Thus, a nontrivial Abelian group will
always have H1(g;R) 6= 0.

To make sure a moment map exists, we require also the second cohomology group to be
trivial.
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Proposition II.2.4.4. Let G be a Lie group, and suppose H1(g;R) = H2(g;R) = 0. Then
any symplectic action of G is Hamiltonian.

Proof. As a first step, observe that the commutator of two fundamental vector fields [ξ, η]
is a Hamiltonian vector field. In fact

ι[ξ,η]ω = [Lξ, ιη]ω = Lξιηω (II.2.62)

since by symplecticity Lηω = 0. Applying Cartan’s formula, we get

Lξιηω = dιξιηω + ιξdιηω = dιξιηω − ιξιηdω = dιξιηω (II.2.63)

and since H1(g;R) = 0 we have g = [g, g]. We can use this isomorphism to read the map
[g, g]→ H(M) : [ξ, η]→ [ξ, η] as a map h from g to H(M): we get again the diagram

g

C∞(M) -

µ̃′

�

H(M) -

h-

0

(II.2.64)

by exactness we can find for each basis vector ξi of g an element fi ∈ C∞(M) such that
χfi = h(ξi): we define µ̃′(ξi) = fi and extend the map linearly.
Now we need to check that this map is a Lie algebra homomorphism, that is, µ̃′([ξ, η]) =
{µ̃′(ξ), µ̃′(η)}. But we know

dµ̃′([ξ, η]) = ιχµ̃′([ξ,η]) = ι[ξ,η]ω = dιξιηω = −d{µ̃′(ξ), µ̃′(η)} (II.2.65)

We define
c(ξ, η) = µ̃′([ξ, η]) + {µ̃′(ξ), µ̃′(η)} ∈ R, ∀ξ, η ∈ g (II.2.66)

which we can regard as an element of Hom2(Λg,R). It is closed by the Jacobi identity:

δc(ξ, η, ν) = −c([[ξ, η], ν]) + c([[ξ, ν], η])− c([[η, ν], ξ]) = 0 (II.2.67)

and since H2(g;R) = 0 we can express it as some in term of some b ∈ g∗: c(ξ, η) = b([ξ, η]).
Now let µ̃ = b − µ̃′, regarding b : g → R → C∞(M): then II.2.64 still commutes, and we
have

(b− µ̃′− b)([ξ, η]) = b([ξ, η])− µ̃([ξ, η]) = {µ̃′(ξ), µ̃′(η)} = {(b− µ̃′)(ξ), (b− µ̃′)(η)} (II.2.68)

so that µ̃ is a comoment map for the action.

These criteria shift the problem of existence and uniqueness to the computation of the
Lie algebra cohomology groups: when working with compact Lie groups, this amounts to a
great simplification.

Lemma II.2.4.5. Let G be a compact lie group. Then H∗(g;R) ' H∗dR(G).
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Proof. We divide the proof in two steps:

Ω∗(G)→ Ω∗eq(G)→ Hom∗(Λg) (II.2.69)

that is, first we relate forms to equivariant forms, and then we pass to the Chevalley-
Eilenberg complex.
For the first step, observe that we can use the Haar measure on G to average forms: we

obtain a map
Ωk(G) 3 ω 7→ 1

vol(G)

∫
G

(g∗ω)dµ(g) ∈ Ωk
eq(G) (II.2.70)

and since [d, g∗] = 0, the assignment descends to a map in cohomology. Surjectivity is clear,
to show injectivity observe∫

G
(g∗ω)dµ(g) = 0⇒ 0 =

∫
G

(∫
G

(g∗ω)dµ(g)
)
dx =

∫
G

(∫
G

(g∗ω)dx
)
dµ(g) (II.2.71)

and the quantity
∫
G(g∗ω)dx does not depend on g ∈ G, so that∫

G
(g∗ω)dµ(g) = 0⇒

∫
G
ωdx = 0 (II.2.72)

which yields injectivity on cohomology.
For the second step, observe that any ω ∈ Ωk

eq(G) is completely determined by its value
in e:

ω(e) =
∑
i

aidx
i1 ∧ · · · ∧ dxik ∈ Homk(Λg) (II.2.73)

in coordinates, the differential of a generic form ω ∈ Ω(M) is given by

dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk)
(II.2.74)

for equivariant forms the first term vanishes, so that the assignment ω → ω(e) is a chain
map and a bijection. The thesis follows.

Remark II.2.4.6. (i) We can now address the problem of (non) uniqueness of the height
map on the sphere (see II.1.5.4): we found many possible moment maps, which differed
by an additive constant. Going through the proof of II.2.4.2, we can stop one step
before the conclusion, and obtain that the difference between any two moment maps
is an element of H1(g;R): in the case of S1, this is exactly R;

(ii) An example of Lie groups having H1(g;R) = H2(g;R) = 0 is given by special orthog-
onal groups, provided their dimension is big enough. Indeed, SO(3) ' RP 3 satisfies
the requirements, for H1(RP 3;Z) = Z2, which disappears when taking coefficients in
R, and H2(RP 3;Z) = 0 already with integral coefficients: to see that the same holds
for all higher dimensional special orthogonal groups, just consider the fibration

SO(n)→ SO(n+ 1)→ Sn (II.2.75)

and the related spectral sequence. For n > 3 the relevant elements are already stable
on the second page, and the claim follows.
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Example II.2.4.7. We studied the caseG = T : from the previous lemma, the first and second
Lie algebra cohomology groups of the torus are not trivial, so that equivariant extensions
are not always granted to exist.
As an example, consider the S1−action on a 2−torus given by

eiθ · (eiφ1 , eiφ2) = (ei(φ1+θ), eiφ2) (II.2.76)

on the one hand, the action preserves the symplectic form ω = dφ1 ∧ dφ2; on the other
hand, the action is free, so that H2

S1(T ) = H2(T/S1) = H2(S1) = 0. We conclude that
there aren’t any equivariant extensions of the symplectic form, so that the action is not
hamiltonian.

II.2.5. Ehresmann connections
We present a different construction of the Chern-Weil map. This definition is more geomet-
ric, and gives some insight on the explicit expression of the characteristic classes of a bundle
- and this is certainly a great advantage when looking for equivariant extensions.
The construction requires some background on connections. We recall the main definitions

and introduce the notion of Ehresmann connection. A more detailed exposition can be found
e.g. in [26].

Definition II.2.5.1. Let π : E → M be a vector bundle. A connection ∇ on a fiber bundle
is a map

∇ : Γ(E)→ Γ(E ⊗ T ∗M) (II.2.77)

satisfying ∇(fs) = s ⊗ df + f∇(s) ∀f ∈ C∞(M), where Γ(·) denotes the space of sections
on the related vector bundle.

If we work locally, we can define an orthonormal frame of sections {sα}α and look at the
behaviour of ∇ on a generic section s in term of a decomposition s = fαsα:

∇(fαsα) = fα∇(sα) + sα ⊗ dfα = fαsβ ⊗ ωβα + sα ⊗ dfα (II.2.78)

The matrix of 1−forms ω = [ωβα] is called the connection form of ∇. A related concept is
that of curvature form, a 2−forms matrix defined by

Ωβ
α = (dω)βα + ωβγ ∧ ωγα (II.2.79)

for simplicity, such expressions are formally written as

Ω = dω + ω ∧ ω (II.2.80)

where meaning II.2.79 is implied.
In our previous construction of the Chern-Weil map - consider the complex case -, we

passed from the bundle E → M to the bundle of unitary frames F (E) → M , and then
worked with the action of U(n) on such a bundle; we do something similar here, by con-
sidering local unitary frames of sections. Any two such frames {sα}α, {s′β}β - when the
intersection U of their domains of defintion is not empty - are related by a change of coor-
dinates

sα(x) = s′β(x) · Aαβ(x) (II.2.81)
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with A(x) ∈ U(n) ∀x ∈ U . Explicitly, we have a function

A : U → U(n) : x 7→ A(x) (II.2.82)

The connection is called compatible with respect to the U(n)−bundle structure provided
that the associated parallel transport takes unitary frames into unitary frames, and this is
in turn seen to be equivalent to

ω(ξ) ∈ u(n) ∀ξ ∈ T∗M (II.2.83)

Remark II.2.5.2. (i) Since the connection form depends on the local frame we decide
to work with, the definition only makes sense if compatibility in one frame implies
compatibility in every other frame: this is indeed the case. To prove it, consider two
local unitary frames {sα}α, {s′β}β with a common domain of definition, and call ω and
ω′ the related connection forms. As before, s(x) = s′(x) · A(x) with A(x) ∈ U(n); fix
an x ∈M and let A = A(x), we have the system{

∇sα = sβ ⊗ ωβα = sβA
γ
α ⊗ ωβγ

∇sα = ∇(s′βAβα) = s′β ⊗ dAβα + s′βA
β
γ ⊗ (ω′)γα

(II.2.84)

putting the two together, we obtain the matrix relation

ω = dA ·A−1 +Aω′A−1 = dA ·A−1 + AdA ω′ = (A)∗(A−1) + AdA ω′ (II.2.85)

so that ω′(ξ) ∈ u(n)⇒ ω(ξ) ∈ u(n), and similarly the converse.
Notice that the A−1 is actually the map induced from the multiplication U(n)→ U(n)
on the level of Lie algebras, and, since A(x) = A, it lands exactly in Te(U(n)) ' u(n):
we can then define the assignment

TAU(n) 3 ξ 7→ (A−1)∗(ξ) (II.2.86)

which globally defines a u(n)−valued 1−form on U(n), called the Maurer-Cartan form
of U(n);

(ii) The same strategy applies to find the coordinate change law for the curvature form:

Ω = AdA Ω′ (II.2.87)

It is also clear that the curvature matrix of a compatible connection is u(n)−valued;

(iii) Denote by ωA the assignment obtained by restricting the Maurer-Cartan form of U(n)
to TAU(n). Since M is compact, we can cover it by domains of local unitary frames;
for any such local frame sU and domain U , let{

πU(n) : U × U(n)→ U(n) : (x,A) 7→ A

πU : U × U(n)→ U : (x,A) 7→ x
(II.2.88)

the canonical projections, and define

ω̃(x,A) = AdA−1 π∗U (ω(sU )) + π∗U(n)ωA (II.2.89)
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where ω(sU ) is the connection form of ∇ expressed in the reference frame U . We can
obtain the unitary frame bundle by patching together the neighbourhoods U × U(n)
via the equivalence relation

U × U(n) 3 (x,A) ∼ (y,B) ∈ V × U(n) ⇐⇒ sU = sV · AUV , A = (AUV )−1B, x = y
(II.2.90)

The form ω̃ respects the equivalence relation, thus defining a global u(n)−valued
1−form on the unitary frame bundle F(E)→M . ω̃ satisfies the compatibility condi-
tions (see [26, p. 314])
(i) ω̃(ξ) = ξ ∀ξ ∈ u(n);
(ii) ω̃(A∗X) = AdA−1 ω̃(X) ∀X ∈ TF(E), ∀A ∈ U(n)

These two equations characterize a particular kind of connection on F(E), as clarified
in the next definition.

Definition II.2.5.3. 1. Let G be a compact Lie group, π : E →M a principal G−bundle.
An Ehresmann connection on E is a g−valued one form ω̃ on E satisfying
(i) ω̃(ξ) = ξ ∀ξ ∈ g;
(ii) (g∗ω̃)(X) = Adg−1 ω̃(X) ∀X ∈ TE , ∀g ∈ G

2. For each x ∈ E , the subspace ker ω̃x ⊂ TxE is called the horizontal subspace at x
determined by ω̃. Its elements are called horizontal vectors at x.

Remark II.2.5.4. 1. It is a priori not clear why, or in which sense, an Ehresmann con-
nection should be seen as a connection. In light of the last remark, we can see it as
a generalization of the global, invariant one form on the frame bundle F(E) → M
arising from a connection on the original bundle E →M ;

2. Horizontal subspaces have a series of pleasant properties, as the following lemma
shows:

Lemma II.2.5.5. Let π : E →M be a principalG−bundle, ω̃ an Ehresmann connection
on E . For each x ∈M , denote by Hx the horizontal subspaces at x determined by ω̃.
Then:
a) TxE = Hx +Vx ∀x ∈ E , where Vx is the inclusion of the tangent space at x of the

fiber of π(x);
b) Hg·x = g∗Hx ∀x ∈ E , ∀g ∈ G;
c) H : u 7→ Hu is a (smooth) distribution.

Proof. Ad (a). A formal construction of Vx proceeds as follows: we can think of x as
a pair (m,h), with m ∈ M and h ∈ G. We consider the tangent space of h, identify
G with the fiber over m, and include the tangent space via the inclusion ι of the fiber
in E : Vx = ι∗(ThG). It is clear that dimVx = dimG.
On the other hand, ω̃x is surjective onto g by condition (i) of its definition, so that
its kernel has dimension dim(E) − dimG. Now, if we identify ThG with g via h∗ :
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g→ ThG, we see that the image of ι∗ are exactly the fundamental vector fields. Then
Vx ∩Hx = {0}, and the thesis follows by dimensional considerations.

Ad (b). The spaces have the same dimension. Moreover, for X ∈ Hx,

ω̃g·x(g∗X) = Adg−1 ω̃(X) = 0 (II.2.91)

which defines an injection of Hx into Hg·x;

Ad (c). For a local frame {Y1, . . . , Ydim E} of sections (vector fields) of TE , we want to
find a local frame of sections of H. Consider a basis {X1, . . . , XdimG} of g, then we
can write ω = ωjXj , and the (smooth) vector fields

Ŷi = Yi − ωj(Yi)Xj (II.2.92)

are in H, and locally generate it.

This lemma gives a concrete intuition on the object we’re working with. It’s a way of
locally splitting the tangent space into a fiber-part and into a base-part, in a way that
globally makes sense. Reinforcing the idea that this is really what a connection is, also
the converse is true: to such a smooth distribution there corresponds an Ehresmann
connection on E ([26, p. 316]).

The lemma gives way to the definition of curvature for an Ehresmann connection:

Definition II.2.5.6. Let π : E → M be a principal G−bundle, ω̃ an Ehresmann connection
on E . The curvature of ω̃ is a g−valued 2−form defined by

Ω̃(Y1, Y2) = (dω̃)(hY1, hY2) (II.2.93)

with h : TE → H the projection of Xi onto the horizontal subspace of TE .

It also follows from the lemma that the projection h is smooth, so that the definition is
well-posed. It is not clear whether this notion of curvature relates to the usual one - well,
it does: the following identities also hold true for Ω̃

{
Ω̃ = dω̃ + ω ∧ ω
dΩ̃ = ω̃ ∧ Ω̃− Ω̃ ∧ ω̃

(II.2.94)

The second one is usually expressed in the more palatable form

dΩ̃(hY1, hY2) = 0 ∀Y1, Y2 ∈ TF(E) (II.2.95)

Lastly, observe that from the defining property (ii) of ω̃ we get A∗Ω̃ = AdA−1 Ω ∀A ∈ U(n).
These properties will acquire a very important role in the next section.
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II.2.6. The Chern-Weil map revisited
Now we are ready to (re)define the Chern-Weil map. We follow three steps:

1. We work on U(n)−invariant homogenous polynomials, and define a map which takes
such polynomials in input and yields forms in F(E) as output. Recall that the invari-
ance condition reads f ·AdA = f ∀A ∈ U(n);

2. We show that these forms can be uniquely associated to closed forms on M '
F(E)/U(n) via π;

3. We extend the map linearly to all polynomials.

Step 1. Pick a homogenous polynomial f of degree k, and regard it as a symmetric tensor
over g∗: the associated form f(Ω̃) ∈ Ω2k(F(E)) is defined by the equation

f(Ω̃)(X1, . . . , X2k) = 1
2k!

∑
σ∈P2k

εσf(Ω̃(Xσ(1), Xσ(2)), . . . , Ω̃(Xσ(2k−1), Xσ(2k))) (II.2.96)

whereXi ∈ T∗F(E) ∀i, P2k is the group of 2k−permutation and ε(σ) the sign of σ, necessary
to get an alternating multilinear map.
Equivalently, pick a basis X1, . . . , Xn of g and the dual basis X1, . . . , Xn on g∗; regard f

as a polynomial, we get decompositions
f = ai1,...,ikX

ii . . . Xik

ω̃ = ω̃jXj

Ω̃ = Ω̃jXj

(II.2.97)

and the expression
f(Ω̃) = ai1,...,ilΩ̃ii ∧ · · · ∧ Ω̃il (II.2.98)

Step 2. By construction, π∗|H : H → TM is an isomorphism. Given vector fieldsX1, . . . , X2k ∈
TM , we find some preimages Y1, . . . , Y2k in TF(E): a form Λ ∈ Ω2k(M) such that π∗Λ =
f(Ω̃) should satisfy

Λ(X1, . . . , X2k) = f(Ω̃)(Y1, . . . , Y2k) (II.2.99)
this equation completely characterizes Λ: if it exists, it’s unique.
The point here is that the equation may be used to define Λ as well. Look at it pointwise:

in choosing a set of preimages of (X1)x, . . . , (X2k)x, x ∈M , we make two choices:

• We pick a point (x, g) ∈ E ;

• We pick vector fields in T(x,g).

We need to show that they do not influence the final output. Start from the second bullet:
since ιY Ω̃ is by definition zero whenever Y is a vertical vector field (hY = 0), the quantity
f(Ω̃)(Y1, . . . , Y2k) does not depend on the set of preimages we choose: this degree of freedom
does not make the definition ill-posed.

Now say that we pick another g in the fiber of x, g′: for some l ∈ G it holds g = l · g′,
and we can choose two related set of preimages:

(Y1, . . . , Y2k) = (l∗Y ′1 , . . . , l∗Y ′2k) (II.2.100)
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now observe

f(Ω)(l∗Y ′1 , . . . , l∗Y ′2k) =ai1,...,ilΩ̃ii ∧ · · · ∧ Ω̃il(l∗Y ′1 , . . . , l∗Y ′2k)
=ai1,...,il l∗Ω̃ii ∧ · · · ∧ l∗Ω̃il(Y ′1 , . . . , Y ′2k)
=ai1,...,il Adl−1 Ω̃ii ∧ · · · ∧ l∗Adl−1 Ω̃il(Y ′1 , . . . , Y ′2k)
=ai1,...,ilΩ̃ii ∧ · · · ∧ l∗Ω̃il(Y ′1 , . . . , Y ′2k)
=f(Ω)(Y ′1 , . . . , Y ′2k)

(II.2.101)

where we used U(n)−invariance of f . Then we can use II.2.99 to define Λ.
In order to prove closedness of Λ, we use II.2.95:

dΛ(X1, . . . , X2k) =dΛ(π∗Y1, . . . , π∗Y2k)
=dΛ(π∗hY1, . . . , π∗hY2k)
=π∗dΛ(hY1, . . . , hY2k)
=df(Ω̃)(hY1, . . . , hY2k)
=ai1,...,ilΩ̃ii ∧ · · · ∧ Ω̃il(hY1, . . . , hY2k) = 0

(II.2.102)

Step 3. We can induce a map on cohomology. Extending the map linearly to the space of
all the polynomials, we obtain an assignment

k : S(u(n)∗)U(n) → H∗(M) (II.2.103)

Despite its very geometric construction, this map turns out to be independent on the
chosen connection - as it should: the only information it should track concerns the bundle,
not the additional (arbitrary) structure we put over it. Essentially, we need to show:

Lemma II.2.6.1. The cohomology class of the form Λ obtained in Step 2 does not depend
on the chosen connection.

Proof. Consider two Ehresmann connections ω̃0, ω̃1. We consider the pullback of the bundle
E →M to M × [0, 1]:

p∗E - E

M × [0, 1]
?

- M
?

(II.2.104)

where p is the projection collapsing [0, 1] to a point. Then p∗E ' E × [0, 1] is still a principal
G−bundle, and we can pull back ω̃0 and ω̃1 to Ehresmann connections over it; we can
actually do more, and namely define a new (Ehresmann) connection

ω̃(x,t) = tp∗ω̃1 + (1− t)p∗ω̃0 (II.2.105)

Define ιt : M → M × [0, 1] : x → (x, t), we obtain the restrictions ι∗0(ω̃) = ω̃0, ι∗1(ω̃) = ω̃1.
Now we can apply the construction of Step 2 to ω̃ to derive a form Λ on M × [0, 1], and
obtain accordingly ι∗0(Λ) = Λ0, ι∗1(Λ) = Λ1. But ι0 and ι1 are homotopic, and the thesis
follows.
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II.2.7. Localizing the first Chern class

Now we want to show how it is possible to apply this machinery in the context of localization.
As a toy model, consider a complex line bundle over a manifoldM , and the associated frame
bundle:

C S1

E
?
 F(E)

?

M
?

M
?

(II.2.106)

Pick a connection ∇ on E. The compatibility request is empty: we just require ω(ξ) ∈ R
for every vector field in M . There are several other simplifications occurring: the relation
between connection matrices of different frames reduces to

ω′ = da

a
+ ω (II.2.107)

where the connections are relative to unitary frames s, s′ linked by the relation s = as′.
Observe that a : M → S1 is nonvanishing: we may as well write ω′ = d(ln(a)) + ω, so that

Ω′ = Ω (II.2.108)

i.e. the curvature matrix defines a 2−form on the whole manifold.
Now let’s have a look at the derived Ehresmann connection. We are particularly interested

in its curvature Ω̃, which carries the information about the invariants: observe that it is
invariant under the action of S1 - the condition is, again, empty because the adjoint action
is trivial: then we can proceed as in the second step of the construction of the Chern-Weil
map, and associate it to a unique 2−form Ω̂ on M , defined by

Ω̂(X1, X2) = Ω(Y1, Y2) ∀X1, X2 ∈ TM (II.2.109)

where Y1, Y2 are vector fields on F(E) such that π∗Y1 = X1, π∗Y2 = X2. Now work locally:
fix a domain U of a section s of E, and consider the related connection matrix ω. For a
point x ∈ U and an element θ on the fiber, we have

ω̃(x,θ) = π∗Uω + π∗S1ωθ (II.2.110)

so that for a pair of fields Y1, Y2 ∈ TF(E),

Ω̃(Y1, Y2) = dω̃(x,θ)(hY1, hY2) = dω(π∗Y1, π∗Y2) = Ω(π∗Y1, π∗Y2) (II.2.111)

which shows Ω = Ω̂: we can express the curvature of the Ehresmann connection in term of
the one of a connection on E.

Look at the first Chern class: it’s the trace of Ω, regarded as a complex matrix: but Ω is
just a complex number, so that we just have c1 = Ω.
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Now for the equivariant twist. Consider an action of S1 on E; in analogy with the case
of the tangent bundle, we suppose there is a "fundamental vector field" for this action, i.e.
an assignment

g 3 ξ 7→ ξ̂ ∈ Hom(E,E) (II.2.112)

so that we have obtain an action on sections of E. Again inspired by the tangent bundle, we
define a combined action on the tensor product of E ⊗ Tmn (M), the latter being the bundle
of tensors of type (m,n): this is expressed by the derivation property

ξ(s⊗A) = ξ̂(s)⊗A+ s⊗ LξA, ∀A ∈ Γ(Tmn (M)), s ∈ Γ(E), ξ ∈ g, m, n > 0 (II.2.113)

where ξ is the fundamental vector field related to the S1 action on M , acting on functions
as a derivation. To simplify notation, and in view of the compatibility we imposed, in the
following we’ll just write ξ = ξ̂ = ξ.
Now, we ask the connection ∇ to be equivariant: ξ∇ = ∇ξ. We can express it in

coordinates: given a generating section s, if{
∇(s) = s⊗ ω
ξ(s) = L · s

(II.2.114)

where ω is the R−valued connection 1−form related to s, and L ∈ C∞(M) a smooth
function, also depending on the choice of s, then we want

ξ(s⊗ ω) = ∇(L · s) (II.2.115)

we can use the derivation properties of ∇ and ξ to obtain

ξ(s)⊗ ω + s⊗ Lξω = s⊗ dL+ L∇s (II.2.116)

substituting once again the terms II.2.114, ξ(s)⊗ω and L∇s coincide, and we are left with
the condition

Lξω = dL (II.2.117)

Now the plan is to find an equivariant extension for c1 - that is, for the curvature -, in order
to be able to apply the localization theorem. Such an extension has the form

ceq1 = Ω + ξ ⊗ f (II.2.118)

for some function f . The function should be equivariant, and we also need the form to be
closed: this amounts to the equations {

df(ξ) = 0
ιξΩ = df

(II.2.119)

a closer look at the second one yields

df = ιξΩ = ιξdω = Lξω − dιξω = d(L− ιξω) (II.2.120)
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which suggests f = L− ιξω. This expression is just local, but it behaves well with respect to
a coordinate change: given L′, ω′ relative to another generating section s′, let a : M → S1

the function such that s = as′. Then the transformation laws read{
L′ = ιξd(ln(a)) + L

ω = d(ln(a)) + ω′
(II.2.121)

and we see that f , as a whole, does not depend on the chosen section. Lastly,

df(ξ) = (dL− dιξω)(ξ) = (ιξdω)(ξ) = 0 (II.2.122)

and an equivariantly closed extension of the first Chern class is given by

ceq1 = Ω + ξ ⊗ (L− ιξω) (II.2.123)

Assume that the S1−action on M has discrete fixed point, let dimM = 2n. Then localiza-
tion yields ∫

M

Ωn

n! e
fξ =

∑
p∈P

ef(p)ξ

ep(ξ)
(II.2.124)

the ep(ξ) are polynomials of degree n over R[ξ]: we may express them as εpξn, with εp ∈ R.
By considering the series expansion of the exponential and equating terms independent by
ξ, we obtain a localization formula for the first Chern class:∫

M
cn1 =

∑
p∈P

fn(p)
εp

(II.2.125)

II.2.8. Generalized flag manifolds
In this last section, we develop a formula for computing the volume of generalized flag man-
ifolds; these objects can be used to classify certain kinds of homogeneous Kähler manifolds.
We rapidly go through the necessary definitions:

Definition II.2.8.1. A complex manifold M of dimension n is a topological space M with
a complex atlas {(Uα, φα)}α, where the Uα’s are open sets covering M , and each φα’s is a
function from Uα to Cn such that the transition functions are biholomorphic.

The canonical almost complex structure on M is the smooth section J of Hom(TM, TM)
defined as follows: for every z ∈M , we find local coordinates (x1 + iy1, . . . , xn+ iyn), which
induce a basis on TzM ; we set Jz( ∂

∂xi
|z) = ∂

∂yi
|z

Jz( ∂
∂yi
|z) = − ∂

∂xi
|z

(II.2.126)

and extend linearly. The section is seen to be well-defined globally applying the Cauchy-
Riemann conditions to the transition functions.

The concept of Kähler manifold brings together the structures of Riemannian, complex
and symplectic manifold, in a compatible fashion:
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Definition II.2.8.2. A Kähler manifold (M,ω) is a complex symplectic manifold such that
the assignment

M 3 x 7→ {TxM × TxM 3 (u, v) 7→ ωx(u, Jxv)} (II.2.127)

defines a Riemannian metric on M . ω is called a Kähler form.

Denote by GM the group of isometries of M : we say that M is a homogenous Kähler
manifold when this action is transitive.
We have the following:

Theorem II.2.8.3. Let M be a compact, simply connected, homogeneous Kähler manifold,
x ∈M . Then

(i) GM is a compact, connected Lie group, and its stabilizer at x is the centralizer of a
torus S in GM ;

(ii) Each orbit M ′ in gM under the adjoint action of GM admits a canonical, G−invariant
complex structure, and a compatible Kähler structure.

(iii) M is isomorphic to some orbit M ′ as a homogeneous complex manifold.

Proof. See [8].

Remark II.2.8.4. The theorem hints at the fact that the quotient G/C(S) can always be
identified an adjiont orbit of G. This is the case: see [3, p. 95].

These spaces are exactly the generalized flag manifolds we mentioned in the beginning:

Definition II.2.8.5. Let G be a compact, connected Lie group, S a torus of G and C(S)
its centralizer. The quotient G/C(S) is called a generalized flag manifold, and just a flag
manifold if S is a maximal torus of G.

The first nice property concerns the fixed point set:

Theorem II.2.8.6. Let G/C(S) be a generalized flag manifold, T a maximal torus of G.
Then the left action of T

t : gC(S) 7→ tgC(S) (II.2.128)

has finitely many fixed points.

Proof. Suppose [x] is a fixed point. Then

txC(S) = xC(S), ∀t ∈ T (II.2.129)

or equivalently
x−1Tx ⊆ C(S) (II.2.130)

Observe that C(S) and G have the same rank: in fact, S is contained in some maximal
torus, which we may set as T , and clearly ts = st ∀t ∈ T, s ∈ S: thus T ⊆ C(S). But
clearly rankG > rankC(S), hence the claim.
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Observe that if the action of a maximal torus T has finitely many fixed point, so does the
action of any other maximal torus T ′: in fact the two are conjugated by some g ∈ G (see
II.1.6.3), and there is a 1 : 1 correspondence between their fixed points:

txC(S) = xC(S) ∀t ∈ T
m

t′gxC(S) =gxC(S) ∀t′ ∈ T ′
(II.2.131)

then we may as well show our claim for a torus T containing S.
If [x] is a fixed point, both T and x−1Tx are maximal tori in C(S), so that for some

u ∈ C(S) it holds (xu)−1T (xu) = T : that is, xu belongs to NG(T ), the normalizer of T in
G; on the other hand, if xC(S) contains an x′ ∈ NG(T ) we obtain

(x′)−1Tx′C(S) ⊆ TC(S) ⊆ C(S) (II.2.132)

so that [x] is a fixed point of the action. We showed:

[x] is a fixed point ⇐⇒ ∃x′ ∈ NG(T ) : x′ ∈ [x] (II.2.133)

We want to refine this result. Suppose that [x] contains two elements a, b ∈ NG(T ): since
aC(S) = bC(S), we have b−1a ∈ C(S), and

(b−1a)−1tb−1a = a−1btb−1a = t′ ∈ T, ∀t ∈ T (II.2.134)

that is, b−1a ∈ NC(S)(T ). For the converse, observe that NC(S)T is contained in C(S): if
a, b ∈ NG(T ) satisfy b−1a ∈ NC(S)(T ), it must be [a] = [b] ∈ G/C(S). Since T is a subgroup
of both, we have an isomorphism

NG(T )/NC(S)(T ) 'W (G)/W (C(S)) (II.2.135)

where W (G), W (C(S)) denote the Weyl groups of G and C(S). Observe that C(S) is
connected, since we may realize it as the union of all maximal tori containing S: we already
showed that all such tori are contained in C(S), moreover every element of C(S) must be
contained in one of its maximal tori, all of which contain S. It is clear that C(S) is compact,
thus W (G) and W (C(S)) are finite: see II.1.6.4.
We obtained a bijection

{fixed points of the T−action} ↔W (G)/W (C(S)) (II.2.136)

where the set on the right hand side is finite as coset space of a finite group.

We have an immediate corollary:

Corollary II.2.8.7. Generalized flag manifolds are even dimensional.

Proof. Thanks to the theorem, the action has at least one fixed point x0. The action of T
at the tangent space of x0 doesn’t fix any vector: then the tangent spaces splits as the sum
of T−invariant 2−dimensional vector spaces.

In view of the theorem, we give the following definition:
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Definition II.2.8.8. Let M = G/C(S) be a generalized flag manifold with fixed points
{x0, . . . , xn}. The Weyl set F(M) = {e, g1, . . . , gn} of M is the coset of the Weyl groups of
C(S) in the one of G:

F(M) = W (G)/W (C(S)) (II.2.137)

with xi = gi · x0.

Remark II.2.8.9. (i) F(M) does not inherit, in general, a group structure from W (G):
W (C(S)) is not a normal subgroup. The assignment gi 7→ gi · x0 mentioned in the
definition is, however, well defined;

(ii) If we regard M as an adjoint orbit AdG x0 on g, we get an assignment

F(M)→M : [g] 7→ Adg x0 (II.2.138)

so that xi = Adgi x0;

(iii) Consider the case of a flag manifold, S = T . Maximality of T implies C(T ) = T , so
that M = G/T , and F(M) = W (G): in this case, the theorem immediately yields the
number of fixed points and their position in the manifold!

Our ultimate goal is to apply the localization theorem to these generalized flag manifolds,
simplifying computations as much as possible: it is therefore natural to ask whether the
previous result tell us something in term of the equivariant Euler classes ei at the fixed
points xi, i = 0, . . . , n.
Regard M as an adjoint orbit of G, M = AdG x0 for x0 ∈ g: remember that these classes

are given - up to a factor (2π)n - by the determinant of the map

t→ End(TxiM) (II.2.139)

Explicitly, for a path γ with at xi:

X 7→ d
dt |0

d
dτ |0 AdetX γ(τ) = d

dτ adX γ(τ) (II.2.140)

that is
X 7→ [X, ·] (II.2.141)

For gi ∈ F(M), xi = Adgi x0, we have a commuting diagram:

t - End(Tx0M)

Adg t
?

- End(TxiM)
?

(II.2.142)

in fact the adjoint action is a Lie algebra homomorphism, so that

[AdgX, ·] = Adg[X,Ad−1
g (·)] (II.2.143)

the equivariant class ei of xi is then given by the determinant of

t→ End(Tx0M) : X 7→ [Adgi X, ·] (II.2.144)
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Lastly, the tangent space at x0 may be identified with g/gx0 , gx0 denoting the Lie algebra of
the stabilizer (see proof of II.2.9.4): this is particularly useful in computations, which boil
down to the action of T on g. We provide an example at the end of the section, computing
the volume of CPn.
All in all, we obtain a polynomial over t, which we denote by det ([Ad−1

gi t, ·]). We proved:

Lemma II.2.8.10. Let G/C(S) ' AdG x0 be a 2n−dimensional, orientable generalized flag
manifold, T a maximal torus of G. Let x0, . . . , xn be the fixed points of the T−action and
denote by ei the equivariant Euler class of

p : Txi(G/C(S))→ {xi} (II.2.145)

Then

ei =
det ([Ad−1

gi t, ·])
(2π)n (II.2.146)

for the corresponding gi’s in F(G/C(S)).

II.2.9. The semisimple case
In the end we want to be able to compute the volume of G/C(S) from the localization
theorem. We are working on symplectic manifold, then we must be sure that the torus
action we are considering is not only symplectic, but actually Hamiltonian: only then (see
II.2.2.1) we can find an equivariant extension of the symplectic form.
Let’s work in this direction: when discussing existence and uniqueness of moment maps,

we saw that groups having H1(g;R) = H2(g;R) = 0 were always granted a unique moment
map. Although it will result in a loss of generality, we will see that this is quite a convenient
choice to make: start by defining the Killing form of a Lie algebra, and the related concept
of semisimple Lie group:

Definition II.2.9.1. (i) The Killing form of a Lie algebra g is the bilinear form

K : g× g→ R : (X,Y ) 7→ tr(adX · adY ) (II.2.147)

(ii) A Lie group G is called semisimple if the Killing form of its Lie algebra is non-
degenerate.

Remark II.2.9.2. (i) The Killing form is invariant under the adjoint representation:

K(AdgX,Adg Y ) = K(X,Y ), ∀g ∈ G (II.2.148)

To see this, observe that

Adg(adX(Y )) = Adg[X,Y ] = [AdgX,Adg Y ] = adAdg X(Adg(Y )) (II.2.149)

and apply the definition of Killing form:

K(AdgX,Adg Y ) = tr(adAdg X · adAdg Y )
= tr(Adg · adX ·Adg−1 Adg adY ·Adg−1)
= tr(Adg−1 ·Adg · adX · adY ) = tr(adX · adY ) = K(X,Y )

(II.2.150)
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(ii) For a semisimple Lie group, this gives an isomorphism Φ between g and g∗, via

g 3 X 7→ K(X, ·) ∈ g∗ (II.2.151)

This isomorphism respects the G−action, so that the adjoint and coadjoint represen-
tation are isomorphic:

Φ(AdgX) = K(AdgX, ·) = K(X,Adg−1(·)) = Ad∗g(K(X, ·)) = Ad∗g Φ(X) (II.2.152)

There is an alternative way of characterizing semisimple Lie groups (see [13, p. 167]):

Theorem II.2.9.3 (Whitehead Lemmas). Let G be a compact Lie group. Then G is semisim-
ple if and only if H1(g;R) = H2(g;R) = 0.

Then our criterion for existence and uniqueness of a moment map yields equivalence of
adjoint and coadjoint representation for free. Now, we saw before that the generalized flag
manifold M we’re interested in can be identified with orbits of the adjoint representation
of G - but orbits of the coadjoint representation happen to have a lot of nice properties,
which we’ll now describe, and at the end of the day we will transfer everything back to M .
Advantages will become apparent.

Proposition II.2.9.4. Let M ⊂ g∗ be an orbit of the coadjoint representation of G. Then
the 2−form ω defined by

ω(ξ)(X,Y ) = ξ([X,Y ]), ∀ξ ∈M, X, Y ∈ Tξ(M) (II.2.153)

where X,Y are the fundamental vector fields associated to X and Y , is a symplectic form
on M .

Proof. It is clear that ω is bilinear and alternating; we need to show that it is non-degenerate
and closed.
Before we start, let us have a closer look at the tangent space of M at ξ. Consider

the differential in 0 of the map from G to M which sends g to g · ξ; if we denote by Gξ
the stabilizer of ξ, we obtain an isomorphism differentiating in 0 the induced map on the
quotient:

g/gξ ' TξM (II.2.154)

this map sends an element X + gξ to ad∗X(ξ), and we will see ad∗X(ξ) = Xξ. Thus, equation
II.2.153 uniquely defines ω.
Non-degeneracy. Differentiating the identity Ad∗exp(−tX) ξ(Y ) = ξ(Adexp(tX) Y ) in zero we

get ( d
dt |0 Ad∗exp(−tX) ξ

)
(Y ) = ξ(adX Y ) = ξ([X,Y ]) = ω(ξ)(X,Y ) (II.2.155)

then we can identify the kernel of ω(ξ) with the Lie algebra gξ ⊂ g of the stabilizer of ξ.
But we saw TξM ' g/gξ, hence the form is non-degenerate.
Closedness. The tangent space at any point is generated by the fundamental vector fields

of the action. These have the form

Xξ = d
dt |0 Ad∗exp(tX) ξ = ad∗X(ξ) (II.2.156)
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by linearity, it is sufficient to check closedness of the fundamental vector fields:

(dω)(ξ)(X,Y , Z) =−X(ξ[Y,Z]) + Y (ξ[X,Z])− Z(ξ[X,Y ])
+ ξ([[X,Y ], Z])− ξ([[X,Z], Y ]) + ξ([[Y,Z], X])

=− ξ([[Y,Z], X]) + ξ([[X,Z], Y ])− ξ([[X,Y ], Z])
+ ξ([[X,Y ], Z])− ξ([[X,Z], Y ]) + ξ([[Y,Z], X]) = 0

(II.2.157)

where we used [ad∗X , ad∗Y ] = ad∗[X,Y ].

Remark II.2.9.5. The construction of ω only relies on the Lie bracket on g: we will refer to
ω as the canonical symplectic form on M .

Observe that this symplectic form is G−invariant by construction, so that we get a unique
moment map for free. What does it look like? And: can we derive one for the torus action?

Proposition II.2.9.6. Let (M,ω) be an orbit of the coadjiont representation, equipped with
its canonical symplectic form. Then the action of T on (M,ω) is Hamiltonian, with moment
map

ϕ : M ↪→ g∗ � t∗ (II.2.158)

Proof. First, we show that the orbit inclusion φ : M ↪→ g∗ is the moment map for the
G−action. Indeed, the related comoment map φ̂ should be a Lie algebra homomorphism
making the diagram commute:

C∞(M) �φ̂ g

Hloc(M)
?

- H(M)
?

(II.2.159)

the vertical arrow on the right associates X with its fundamental vector field ad∗X ; the image
of X along the other path can be computed in two steps:

(i) X 7→ φ̂(X) = {ξ 7→ φ(ξ)(X) = ξ(X)}, the evaluation map at X;

(ii) Solve the equation d(φ̂(X)) = ιY ω: as before, it suffices to evaluate the expression on
fundamental vector fields, and we may as well write Y as a fundamental vector field
Y . We get:

ξ([Z,X]) = ad∗Z(ξ)(X) = dφ̂(ξ)(Z) = ω(Z, Y ) = ξ([Z, Y ]) (II.2.160)

so that Y = ad∗X(ξ).

Then the diagram commutes. It is also clear that φ̂ is a Lie algebra homomorphism:

φ̂([X,Y ])(ξ) = ξ([X,Y ]) = ωξ(X,Y ) = {φ̂(X), φ̂(Y )} (II.2.161)

The thesis follows observing that a comoment map for the T−action is given by

C∞(M) �φ̂ g �
ι
⊃ t

Hloc(M)
?

- H(M)
?�

(II.2.162)



86 II. The localization theorem and its consequences

where ι is induced from an inclusion T → G and the diagonal map is defined by commuta-
tivity. It is then clear that ϕ̂ = φ̂ · ι is a comoment map; the related moment map is exactly
the one in the statement of the proposition.

Look at the image of the fixed point set through the moment map:

Corollary II.2.9.7. Let (M,ω) be an orbit of the coadjiont representation, equipped with its
canonical symplectic form. Consider the Hamiltonian action of a maximal torus T with the
moment map ϕ described in II.2.9.6 and fixed point set F . Then

(i) ϕ|F = id;

(ii) ϕ(M) is the convex hull of F in t∗.

Proof. Ad (i). We just need to show that F ⊆ t∗. Denote the Killing form on g by 〈·, ·〉,
recall there is an isomorphism

g 3 X 7→ 〈X, ·〉 ∈ g∗ (II.2.163)

Pick 〈x0, ·〉 ∈ F . We have the relation

Ad∗etX 〈x0, ·〉 = 〈x0, ·〉 ∀X ∈ t (II.2.164)

which we can differentiate to obtain

〈x0, [·, X]〉 = 0 ∀X ∈ t (II.2.165)

invariance of the Killing form implies [x0, X] = 0 ∀X ∈ t; by maximality, x0 ∈ t. Then
〈x0, ·〉 ∈ t∗, and the thesis follows.

Ad (ii). We make use of the following theorem from Konstant (as quoted in [4]):

Theorem II.2.9.8. The orthogonal projection of an adjoint orbit of G in t is given by the
convex hull of the corresponding W (G)−orbit in t.

We can refine the result by applying II.2.8.6; given an adjoint orbit adG x0, we know that
x0 is a fixed point of the T−action and that the Weyl group of G acts transitively on the
fixed point set. Then the W (G)−orbit coincides with the fixed point set, and identification
of adjoint and coadjoint representation proves the claim.

Putting everything together, we can state our main result. A definition:

Definition II.2.9.9. LetM = G/C(S) be a generalized flag manifold. We callM semisimple
if G is.

Theorem II.2.9.10. Let (M,ω) ' AdG x0 be a semisimple, orientable generalized flag man-
ifold of dimension 2n together with its canonical symplectic form, F(M) its Weyl set. Then

volω(M) = (−2π)n
n!

∑
gi∈F(M)

xni
det ([Adgi t, ·])

(II.2.166)

where xi = gi · x0.
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Proof. Let us clarify the meaning of xni . Recall that we obtain an equivariant extension of
ω by subtracting the moment map,

ωeq = ω − ϕ (II.2.167)

more formally: set l = rank(G), we consider the components ϕj of ϕ : M → t∗ ' Rl and
the related basis θ1, . . . , θl of t∗; we then have

ωeq = 1⊗ ω −
l∑

j=1
θj ⊗ ϕj (II.2.168)

In our case the moment map restricts to the identity on the fixed point set. Let xi =
(x1
i , . . . , x

l
i), then we denote

xni =

 l∑
j=1

θj ⊗ xji

n (II.2.169)

Now, localize with respect to the action of a maximal torus. We have:

πM∗ ω
n
eq =

∑
i

πi∗

(
ι∗iω

n
eq

ei

)
(II.2.170)

where the sum on the right ranges over the connected components of the fixed point set.
As we already saw in the proof of II.2.2.3, πM∗ only sees the 2n−form component, whereas
when the fixed point set is discrete ι∗i only saves the 0−form components; moreover, the
fixed point set coincides with the Weyl set of M . We immediately obtain∫

M

ωn

n! = 1
n!

∑
x∈F(M)

(−xi)n
exi

(II.2.171)

apply II.2.8.10 to conclude the proof.

The theorem can be generalized to homogeneous Kähler manifolds. We have the following:

Proposition II.2.9.11. Let (M,ω) be a homogeneous Kähler manifold on which the isometry
group G acts in Hamiltonian fashion, x ∈M , ϕ : M → g∗ a moment map for the action.

Then ϕ(M) = Ad∗G ϕ(x), and ϕ is a symplectomorphism with respect to the canonical
symplectic form ω̂ on Ad∗G ϕ(x).

Proof. The moment map is equivariant with respect to the coadjiont action on g∗ (see [6,
p. 54]), and it is injective (see [20, p. 40]), so that we can identify ϕ(M) with an orbit
Ad∗G ϕ(x) ⊂ g∗. Let us show that it respects the symplectic forms: denote by ψ : g →
C∞(M) the comoment map of the action derived from ϕ, and let ξf be the Hamiltonian
vector field related to f ∈ C∞(M), i.e.

ιξfω = df (II.2.172)

then on the one hand
ω(X,Y ) = ω(ξψ(X), ξψ(Y ))

= {ψ(X), ψ(Y )}
= ψ[X,Y ] = ϕ(·)([X,Y ]), ∀X,Y ∈ g

(II.2.173)
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on the other hand
(ϕ∗ω̂)(X,Y ) = ϕ(·)([ϕ∗X,ϕ∗Y ]), ∀X,Y ∈ g (II.2.174)

so it suffices to show ϕ(·)[X,Y ] = ϕ(·)[ϕ∗X,ϕ∗Y ], ∀X,Y ∈ g. Recall that equation II.2.174
only makes sense under the identification

g/gϕ(x) →' Tϕ(x)ϕ(M) : X 7→ X (II.2.175)

with gϕ(x) the Lie algebra of the stabilizer of ϕ(x); similarly, TxM ' g/gx, and equivariance
of ϕ implies Gx ' Gϕ(x) =: H. We get a commutative diagram

g/h

TxM
ϕ∗
-

�
Tϕ(x)ϕ(M)

- (II.2.176)

in other words, [ϕ∗X,ϕ∗Y ] =
[
X,Y

]
, where X is the fundamental vector field related to X

in ϕ(M). Then, taking into account II.2.175,

ϕ(·)([ϕ∗X,ϕ∗Y ]) = ϕ(·)
[
X,Y

]
= ϕ(·)[X,Y ] (II.2.177)

which concludes the proof.

This yields a generalization of II.2.9.10:

Corollary II.2.9.12. Let (M,ω) be a simply connected, homogeneous 2n−dimensional Kähler
manifold on which the semisimple isometry groupG acts in Hamiltonian fashion, ϕ : M → g∗

a moment map for the action.
Then

volω(M) = (−2π)n
n!

∑
gi∈F(ϕ(M))

xni
det ([Adgi t, ·])

(II.2.178)

Proof. Since ϕ is a symplectomorphism,

volω(M) =
∫
M

ω

n! =
∫
M

ϕ∗(ω̂)
n! =

∫
ϕ(M)

ω̂

n! = volω̂(ϕ(M)) (II.2.179)

where ω̂ is the canonical symplectic form on ϕ(M). From II.2.8.3, we know M ' G/C(S)
as a complex manifold, hence ϕ(M) ' G/C(S) and we can apply II.2.8.6 to conclude that
the action of a maximal torus has a finite number of fixed points F(ϕ(M)); the action of the
torus is Hamiltonian with respect to the canonical symplectic form, and has the moment
map of II.2.9.6.
Now we can proceed as in the proof of II.2.9.10 to localize the volume of ϕ(M) and obtain

the thesis.
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II.2.10. The volume of CP n

We apply the theory we developed to compute the volume of the complex projective space
in any dimension.

The first step is to identify the complex projective space with a generalized flag manifold.
We take a little detour, and consider the adjoint action of U(n + 1) on u(n + 1): the Lie
algebra may be identified with the space iH of skew-hermitian matrices, so that the orbits
are just labelled by a set (λ1, . . . , λn+1) of eigenvalues; every matrix in the orbit splits Cn+1

into mutually orthogonal C−vector spaces according to their multiplicity.
The idea is to pick the orbit of the matrix

I =


1 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 0 0

 (II.2.180)

denoted by HI . Each of the matrices in this orbit have the effect of singling out a C−line in
Cn+1: given homogeneous coordinates l = [z1 : · · · : zn+1] for a line with z1, . . . , zn+1 6= 0,
the related matrix reads

Ml = 1
n+ 1


1 z2/z1 z3/z1 . . . zn+1/z1

z1/z2 1 z3/z2 . . . zn+1/z2
z1/z3 z2/z3 1 . . . zn+1/z3

...
...

... . . . ...
z1/zn+1 z2/zn+1 z3/zn+1 . . . 1

 (II.2.181)

if some of the zi’s are zero, we get Ml by setting to zero all the components involving the
related zi’s and the 1 in the (i, i) position. The prefactor should be changed to 1/m, where
m is the number of non-zero zi’s; notice that this number is always strictly positive, so that
everything is well defined. We can identify the orbit with CPn, seen as the space of C−lines
in Cn+1.
Now, if U(n+1) were semisimple, we could identify this orbit with an orbit of the coadjoint

action, and get a symplectic structure on CPn: this is not the case - the Killing form is
degenerate - but there is another form which is not. Since u(n + 1) is already made up of
matrices, we can naïvely just pick

(X,Y ) 7→ tr(XY ) (II.2.182)

this brings us back in business: this pairing is non-degenerate, and clearly adioint-invariant.
We get an isomorphism u(n + 1) ' u(n + 1)∗, with which we regard elements of u(n + 1)∗
as maps tr((·)X), with X ∈ u(n + 1). We use II.2.9.4 and this identification to obtain a
symplectic form on the adioint orbit:

ω(Z)(X,Y ) = tr([X,Y ]Z), X, Y ∈ TZI (II.2.183)

where X = adX , Y = adY are the fundamental vector fields related to X and Y (see
II.2.156). Now consider the action of a maximal torus: we get automatically a moment map
from II.2.9.6:

ϕ : I ↪→ u(n+ 1)∗ � t∗ (II.2.184)
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we may pick the maximal torus to be

T = {diag[eiθ1 , . . . , eiθn+1 ]} ⊂ U(n+ 1) (II.2.185)

Then the moment map just projects a matrix to its diagonal elements. So far we obtained
an Hamiltonian action of T on CPn, explicitly describing its moment map; now let’s have
a look at its fixed points.
We can realize HI as a coset U(n + 1)/C(S) for a 1−dimensional torus. Indeed, the

stabilizer of I is given by
{A ∈ U(n) : AdA I = I } (II.2.186)

which we can exponentiate to

{A ∈ U(n) : AetI = etIA, t ∈ R} = C({etI : t ∈ R}) (II.2.187)

Set SI = {etI : t ∈ R}. Elements of this torus have the form

K =


eiφ 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 0 1

 (II.2.188)

for some φ ∈ R. We’ll compute C(SI ) as the union of the maximal tori including SI after
determining the set of fixed points.
We know that the fixed points are in bijection withW (U(n+1))/W (C(SI )), in particular

they can be no more than W (U(n + 1)). The elements of W (U(n + 1)) = Sn+1, n + 1 are
symmetric permutations: when acting on I , all they do is sending the 1 somewhere else
along the diagonal, so that different elements of W (U(n + 1)) sending the 1 in I to the
same point are identified. This is the effect of the W (C(SI ))−quotient.
The fixed points of the action correspond in homogeneous coordinates to the lines

[1 : 0 : 0 : · · · : 0 : 0], [0 : 1 : 0 : · · · : 0 : 0], . . . , [0 : 0 : 0 : · · · : 0 : 1] (II.2.189)

We have everything we need to apply theorem II.2.9.10 and compute the volume of CPn.
As a warm-up, we work out the cases n = 1 and n = 2:

(n = 1) The fixed points are [1 : 0] and [0 : 1]. If θ1 and θ2 are coordinates on the maximal
torus II.2.185, the equivariant extension of the given symplectic form is

ωeq = ω − θ1 ⊗ ϕ1 − θ2 ⊗ ϕ2 (II.2.190)

So that the image of the first fixed point is θ1, that of the second θ2.
The equivariant Euler classes are computed by considering the action of the torus on
the bundle of frames over the fixed points. In this case, it suffices to consider the
action on the tangent spaces; we saw in the proof of II.2.9.4 that

TξHI ' u(2)/u(2)ξ (II.2.191)
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where u(2)ξ is the Lie algebra of the stabilizer of ξ. For the first fixed point, ξ =
[
1 0
0 0

]
,

the stabilizer is C(SI ). Since

SI = {diag [eiφ, 1], φ ∈ R} (II.2.192)

The union of maximal tori containing it is just the one we are already considering,

and elements of u(2)/u(2)ξ are represented by equivalence classes
[
0 z
z̄ 0

]
The adjoint

action of the torus on these elements can be computed:

Addiag [θ1,θ2]

[
0 z
z̄ 0

]
=
[

0 zei(θ2−θ1)

z̄ei(θ1−θ2) 0

]
(II.2.193)

if we identify a frame with an element z 6= 0, the action of T on frames is just

z 7→ zei(θ2−θ1) (II.2.194)

The bundle is 1−dimensional, and it is acted upon by U(1): this means that the
inclusion of T in U(1) is given by

T → U(1) : (eiθ1 , eiθ2) 7→ ei(θ2−θ1) (II.2.195)

on the level of Lie algebras this is just (θ1, θ2) 7→ θ2 − θ1, the equivariant Euler class
is the determinant of this number - the number itself! - times 1/2π.
The second fixed point is linked to the first by the action of an element of the Weyl
group:

η =
[
0 0
1 0

]
= Ad[0 1

1 0

] [1 0
0 0

]
(II.2.196)

So we can compute the action as prescribed from II.2.8.10:

Ad[0 1
1 0

]Addiag [θ1,θ2]

([
0 z
z̄ 0

])
= Addiag [θ2,θ1]

([
0 z
z̄ 0

])

=
[

0 zei(θ1−θ2)

z̄ei(θ2−θ1) 0

] (II.2.197)

and get the equivariant Euler class θ1 − θ2. Applying theorem II.2.9.10 now yields

vol(CP 1) = −2π
(

θ1
θ2 − θ1

+ θ2
θ1 − θ2

)
= 2π (II.2.198)

(n = 2) The fixed points are [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], their images under the moment
map respectively θ1, θ2, θ3.
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The bundle of frames over the fixed points here is more complicated, since the tangent
space has complex dimension 2. Look at g/gξ for

ξ =

1 0 0
0 0 0
0 0 0

 (II.2.199)

The stabilizer is given by the centralizer of the space

S =


eit 0 0

0 1 0
0 0 1

 , t ∈ R

 (II.2.200)

The centralizer is the union of maximal tori containing S. There are two of them:

T1 =


eit1 0 0

0 eit2 0
0 0 eit3

 , ti ∈ R

 , T2 =


eit1 0 0

0 eit2 eit3

0 eit3 eit2

 , t ∈ R

 (II.2.201)

so that elements of u(2)/u(2)ξ are represented by equivalence classes 0 z1 z2
z̄1 0 0
z̄2 0 0

 (II.2.202)

The adjoint action of the torus on these elements can be computed, similarly as before:

Addiag [θ1,θ2,θ3]

 0 z1 z2
z̄1 0 0
z̄2 0 0

 =

 0 z1e
i(θ2−θ1) z2e

i(θ3−θ1)

z̄1e
i(θ1−θ2) 0 0

z̄2e
i(θ1−θ3) 0 0

 (II.2.203)

if we identify a frame with a pair (z1, z2) 6= 0, the action of T on frames is given by[
z1
z2

]
7→
[
z1e

i(θ2−θ1)

z2e
i(θ3−θ1)

]
(II.2.204)

and this means that the inclusion of T in U(2) is given by

T → U(2) : (eiθ1 , eiθ2 , eiθ3) 7→
[
ei(θ2−θ1) 0

0 ei(θ3−θ1)

]
(II.2.205)

on the level of Lie algebras this is

(θ1, θ2, θ3) 7→
[
θ2 − θ1 0

0 θ3 − θ1

]
(II.2.206)

the equivariant Euler class is the determinant of this matrix times (2π)−2:

e[1:0:0] = (θ2 − θ1)(θ3 − θ1)
4π2 (II.2.207)
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The strategy for computing the action on the other fixed points is similar as before.
The point [0 : 1 : 0] is linked to [1 : 0 : 0] by

η =

0 0 0
0 1 0
0 0 0

 = Ad0 1 0
1 0 0
0 0 1


1 0 0

0 0 0
0 0 0

 (II.2.208)

And we can compute the action as in II.2.197, obtaining

Addiag [θ1,θ2,θ3]

 0 z1 z2
z̄1 0 0
z̄2 0 0

 =

 0 z1e
i(θ1−θ2) z2e

i(θ3−θ2)

z̄1e
i(θ2−θ1) 0 0

z̄2e
i(θ2−θ3) 0 0

 (II.2.209)

and get the equivariant Euler class

e[0:1:0] = (θ1 − θ2)(θ3 − θ2)
4π2 (II.2.210)

The spirit of the computation should have now become clearer: we use the isomorphism
from the tangent space of the base point to g/gξ to compute the adjoint action of T ,
we express it on frames and then we move it to the other points; this is equivalent
to permuting the coordinates θi’s of T .The equivariant Euler class for the last fixed
point is obtain by permuting θ1 with θ3:

e[0:0:1] = (θ2 − θ3)(θ1 − θ3)
4π2 (II.2.211)

We can apply our formula again:

vol(CP 2) = 4π2

2

(
θ2

1
(θ2 − θ1)(θ3 − θ1) + θ2

2
(θ1 − θ2)(θ3 − θ2) + θ2

3
(θ1 − θ3)(θ2 − θ3)

)

= 2π2
(
θ2

1(θ2 − θ3)− θ2
2(θ1 − θ3) + θ3

2(θ1 − θ2)
(θ1 − θ2)(θ2 − θ3)(θ1 − θ3)

)
= 2π2

(II.2.212)

Now we can describe the computation for the general case. Pick the base point

I =


1 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 0 0

 (II.2.213)

its tangent space can be identified with u(n+ 1)/u(n+ 1)ξ, and the equivalence classes have
representatives 

0 z1 z2 . . . zn
z̄1 0 0 . . . 0
z̄2 0 0 . . . 0
...

...
... . . . ...

z̄n 0 0 . . . 0

 (II.2.214)



94 II. The localization theorem and its consequences

The action of an element diag [θ1, . . . , θn+1] brings elements of this form to
0 z1e

i(θ2−θ1) z2e
i(θ3−θ1) . . . zne

i(θn+1−θ1)

z̄1e
−i(θ2−θ1) 0 0 . . . 0

z̄2e
−i(θ3−θ1) 0 0 . . . 0
...

...
... . . . ...

z̄ne
−i(θn+1−θ1) 0 0 . . . 0

 (II.2.215)

Then the action on frames is again diagonal. This leads to the equivariant Euler class

e[1:0:···:0] = (θ2 − θ1)(θ3 − θ1) . . . (θn+1 − θ1)
(2π)n (II.2.216)

To compute the other equivariant Euler classes, we just exchange θ1 with θn, where n is the
position of the 1 in the coordinates of the fixed point [0 : · · · : 0 : 1 : 0 : · · · : 0]. If we label
the fixed points by xi, i = 1, . . . , n+ 1, according to the position of the 1,we may write

ei =
Πn+1
j=1,j 6=i(θj − θi)

(2π)n (II.2.217)

and applying theorem II.2.9.10 and taking the LCD yields

vol(CPn) = (−2π)n
n!

∑n+1
k=1(−1)n+1−kθnk (Πn+1

i,j=1, i<j, i,j 6=k(θj − θi))
Πn+1
i,j=1, i<j(θj − θi)

(II.2.218)

Look at the denominator. The term with coefficient θnk , for any given k, is

(−1)k−1θnkΠn+1
i,j=1, i<j, i,j 6=k(θj − θi) (II.2.219)

then the ratio simplifies to (−1)n, and we get

vol(CPn) = (−1)2n

n! (2π)n = (2π)n
n! (II.2.220)

Remark II.2.10.1. Taking ω′ = ω
2 we obtain vol(CPn) = πn

n! , the volume according to the
Fubini-Study metric.

II.2.11. Root decomposition and localization
In this section we will use the root decomposition of semisimple Lie groups to describe their
generalized flag manifolds and compute their volume.

Before starting to introduce the necessary notions, we explain the spirit of the venture. As
we saw in the previous section, it is in general not easy to provide an accessible description
of the centralizer C(S) of a torus. The data we need to extract is:

1. its Weyl group, in order to determine precisely the Weyl set;

2. its Lie algebra, in order to compute the equivariant Euler classes.
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the second token of information is just local, and we’ll see that also the Weyl group can
be described in a Lie algebra setting. The bottom line is that a geometric description is
not only more convolute than a local description, it’s also more than what we need: in this
section we analyze the problem from the local point of view, where semisimple Lie groups
give their best.

The concept of root traces back essentially to the linear algebra construction of eigenvalues
and eigenvectors; we want to generalize the idea of splitting a vector space into the sum
of eigenspaces of a given operator to Lie algebras: as we will see, everything boils down to
diagonalizing matrices, and that’s why the preferred setting is that of complex Lie groups -
diagonalizing over C is way easier.

Definition II.2.11.1. Let G be a semisimple Lie group, T a maximal torus of G, g, t the
respective Lie algebras. Then

(i) gC = g⊗R C is the complexification of g;

(ii) tC = t⊗R C ⊆ gC is the Cartan subalgebra of gC relative to t.

In the following, we denote k = gC, h = tC.

We have a family of skew self-adjoint operators on k:

{adh : k→ k : h ∈ h} (II.2.221)

each of them can be diagonalized, and the commutator on h vanishes by construction, so
that they can be simultaneously diagonalized. We obtain a set of eigenvectors Eα, and for
each Eα an assignment α : h→ C which sends h ∈ h into the eigenvalue of adh for Eα.

Definition II.2.11.2. Let G be a semisimple Lie group, T a maximal torus of G, g, t the
respective Lie algebras.
We call Eα ∈ k a root vector of k with respect to h if

adh(Eα) = iα(h)Eα ∀h ∈ h (II.2.222)

for some α ∈ h∗. If α 6= 0, we call it a root.

Remark II.2.11.3. (i) Consider the case α = 0 the equation

[h,X] = adh(X) = 0, ∀h ∈ h (II.2.223)

characterizes the X ∈ h, so that we immediately obtain the related eigenspace; k splits
into a direct sum of vector spaces, an expression known as Cartan decomposition:

k = h +
∑
α∈R

Vα (II.2.224)

where R is the set of roots, and Vα = spanCEα;
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(ii) Write h∗ = t∗ + it∗, then R ⊆ t∗. In fact, the fact that adH is a family of skew
self-adjoint operators implies that the eigenvalues be real:

|α(h)|2Eα = ad∗h adh(Eα) = − adh adh(Eα) = (α(h))2Eα (II.2.225)

and the pairing is given by the Killing form 〈·, ·〉, which respects the splitting t∗ + it∗.

(iii) We obtain another characterization of the set of roots:

R̂ = {α ∈ t : 〈α, ·〉 ∈ R} (II.2.226)

we won’t make distinctions between R̂ and R, choosing the most convenient expression
in each setting;

(iv) We started from a real Lie algebra to get a complex one; one may wonder whether all
complex semisimple Lie algebras arise in this way. Indeed, given a complex semisimple
Lie algebra k with the Cartan decomposition II.2.224, we can consider the real Lie
algebra

g = spanR{R}+
∑
α∈R+

spanR{Eα + E−α + i(Eα − E−α)} (II.2.227)

where R+ ⊂ R is constructed by considering the hyperplanes Wα, α ∈ R orthogonal
to each of the roots in R, and picking any vector h in its complement; then

R+ = {α ∈ R : α(h) > 0} (II.2.228)

We have spanC{R} = h, gC = k (see [1, p. 8]); g is called the standard compact real
form of k.

The action of the Weyl group on the Lie algebra, which we use to compute the position
of the fixed points, has a nice expression in terms of the root set:

Theorem II.2.11.4. Let G be a compact, simply connected Lie group. Then G is semisimple,
and the action of its Weyl group on the Lie algebra t of a maximal torus is generated by
the elements

sα : t→ t : X 7→ X − 2〈X,α〉
〈α, α〉

α (II.2.229)

Sketch of the proof. By the Whitehead Lemmas (see II.2.9.3), G is semisimple if and only if
its first and second cohomology groups vanish. Simply connectedness immediately implies
H1(G;R) = 0, while H2(G;R) = 0 follows from a theorem of Hopf (see [17]) which states
that the rational homology ring of a closed Lie group is isomorphic to that of a product of
odd-dimensional spheres.
The proof of the second statement can be found in [15, p. 335]

Remark II.2.11.5. (i) The generators sα have a geometric interpretation in terms of re-
flections through the hyperplane Wα orthogonal to α: it is immediate to check that
sα(α) = −α, and sα(X) = 0 whenever 〈X,α〉 = 0.
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(ii) The elements of
treg = t− ∪α∈RWα (II.2.230)

are called regular. The connected components of treg are the Weyl chambers of R.

The reason why regular elements are so important for us is that they are in the orbits
corresponding to the flag manifold of G, G/T . Before stating a result in this direction, we
want to extend these concepts to bring generalized flag manifolds in the picture.

We explain the idea, following [1]: given a semisimple generalized flag manifold G/C(S),
consider the related Lie algebras g and s. After complexifying, we can find a Cartan subal-
gebra h in gC which is also a Cartan subalgebra for sC, that is, the complexification of the
Lie algebra of a common maximal torus.
C(S) is itself a compact Lie group, and as such, its Lie algebra is reductive, the direct

sum of an Abelian and a semisimple Lie algebra:

s = a + l (II.2.231)

Decompose the semisimple component l as h′+∑α∈R0 Vα. We can pick h′ ⊆ h: the remainder
is exactly the center of sC, which we identify with a. We have

sC = h +
∑
α∈R0

Vα (II.2.232)

Explicitly, a has the form

a = {X ∈ sC : [X, sC] = 0} ⊆ h (II.2.233)

furthermore, observe that the quotient gC/sC can be expressed as

gC/sC =
∑

α∈R−R0

Vα (II.2.234)

these are the roots which identify the generalized flag manifold on the Lie algebra level,
that is, its tangent space at eC(S) - here in the complexified version.
We excluded the information coming from C(S) from the Cartan decomposition of gC;

we want to do something similar for the Weyl group and the Weyl chambers. From the
relation

[h, Vα] = iα(h)Vα ∀α ∈ R (II.2.235)

together with [a, Vα] = 0 ∀α ∈ R0, which holds by construction, we obtain a ⊆ kerα for
all the roots in R0. Since α ∈ t∗, the meaningful information is contained in τ = t ∩ a: by
considering R − R0 we pick the roots excluded from the Cartan decomposition of sC, and
now we consider the portion of domain that the roots in R0 do not see. This leads to the
following definition:

Definition II.2.11.6. Let G/C(S) be a semisimple generalized flag manifold. Following our
notation from above, we call α′ 6= 0 a T−root if α′ = α|τ for α ∈ R.
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Observe that by construction α restricts to a T−root only if α ∈ R−R0: thus, T−roots
are obtained by considering the roots which are left out from the quotient restricted to
the portion of domain left out from from the roots in the quotient. We obtain a restricted
version of the Weyl group and of the Weyl chambers:

Definition II.2.11.7. Let R′ be the set of T−roots of G/C(S). Then

(i) The elements of
τreg = τ − ∪α∈R′Wα (II.2.236)

where Wα is the hyperplane in τ orthogonal to the T−root α, are called T−regular.
The connected components of τreg are the T−Weyl chambers of R′.

(ii) The group generated by

sα : τ → τ : X 7→ X − 2〈X,α〉
〈α, α〉

α, α ∈ R′ (II.2.237)

is called the T−Weyl group of G/C(S).

Remark II.2.11.8. (i) Observe that for the case of a flag manifold G/T , the definitions
above collapse to the usual ones of roots, Weyl chambers and Weyl group;

(ii) If we regard τ as a subset of t, the reflections

sα : τ → τ : X 7→ X − 2〈X,α〉
〈α, α〉

α, α ∈ R′ (II.2.238)

fix the set V0 = ∪α∈R0Vα, and vice versa, a root inducing a reflection which fixes V0
restricts to a T−root.
We can then regard the T−Weyl group as the stabilizer of V0 in the Weyl groupW (G)
of G:

WT = {r ∈W (G) : r|V0 = id} (II.2.239)

We have a result indicating exactly which elements of the Lie algebra generate a given
generalized flag manifold:

Proposition II.2.11.9. LetG/C(S) be a semisimple generalized flag manifold. ThenG/C(S) '
adG t if and only if t ∈ τreg.

Proof. See [1].

A further advantage of the Cartan decomposition is that it diagonalizes the adjoint action
of t:

Lemma II.2.11.10. Let k be a complex semisimple Lie algebra with Cartan decomposition

k = h +
∑
α∈R

Vα (II.2.240)

and the related standard compact real form

g = t + m (II.2.241)
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where t = spanR{R}, m = ∑
α∈R+ spanR{Eα + E−α + i(Eα − E−α)}. Then

det[t, ·] =
∏
α∈R+

α (II.2.242)

for [t, ·] : m→ m.

Proof. We know [h, Eα] = iα(h)Eα ∀h ∈ h, and h = t + it. Then

[t, Eα + E−α + i(Eα − E−α)] = [t, Eα(1 + i)] + [t, E−α(1− i)]
= (1− i)iαEα + (1 + i)αE−α
= α(Eα + E−α + i(Eα − E−α)

(II.2.243)

the claim follows.

Remark II.2.11.11. Starting from a semisimple, real Lie algebra, passing to the complex-
ification and then considering the standard real form yields a real Lie algebra which is
isomorphic to the one we began with (see [24, p. 55]).

Recall that the complexified tangent space of a generalized flag manifold G/C(S) takes
the form

gC/sC =
∑

α∈R0−R
Vα (II.2.244)

with R0 given by the roots generating the Lie algebra of C(S). Passing to the compact real
forms yields an expression for the (non-complexified) tangent space

g/s =
∑

α∈(R−R0)∩R+

spanR{Eα + E−α,+i(Eα − E−α)} (II.2.245)

Denote R′ = (R−R0) ∩R+. We can then simplify further Theorem II.2.9.10:

Theorem II.2.11.12. Let (M,ω) ' AdG x0 be a semisimple, orientable generalized flag
manifold of dimension 2n together with its canonical symplectic form, F(M) its Weyl set.
Then

volω(M) = (−2π)n
n!

∑
gi∈F(M)

gi ·
xn0∏
α∈R′ α

(II.2.246)

where xi = gi ·x0, R is the root space of gC, R0 the roots generating sC, R′ = (R−R0)∩R+.

Proof. Let us clarify the notation. We denoted

gi ·
xn0∏
α∈R′ α

= (g · x0)n∏
α∈R′ Ad−1

gi α
(II.2.247)

Now, we know from II.2.9.10

volω(M) = (−2π)n
n!

∑
gi∈F(M)

xni
det ([Adgi t, ·])

(II.2.248)

then we need to show
det ([Adgi t, ·]) =

∏
α∈R′

Ad−1
gi α (II.2.249)
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for gi ∈ F(M). For gi = e, we can apply II.2.11.10 and restrict [t, ·] to g/s: this yields
exactly ∏α∈R′ α. For gi 6= e, observe

[Adgi t, Eα] = α(Adgi t)Eα (II.2.250)

and writing α = 〈α, ·〉 we get

α(Adgi t) = 〈α,Adgi t〉 = 〈Ad−1
gi α, t〉 = (Ad−1

gi α)(t) (II.2.251)

by invariance of the Killing form. The thesis follows.

II.2.9.12 is generalized accordingly:

Corollary II.2.11.13. Let (M,ω) be a simply connected, homogeneous 2n−dimensional Käh-
ler manifold on which the semisimple isometry group G acts in Hamiltonian fashion, ϕ :
M → g∗ a moment map for the action, x ∈M .

Then
volω(M) = (−2π)n

n!
∑

gi∈F(ϕ(M))
gi ·

xn0∏
α∈R′ α

(II.2.252)

where xi = gi · x0, R is the root space of gC, R0 the roots generating the complexified Lie
algebra sC of the stabilizer of ϕ(x), R′ = (R−R0) ∩R+.

Proof. See the proof of II.2.9.12.

Example II.2.11.14. We compute the volume of some generalized flag manifolds of SU(n).
If we pick the maximal torus given by diagonal matrices in SU(n), the related Lie algebra t
is given by traceless matrices; since every generalized flag manifold is realizable as the orbit
of an element in t, we restrict our attention to these elements. We can represent any t ∈ t,
choosing a suitable coordinate system, as a matrix

t = diag(a1, . . . , a1, a2, . . . , a2, a3, . . . , am−1, am, . . . , am), ai 6= aj for i 6= j (II.2.253)

each of the ai’s having first occurrence in position ri.
The stabilizer of the orbit is a centralizer C(S), with Lie algebra s. The roots orthogonal

to t satisfy
0 = 〈eij , t〉 = ti − tj (II.2.254)

Notice that the actual value of the ai’s does not play any role. The orthogonal set is

R0 = {eij : {i, j} ⊆ {rk, . . . , rk+1 − 1} for a k = 1, . . . , l} (II.2.255)

and the roots left out are those given by vectors eij whose summands belong to different
"clusters" in t.

Before we begin, recall (see II.2.8.4) that we can relate the adjoint orbit to a quotient
SU(n)/C(S) by exponentiating the element whose orbit we’re considering, and setting

S = {eRt} (II.2.256)

then AdSU(n) t ' SU(n)/C(S). The isomorphism holds for any semisimple group G.



II.2. Applications 101

For n = 2 there are only two possible clusters, with representatives

t1 = diag(1,−1), t2 = diag(0, 0) (II.2.257)

Let’s work on t1. All roots (e12, e21) are orthogonal: its orbit expresses a flag manifold, and
the fixed points are obtained by considering the action of the Weyl group. In this case we
just need to consider

se21(t1) = t1 − 2〈(−1, 1), (1,−1)〉
〈(−1, 1), (−1, 1)〉(−1, 1) = (−1, 1) (II.2.258)

the equivariant Euler class at t1 can be computed with the help of II.2.11.12, and it’s just
θ2 − θ1; the equivariant Euler class at the other fixed point can be computed by applying
the same permutation we used to get there, so that it equals θ1 − θ2. The volume is

− 2π
(

θ1
θ2 − θ1

+ θ2
θ1 − θ2

)
= 2π (II.2.259)

This was just CP 1!
For n = 3 we have nontrivial representatives

t1 = diag(1,−1, 0), t2 = diag(1, 1,−2) (II.2.260)

there aren’t roots orthogonal to t1, whose orbit realizes the flag manifold M1. The fixed
points are computed considering (combinations of) reflections across the planes

E1 = {(x, x,−2x)}
E2 = {(x,−2x, x)}
E3 = {(−2x, x, x)}

(II.2.261)

identified by e12, e13, e23. Call the reflections r1, r2 and r3, we have
r1(t1) = (−1, 1, 0) = a1

r2(t1) = (0,−1, 1) = a2

r3(t1) = (1, 0,−1) = a3

(II.2.262)

i.e. ri exchanges the ith and (i+ 1)th term. Then there are other two points reachable:{
r2r1(t1) = (−1, 0, 1) = a4

r2r2(t1) = (0, 1,−1) = a5
(II.2.263)

These are the fixed points of the action. SU(3) has dimension 8 and the maximal torus has
dimension 2, so that we obtain a manifold of dimension 6; the equivariant Euler class e(t1)
at t1 is the polynomial (θ2− θ1)(θ3− θ1)(θ3− θ2), again according to II.2.11.12, and we can
compute the Euler class at ai by considering the adjoint action of the elements of F(M) on
the roots. We obtain 

e(a1) = (θ1 − θ2)(θ3 − θ2)(θ3 − θ1)
e(a2) = (θ2 − θ3)(θ1 − θ3)(θ1 − θ2)
e(a3) = (θ3 − θ1)(θ2 − θ1)(θ2 − θ3)
e(a4) = (θ1 − θ3)(θ2 − θ3)(θ2 − θ1)
e(a5) = (θ3 − θ2)(θ1 − θ2)(θ1 − θ3)

(II.2.264)
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that is
e(t1) = e(a5) = e(a4) = −e(a3) = −e(a2) = −e(a1) (II.2.265)

Compute the volume of the flag manifold M1: we identify via the moment map the element
diag(a, b, c) ∈ t with the polynomial aθ1 + bθ2 + cθ3, so that the fixed points have image

t1 7→ θ1 − θ2

a1 7→ −θ1 + θ2

a2 7→ −θ2 + θ3

a3 7→ θ1 − θ3

a4 7→ −θ1 + θ3

a5 7→ θ2 − θ3

(II.2.266)

We need to raise these polynomials to the 6/2 = 3. Finally:

vol(M1) = (2π)3/3!
(θ2 − θ1)(θ3 − θ1)(θ3 − θ2)(2(θ1 − θ2)3 + 2(θ2 − θ3)3 + 2(θ3 − θ1)3)

= (2π)3

(θ2 − θ1)(θ3 − θ1)(θ3 − θ2)(θ1θ
2
2 − θ2

1θ2 + θ2θ
2
3 − θ2

2θ3 + θ3θ
2
1 − θ2

3θ1)

= (2π)3

(II.2.267)

For n = 4 we have clusters

t1 = diag(1,−1, 2,−2), t2 = diag(1,−1, 0, 0), t3 = diag(1, 1, 1,−3), t4 = diag(1, 1,−1,−1)
(II.2.268)

The orbit of t1 realizes the flag manifold and t3 is a complex projective space. As a last
example, we compute the volume of the "intermediate" generalized flag manifoldM2 realized
by t2: the only orthogonal root is e34, so that the equivariant Euler class e(t2) of the point
is

(θ2 − θ1)(θ3 − θ1)(θ3 − θ2)(θ4 − θ1)(θ4 − θ2) (II.2.269)

while t2 gets sent to the polynomial θ1 − θ2. Now we need to apply all the meaningful
permutations and sum everything up:

t2 a0 a1 a2 a3 a4
θ1 − θ2 θ2 − θ1 θ1 − θ3 θ3 − θ1 θ1 − θ4 θ4 − θ1

a5 a6 a7 a8 a9 a10
θ2 − θ3 θ3 − θ2 θ2 − θ4 θ4 − θ2 θ3 − θ4 θ4 − θ3

Table II.1.: Polynomials relative to the fixed points

We get the corresponding equivariant Euler classes by permuting the equivariant Euler
class of t2:
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e(t2) e(a0)
(θ2 − θ1)(θ3 − θ1)(θ3 − θ2)(θ4 − θ1)(θ4 − θ2) (θ1 − θ2)(θ3 − θ2)(θ3 − θ1)(θ4 − θ2)(θ4 − θ1)

e(a1) e(a2)
(θ3 − θ1)(θ2 − θ1)(θ2 − θ3)(θ4 − θ1)(θ4 − θ3) (θ1 − θ3)(θ2 − θ3)(θ2 − θ1)(θ4 − θ3)(θ4 − θ1)

e(a3) e(a4)
(θ4 − θ1)(θ3 − θ1)(θ3 − θ4)(θ2 − θ1)(θ2 − θ4) (θ1 − θ4)(θ3 − θ4)(θ3 − θ1)(θ2 − θ4)(θ2 − θ1)

e(a5) e(a6)
(θ3 − θ1)(θ2 − θ1)(θ2 − θ3)(θ4 − θ1)(θ4 − θ3) (θ3 − θ2)(θ1 − θ2)(θ1 − θ3)(θ4 − θ2)(θ4 − θ3)

e(a7) e(a8)
(θ2 − θ4)(θ3 − θ4)(θ3 − θ2)(θ1 − θ4)(θ1 − θ2) (θ1 − θ4)(θ3 − θ4)(θ3 − θ1)(θ2 − θ4)(θ2 − θ1)

e(a9) e(a10)
(θ4 − θ3)(θ1 − θ3)(θ1 − θ4)(θ2 − θ3)(θ2 − θ4) (θ4 − θ3)(θ2 − θ3)(θ2 − θ4)(θ1 − θ3)(θ1 − θ4)

Table II.2.: Equivariant Euler classes of the fixed points

Now to localize we need to compute

(−2π)5

5!

(
t52
e(t2) +

10∑
i=0

a5
i

e(ai)

)
(II.2.270)

The computation is easily carried out with the help of e.g. Mathematica, and yields

vol(M2) = (−2π)5

5! (−20) = 16
3 π

5 (II.2.271)

M2 corresponds to the coset space SU(4)/C(S) with

S =



eit 0 0 0
0 e−it 0 0
0 0 1 0
0 0 0 1

 , t ∈ R

 (II.2.272)

Example II.2.11.15. As a further example, we consider the symplectic group Sp(n) (see [25]
for details). It is constructed as follows: if

M(2n;C) 3 J =
[

0 −In
In 0

]
(II.2.273)

we first define
Sp(n;C) = {A ∈ GL(2n,C) : AtJA = J} (II.2.274)

and subsequently
Sp(n) = U(2n) ∩ Sp(n;C) (II.2.275)

The Lie algebra sp(n) has the following characterization:

sp(n) = {X ∈ gl(2n;C) : JXtJ = X = −X∗} (II.2.276)
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If A, B ∈ gl(2n;C), a typical element of sp(n) has the form

X =
[
A B

−B̄ Ā

]
, with A∗ = −A, Bt = B (II.2.277)

and a maximal torus T is given by

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn) : θi ∈ R} (II.2.278)

sp(n) is a simple Lie algebra, with roots

{εi − εj , i 6= j ∈ {1, . . . , n}}
{±(εi + εj), i, j ∈ {1, . . . , n}}

(II.2.279)

and relative root vectors

{Ei,j − Ej+n,i+n, Ei,j+n + Ej,i+n, Ei+n,j + Ej+n,i, i, j ∈ {1, . . . , n}} (II.2.280)

One then checks that the orbit of an element in sp(n) via the Weyl group is given by all
possible permutations and sign changes of its coordinates.
Set n = 2. We obtain a 10−dimensional vector space sp(2) with a maximal torus of rank

2. Let us compute, as an example the volume of the adjoint orbit M of

t = diag(1,−1) (II.2.281)

this vector is orthogonal to the roots ±(ε1 + ε2) and gets sent to the polynomial θ1 − θ2;
applying the Weyl group we obtain the set of fixed points:

t a0 a1 a2
θ1 − θ2 θ2 − θ1 θ1 + θ2 −θ1 − θ2

The generalized flag manifold has dimension 6, and the equivariant Euler class at t is the
polynomial 4θ1θ2(θ1−θ2), given by the product of the non-orthogonal roots 2ε1, 2ε2, ε1−ε2;
we obtain the equivariant Euler classes at the other fixed point again by permutations and
sign changes:

e(t) e(a0) e(a1) e(a2)
4θ1θ2(θ1 − θ2) 4θ2θ1(θ2 − θ1) −4θ1θ2(θ1 + θ2) 4θ1θ2(θ1 + θ2)

We don’t need Mathematica’s help to compute the volume:

vol(M) = (−2π)3

3!
1

4θ1θ2(θ2
1 − θ2

2)(2(θ1 − θ2)3(θ1 + θ2)− 2(θ1 + θ2)3(θ1 − θ2))

= (−2π)3

3!
−4θ1θ2(θ2

1 − θ2
2)

4θ1θ2(θ2
1 − θ2

2) = 4
3π

3
(II.2.282)
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