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Introduction

In this thesis we want to study a conformal invariant on open Riemannian spin
manifolds (M, g, σ).
Conformal invariants are quantities that are independent of the metric itself but
only depend on its conformal class [g] = {f2g | 0 < f ∈ C∞(M)}.
The most prominent example of a conformal invariant of a Riemannian manifold
(Mn, g) with dimension n ≥ 3 is the Yamabe invariant Q, which is also known as
Sobolev quotient. It is based on the conformal Laplacian

Lg = 4
n− 1
n− 2

∆g + sg

where ∆g is the Laplacian and sg the scalar curvature. With that operator the
Yamabe invariant is defined as

Q(M, g) = inf

{∫
M
vLgvdvolg

∣∣∣∣∣ v ∈ C∞c (M,R), ‖v‖Lp = 1

}
where C∞c (M,R) are the compactly supported smooth real-valued functions on M
and p = 2n

n−2 .

This invariant was introduced by Yamabe in order to examine whether for a closed
Riemannian manifold (M, g) there always exists a metric in the conformal class [g]
with constant scalar curvature. This can be interpreted as a generalization of the
uniformization theorem to higher dimensions. The Yamabe problem is answered
positively [46]. Actually, Yamabe’s proof had a serious gap which was closed mainly
in [11], [42] and [44]. An overview is given in [37] and [13].
On open manifolds the invariant can still be used to give an obstruction to conformal
compactification [35].

The subject of this thesis is the study of an invariant that can be interpreted as a
spin version of the Yamabe invariant on open manifolds. To this end, we restrict
ourselves to Riemannian spin manifolds (Mn, g, σ), and the spin conformal invariant
λ+

min is defined using the Dirac operator Dg. The transformation behaviour under
conformal changes of this operator is similar to that of the conformal Laplacian.
That’s why we can define λ+

min similar to Q:

λ+
min(M, g, σ) = inf

{
‖Dgφ‖2Lq

(Dgφ, φ)

∣∣∣∣∣ φ ∈ C∞c (M,S), (Dgφ, φ) > 0

}
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INTRODUCTION 2

where C∞c (M,S) are the compactly supported smooth spinors on M and q = 2n
n+1 .

On closed manifolds the λ+
min-invariant was studied e.g. in [3], [4] , [9] and [38].

Many statements concerning the Yamabe invariant have their counterparts for the
λ+

min-invariant although the technical details are often more involved since one has
to deal with spinors and not with real-valued functions. For example, there is no
maximum principle.

In the following we want to state some first result for the λ+
min-invariant on closed

manifolds. A more explicit overview will be given in Chapter 2.
In [9, Thm. 1.1] and for dimension n = 2 in [28] it is shown that on closed manifolds

λ+
min(M, g, σ) ≤ λ+

min(Sn, gst, χst)

where Sn is the standard sphere with its unique spin structure.
Furthermore, on closed manifolds

λ+
min(M, g, σ) = inf

g∈[g]
λ+

1 (g)vol(M, g)
1
n

where λ+
1 (g) is the first positive eigenvalue of the Dirac operator with respect to the

conformal metric g [1, Prop. 2.6].

We examined the λ+
min-invariant on open manifolds in [29]. This allows to consider

open domains of closed manifolds. So we were able to give a new proof for the upper
bound of λ+

min in dimension n ≥ 2 that is valid for both closed and open manifolds,
see [29, Thm. 1.2] for n > 2 and Chapter 3 in general.
The role of the first positive Dirac eigenvalue is in general occupied by a Rayleigh-
type quotient, cf. Lemma 2.0.1. On complete manifolds this turns out to be the
infimum of the positive part of the Dirac spectrum, cf. Lemma 4.1.2.

Sometimes, e.g. in [7], the λ+
min-invariant on closed manifolds is defined such that λ+

1

is the Dirac eigenvalue with the smallest magnitude, i.e. also negative eigenvalues are
considered. Many results are valid for both definitions, cf. Sections 4.5. However,
this definition of this λmin-invariant obviously sees the kernel of the Dirac operator,
but with our definition we have

λ+
min(M, g, σ) > 0

on all closed Riemannian spin manifolds.
We will restrict ourselves to this definition because this gives an easy obstruction to
spin conformal compactification, i.e. conformal compactification that preserves the
spin structure. To be precise:
If a Riemannian spin manifold has vanishing λ+

min-invariant, it is not spin confor-
mally compactifiable, cf. Remark 3.0.4.
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Another obstruction is given by an inequality for the λ+
min-invariant at infinity which

generalizes the one of the corresponding Yamabe invariant of [35].

Theorem 3.0.1. Let (M, g, σ) be a Riemannian spin manifold of dimension n ≥ 2
with

lim
r→∞

λ+
min(M \Br(p), g, σ) < λ+

min(Sn, gst, χst)

for a fixed p ∈ M and Br(p) a ball around p of radius r with respect to the metric
g. Then (M, g) is not spin conformally compactifiable.

On closed manifolds there is a deep relation between the conformal Laplacian and
the Dirac operator – the Hijazi inequality, which gives a lower estimate of the square
of the Dirac eigenvalues in terms of the lowest eigenvalue of the conformal Laplacian.
This inequality naturally gives rise to a conformal inequality that compares the spin
invariant λ+

min with the Yamabe invariant Q.
In this thesis we generalize this inequality to a class of open manifolds. On complete
open Riemannian spin manifolds of finite volume we can compare – as in the Hijazi
inequality – any eigenvalue (if present) with the infimum of the spectrum of the
conformal Laplacian:

Theorem 4.0.5. Let (M, g, σ) be a complete Riemannian spin manifold of finite
volume and dimension n > 2. Moreover, let λ be an eigenvalue of its Dirac operator
D and let µ be the infimum of the spectrum of the conformal Laplacian. Then we
have

λ2 ≥ n

4(n− 1)
µ.

If equality holds, the manifold carries a real Killing spinor and has to be Einstein
and closed.

This result enables us to prove the conformal Hijazi inequality on conformally
parabolic manifolds.

Theorem 4.0.6. Let (M, g, σ) be a conformally parabolic Riemannian spin man-
ifold of dimension n > 2. If there exists a complete conformal metric g of finite
volume and 0 6∈ σess(Dg), then the conformal Hijazi inequality is valid:

λ+
min(M, g, σ)2 ≥ n

4(n− 1)
Q(M, g).

We will also give a derivation of this result where we replace the condition that 0 is
not contained in the essential spectrum of Dg by assumptions on the scalar curva-
ture and the dimension of the manifold, cf. Corollary 4.3.4.

To obtain an estimate for λ+
1 that holds for all metrics we will also generalize the

Friedrich inequality to arbitrary open Riemannian spin manifolds, cf. Theorem 4.0.7.
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The thesis is structured as follows:
First of all, we will give some preliminaries. Basic facts concerning spin manifold, the
Dirac operator and its spectrum are stated. Furthermore, spinor bundles belonging
to different metrics are compared.
Then in the second chapter we will define the spin conformal invariant λ+

min and
review its known properties.
In the third chapter we will extend some of these results to the case of surfaces, e.g
for the obstruction of spin conformal compactification and the upper bound of the
λ+

min-invariant. The proofs will then hold for all dimensions n ≥ 2. An important
tool is an Aubin-type inequality on closed manifolds that we also prove in this
chapter.
We will provide some examples of open surfaces with vanishing λ+

min-invariant and
generalize the Bär inequality to open spin surfaces homeomorphic to R2.
In the last chapter lower estimates for the λ+

min-invariant on open manifolds will
be given. Mainly, we will study the generalization of the Hijazi inequality to open
conformally parabolic manifolds.



Chapter 1

Preliminaries

1.1 Spin manifolds and the Dirac operator

In this section we briefly introduce basic notions concerning spin manifolds and the
Dirac operator. Details can be found in [27] and [36].

Let (M, g) be a connected and oriented Riemannian manifold of dimension n ≥ 2
without boundary.
Furthermore, let PSO(n)Mg be the SO(n)-principal bundle over M of positively ori-
ented orthonormal frames. A spin structure σ of (M, g) is a Spin(n)-principal bundle
PSpin(n)Mg over M with a double covering η : PSpin(n)Mg → PSO(n)Mg such that
the diagram

Spin(n)× PSpin(n)Mg

Θ×η

��

// PSpin(n)Mg

η

��

%%JJJJJJJJJJ

M

SO(n)× PSO(n)Mg // PSO(n)Mg

99tttttttttt

commutes where Θ is the double covering Spin(n) → SO(n) and the horizontal ar-
rows denote the group actions. A Riemannian manifold that admits a spin structure
is called a Riemannian spin manifold.

Remark 1.1.1.
i) Being spin is a topological property that is independent of the metric: An
oriented manifold is spin if and only if its second Stiefel-Whitney class vanishes,
see [36, Thm. II.2.1]. This is a global property. Locally a spin structure always
exists. Whether these can be glued together to a global one depends on the following
question: Let {Uα}α∈A be an open cover of M and let ϕβα : Uβ ∩ Uα → SO(n) be
the transitions maps of PSO(n)Mg. A spin structure exists if these maps lift to

5



1.1. SPIN MANIFOLDS AND THE DIRAC OPERATOR 6

Spin(n)-transition function, i.e if there are maps

ϕ̃βα : Uβ ∩ Uα → Spin(n) with Θ ◦ ϕ̃βα = ϕβα

for β, α ∈ A that fulfill the usual properties of transition functions: ϕ̃αα = id on Uα,
ϕ̃αβϕ̃βα = id on Uα ∩ Uβ and ϕ̃αβϕ̃βγϕ̃γα = id on Uα ∩ Uβ ∩ Uγ .
When lifting ϕαβ , the third relation, the cocycle condition, can cause problems since
ϕ̃αβϕ̃βγ and ϕ̃αγ may differ by a nontrivial deck transformation of the covering Θ,
cf. [33, p. 74].
ii) A spin manifold can allow different spin structures. In the following, when
talking about a Riemannian spin manifold (M, g, σ), the spin structure σ is already
chosen and fixed.
iii) A simply connected Riemannian manifold is spin if and only if the fundamental
group π1(PSO(n)Mg) = Z2. Then the spin structure is uniquely determined [27, p.
38].
iv) If M is a Riemannian spin manifold with boundary ∂M , then a spin structure
on M induces a spin structure on the boundary, see [19, Sect. 3]. Note that the
converse is not true: Not every spin structure on the boundary extends to a spin
structure on M . A well-known example is the circle S1 that possesses two spin
structure, but only the one without harmonic spinors extends to the unique spin
structure of the disk.

Let further Sg = PSpin(n)Mg×ρ∆n be the associated spinor bundle where ∆n = C2[ n
2 ]

,
and let ρ : Spin(n)→ End(∆n) be the n-dimensional complex spinor representation.
A section of Sg will be called a spinor.

The set of all spinors will be denoted by Γ(Sg) = Γ(M,S) = Γ(S), the one of
smooth spinors by C∞(S) and the one of compactly supported smooth spinors by
C∞c (M,S). Sg is a complex vector bundle over M and equipped fibrewise with a
hermitian metric 〈 . , . 〉m,g that depends smoothly on the base point m ∈ M and
with the Clifford multiplication

µ : TM ⊗ Sg → Sg; X ⊗ φ 7→ µ(X)φ =: X · φ

such that for all m ∈M , X,Y ∈ TM and φ1, φ2, φ ∈ Γ(Sg)

〈Xm · φ1(m), φ2(m)〉m,g + 〈φ1(m), Xm · φ2(m)〉m,g = 0

and
Xm · Ym · φ(m) + Ym ·Xm · φ(m) = −2gm(Xm, Ym) · φ(m).

Further, with this hermitian metric we can define an L2-scalar product

(φ, ψ)M,g :=
∫

M
〈φ(m), ψ(m)〉m,gdvolg

for spinors φ, ψ of Sg. In the following, we will omit the base point m in the notation
< ., . >m,g of the hermitian product.
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Additionally, the Levi-Civita connection on PSO(n)Mg induces a metric connection
∇ on the spinor bundle that is parallel with respect to the Clifford multiplication,
that means

∇X(Y · φ) = (∇XY ) · φ+ Y · ∇Xφ (1.1)

for all X,Y ∈ Γ(TM) and φ ∈ Γ(Sg).
If ∇φ ≡ 0, i.e. ∇Xφ = 0 for all X ∈ TM , then φ is called a parallel spinor.

By composing the connection ∇ and the Clifford multiplication µ the Dirac operator
is defined as

Dg = µ ◦ ∇ : Γ(Sg)→ Γ(T ∗M ⊗ Sg) ∼= Γ(TM ⊗ Sg)→ Γ(Sg),

cf. [27, p. 68]. Locally it is given by

Dgψ =
n∑

i=1

ei · ∇eiψ

where {ei}i=1,...,n is an orthonormal frame on M , see [33, p. 144].

Remark 1.1.2.
i) The Dirac operator is a first-order elliptic differential operator [36, p. 113].
ii) The Dirac operator is formally self-adjoint [36, p. 115], i.e. for all spinors φ, ψ, at
least one of which is compactly supported on M , we have (φ,Dψ)M,g = (Dφ,ψ)M,g.
Together with the hermiticity of the scalar product this implies that (φ,Dφ) is real
for all compactly supported spinors φ.
In particular, for φ ∈ C∞c (M,S) the value of (φ,Dφ) only depends on φ⊥, the part
of φ being (L2-)perpendicular to the kernel kerD, since for a spinor that decomposes
as φ = φ⊥ + φker we have

(φ,Dφ) = (φ⊥ + φker, Dφ⊥) = (D(φ⊥ + φker), φ⊥) = (Dφ⊥, φ⊥).

An important tool when examining the Dirac operator is the Lichnerowicz formula

D2 = ∆ +
s

4
,

where s is the scalar curvature, see [36, p. 160]. Often derivations from it are useful,
e.g. for the Friedrich connection ∇f

Xφ := ∇Xφ+ f
nX · φ where f ∈ C∞(M,C) one

gets for the case of real-valued functions f that

(D − f)2ψ = ∆fψ +
(s

4
+
n− 1
n

f2
)
ψ − n− 1

n
(2fDψ + gradf · ψ), (1.2)

where ∆f = ∇f ∗∇f , cf. [31, (5.4)].
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If f = −nλ is a constant function, the Friedrich connection plays a somewhat special
role. Then the parallel spinors of ∇−nλ are exactly the (real) Killing spinors with
Killing constant λ, i.e. those spinors ψ that fulfill

∇Xψ = λX · ψ for all X ∈ TM.

If such a spinor exists for an imaginary constant λ, it is correspondingly called imag-
inary Killing spinor.

The following result shows that the notion of a Killing spinor cannot be generalized
to arbitrary functions:

Theorem 1.1.3. [31, Cor. 3.6][39, Sect. 1] Let (M, g, σ) be a connected spin
manifold and f ∈ C∞(M,C). Moreover, let ψ be a parallel spinor of ∇f , i.e.
∇fψ ≡ 0. Then f is either a real constant or has the form f = ib with b ∈ C∞(M,R).

The existence of Killing spinors yields quite strong restrictions for the underlying
manifold. It has to be Einstein, i.e. its Ricci tensor is proportional to the metric.

Theorem 1.1.4. [27, p. 118] If a manifold possesses a real Killing spinor, it is an
Einstein space of positive scalar curvature.
If a manifold possesses a purely imaginary Killing spinor, it has to be an Einstein
space of negative scalar curvature.
In both cases the scalar curvature is obtained from the Killing constant λ by

s =
n

4(n− 1)
λ2.

1.2 Spectrum

Let (M, g, σ) be a Riemannian spin manifold with Dirac operator Dg = D.

Definition 1.2.1. [21, Sect. 8.2.1] A complex number λ is an eigenvalue of D if
there exists a nonzero eigenspinor φ ∈ C∞(M,S) ∩ L2(M,S) with Dφ = λφ.
In particular, a spinor that is an eigenspinor to the eigenvalue 0 is called harmonic.

Remark 1.2.2.
i) It is sufficient to require φ ∈ H2

1 (M,S) and (D − λ)φ = 0 since by elliptic
regularity theory [5, Lem. 2.1] φ is then automatically smooth.
ii) In general, an eigenspinor can have zeros. But the unique continuation property
of the Dirac operator [10, Main Thm. and Rem. 3] states that there are no zeros of
infinite order.
In [18, p. 189] Bär even showed that the zero set of an eigenspinor is contained in a
countable union of (n− 2)-dimensional submanifolds and has locally finite (n− 2)-
dimensional Hausdorff density. The proof of this theorem, cf. [18, p. 194], even
gives that this union of submanifolds can be chosen in such a way that it has itself
locally finite (n− 2)-dimensional Hausdorff density.
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Theorem 1.2.3. [27, pp. 99, 102],[2, Prop. 4.30] Let M be closed. Then the Dirac
operator Dg has a pure point spectrum, and there exists an orthonormal eigenbasis
ψi of L2(Sg) (i ∈ N) such that Dgψi = λiψi with λi ∈ R. Further, both +∞ and
−∞ are accumulation points of the spectrum.

On open manifolds there can exist a continuous part of the spectrum. In general
the spectrum of the Dirac operator, denoted by σ(D), is composed of the point, the
continuous and the residual spectrum.

Theorem 1.2.4. [27, pp. 96, 98] Let M be complete. Then the Dirac operator is
essentially self-adjoint (on C∞c (M,S)), the residual spectrum is empty and σ(D) ⊂
R.

Thus, for complete manifolds the spectrum can be divided into point and continuous
spectrum. But often another decomposition of the spectrum is used – the one into
discrete and essential spectrum.

Definition 1.2.5. A complex number λ lies in the essential spectrum of D, denoted
by σess(D), if there exists a sequence of smooth compactly supported spinors φi which
are orthonormal with respect to the L2-product and

‖(D − λ)φi‖L2 → 0.

The essential spectrum contains, for example, all eigenvalues of infinite multiplicity.
In contrast, the discrete spectrum σd(D) := σp(D) \ σess(D) consists of all eigenval-
ues of finite multiplicity.

Moreover, the essential spectrum only depends on the manifold at infinity as can be
seen by the next statement.

Theorem 1.2.6 (Decomposition principle). [21, Thm. 8.7] Let M1 and M2 be two
complete Riemannian spin manifolds, let Ki ⊂ Mi be compact. If there is a spin
preserving isometry between M1 \K1 and M2 \K2, then the Dirac operators on M1

and M2 have the same essential spectrum.

It is not possible to compute the Dirac spectrum in general. But for some manifolds
– in particular the standard ones – the spectrum is known. We want to give some
well-known examples:

Example 1.2.7.
i) [19, Sect. 3] The circle S1 admits two spin structures, one – we will denote by
σnt – that bounds the unique spin structure of the disk and one – σtr – that does not.
The Dirac spectrum for σtr is {k ∈ Z} and for σnt it is {k + 1

2 |k ∈ Z}. Thus, the
circle is an example for the dependence of the Dirac spectrum on the spin structure.
ii) [16, Thm. 1] The standard sphere Sn admits only one spin structure for n ≥ 2.
Its Dirac spectrum is given by {±(n

2 + k) | k ∈ Z≥0}.
iii) [21, Thm. 8.8] The Euclidean space Rn also admits exactly one spin structure.
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Its Dirac spectrum is the whole real line and purely continuous.
iv) (essential spectrum: [23, Cor. 4.6], point spectrum: [14, Thm. 8.4]) The hy-
perbolic space Hn with its unique spin structure has a purely continuous spectrum
consisting of all real numbers.
v) [19, Thm. 4.1] The torus Tn = Rn/Γ where Γ is a lattice of Rn possesses 2n

different spin structures. We represent a spin structure by the n-tuple (δ1, . . . , δn)
with δi ∈ {0, 1}. Furthermore, let b1, . . . , bn be a basis of Γ and b∗1, . . . , b

∗
n be the

corresponding dual basis.
Then the spectrum consists of the eigenvalues

±2π

∣∣∣∣∣b∗ +
1
2

n∑
i=1

δjb
∗
j

∣∣∣∣∣
where b∗ runs through the dual lattice Γ∗. Each b∗ contributes to the multiplicity
of the corresponding eigenvalue with 2[n

2
]−1.

Sometimes, especially when considering the “zero-in-the-spectrum” question, it is
more convenient to work with the square of the operator. This is based on the
following result:

Lemma 1.2.8. [27, p. 98] For a complete Riemannian spin manifold (M, g, σ) the
kernels of D and D2 coincide.

Remark 1.2.9. On complete manifolds both D and D2 are essentially self-adjoint
[45, Thm. 6.1]. The proof uses the following estimate:

‖Dφ‖2L2 ≤ t‖D2φ‖2L2 +
1
t
‖φ‖2L2 (1.3)

for any spinor φ in C2 and any 0 < t ∈ R.
Furthermore, the domains of the operators satisfy dom(D2) ⊂ dom(D) = C∞c (M,S).
The inequality together with this inclusion then means that D is D2-bounded with
relative bound

√
t. For a general definition of relative boundedness, see [41, Sect.

X.2].

Lemma 1.2.10. Let (M, g, σ) be a complete Riemannian spin manifold and let
λ ∈ R. Then (D − λ) and (D − λ)2 are essentially self-adjoint.

Proof. Since D is essentially self-adjoint, (D−λ) and −2λD are also essentially self-
adjoint. With inequality (1.3) we know that D is D2-bounded with relative bound√
t. Similarly, −2λD is D2-bounded with relative bound 1

2λ

√
t.

Then the Kato-Rellich Theorem [41, Thm. X.12] yields thatD2−2λD and, therefore,
(D − λ)2 is essentially self-adjoint.

Lemma 1.2.11. Let (M, g, σ) be a complete Riemannian spin manifold. Then 0 is
in the essential spectrum of D − λ if and only if 0 is in the essential spectrum of
(D − λ)2.
If this is the case, then there is a normalized sequence φi ∈ C∞c (M,S) such that φi

converges L2-weakly to 0 and ‖(D − λ)φi‖L2 → 0 and ‖(D − λ)2φi‖L2 → 0.
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Proof. Due to Lemma 1.2.10 both operators A := D−λ and A2 = (D−λ)2 are essen-
tially self-adjoint on C∞c (M,S). Furthermore, denote by EA and EA2 the projector-
valued measure belonging to A and A2, respectively. We have supp EA2 = [0,∞)
and EA2([a, b]) = EA([−

√
b,−
√
a]) +EA([

√
a,
√
b]) for 0 ≤ a ≤ b which follows from

[22, Thm. 3.1]. Thus, if 0 is in the (not necessarily essential) spectrum of A, then
it is also contained in the spectrum of A2 and vice versa.
Let now 0 ∈ σess(A). Then for every ε > 0 we obtain for the dimension of the image
space of the projector EA([−ε, ε]) that dimEA([−ε, ε])H =∞ where H := L2(M,S)
and, thus, dimEA2([0, ε2])H = ∞. Hence, we have 0 ∈ σess(A2). Analogously, it
follows from 0 ∈ σess(A2), that 0 ∈ σess(A).
Next, let 0 ∈ σess((D − λ)2). Due to the definition of σess there is a normalized se-
quence φi ∈ C∞c (M,S) such that φi converges L2-weakly to 0 and ‖(D−λ)2φi‖L2 →
0. Then, we have

‖(D − λ)φi‖2L2 = ((D − λ)2φi, φi) ≤ ‖(D − λ)2φi‖L2 ‖φi‖L2 → 0.

1.3 Lp-theory and Sobolev embeddings

In this section we want to fix some notations concerning Lp-theory and state the
results for Sobolev embeddings needed in the following.

We denote the Lp-norm by ‖.‖Lp(g) or shortly by ‖.‖p if the metric g is fixed. The
Lp-norm of a spinor φ is simply given as the Lp-norm of the corresponding function
|φ|.
On closed manifolds a smooth spinor φ is always in Lp(M,S) for every p. For open
manifolds this is no longer true. Hence, in the definition of the Dirac eigenvalue we
had to require that the smooth eigenspinor is additionally L2-integrable.
Since the L2-norm occurs most often, we simply write ‖.‖ := ‖.‖2.

In general, an Lp-function does not have to be in any other Lr-space. But the Hölder
inequality gives a possibility to compare different Lp-norms:

‖fg‖1 ≤ ‖f‖p‖g‖q

for all functions f ∈ Lp, g ∈ Lq with p ∈ [1,∞] and p−1 + q−1 = 1 (with q = 1 for
p =∞ and vice versa).
In particular, if we have a manifold of finite volume, we obtain

‖f‖m ≤ (vol(M, g))
1
m
− 1

l ‖f‖l

for l ≥ m ≥ 1.



1.4. SPINOR BUNDLES OF CONFORMALLY RELATED METRICS 12

Furthermore, we will need the Sobolev norm

‖φ‖Hp
k

=
k∑

l=0

‖∇ · · ·∇︸ ︷︷ ︸
l times

φ‖p.

That gives rise to the Sobolev space Hp
k(M,S) that is the closure of C∞c (M,S) in

Lp with respect to the Hp
k norm. The next Lemma states that one can also define

the Sobolev norm on spinors using the Dirac operator instead of the spin connection
∇.

Lemma 1.3.1. [4, Cor. 3.2.4] Let (M, g, σ) be closed. For any k ∈ N the norm

φ→
k∑

l=0

‖Dlφ‖p

and the Hp
k -norm are equivalent on Γ(M,S).

We will also need the following Sobolev embedding theorem:

Theorem 1.3.2. [4, Sect. 3.3.2] Let k, s ∈ R, k ≥ s and q, r ∈ (1,∞) with

1
r
− s

n
≥ 1
q
− k

n
,

then Hq
k(M,S) is continuously embedded into Hr

s (M,S).
If, additionally, both inequalities are strict, the inclusion Hq

k(M,S) ↪→ Hr
s (M,S) is

a compact operator.

1.4 Spinor bundles of conformally related metrics

Let g = f2g with 0 < f ∈ C∞(M). Having fixed a spin structure σ on (M, g)
with corresponding spinor bundle Sg, there always exists a spin structure σ with
the corresponding spinor bundle Sg on (M, g) and a vector bundle isomorphism
A : Sg → Sg that is fibrewise an isometry [31, sect. 4.1]. In the following, we will
explain this isomorphism:
Firstly, we have an isometryGf between the bundle of g-orthonormal frames PSO(n)Mg

and the bundle of g-orthonormal frames PSO(n)Mg which is given by

ε = (X1, . . . , Xn)
Gf−−→ ε = (f−1X1, . . . , f

−1Xn).

Now there exists a spin structure σ on (M, g) such that the diagram

PSpin(n)Mg

��

Gf // PSpin(n)Mg

��
PSO(n)Mg

Gf // PSO(n)Mg
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commutes. This gives rise to an identification of the associated spinor bundles Sg

and Sg. This identification

Sg = PSpin(n)Mg ×ρ ∆n → Sg = PSpin(n)Mg ×ρ ∆n

is given by
ψ = [s, φ] 7→ ψ = [Gf (s), φ]

and, thus, fibrewise an isometry, i.e. < ψ,ψ >g=< ψ,ψ >g.

Since being spin is independent on the metric, cf. Remark 1.1.1.i, and since a spin
structure σ on (M, g) determines the spin structure σ on (M, g), we will refer to
both just as σ.

Using the above isometry it is possible to compare the corresponding Dirac operators
D and D [31, Prop. 4.3.1]:

D(f−
n−1

2 ψ) = f−
n+1

2 Dψ. (1.4)

We, therefore, have the following conformally invariant properties:

(Dφ, φ)g =
∫

M
< Dφ, φ >g dvolg

=
∫

M
< f−

n+1
2 Dψ, f−

n−1
2 ψ >g f

ndvolg = (Dψ,ψ)g, (1.5)

and

‖ Dφ ‖qLq(g) =
∫

M
|Dφ|qdvolg =‖ Dψ ‖qLq(g) (1.6)

where φ = f−
n−1

2 ψ.

Remark 1.4.1. On closed manifolds the dimension of the kernel of the Dirac oper-
ator is also a conformal invariant since for each harmonic spinor ψ on (M, g, σ) the
spinor φ = f−

n−1
2 ψ is harmonic on (M,f2g, σ), cf. [32, Sect. 1.4].

1.5 Bourguignon-Gauduchon-Trivialization

Whereas in the last section we identified spinor bundles associated to conformally
related metrics, we now examine the relation of any spinor bundle to the spinor
bundle associated to the standard Euclidean space. This only works locally and is
known as the Bourguignon-Gauduchon-Trivialization:
The following can be found in [6, Sect. 3]: Let the exponential map expp at p ∈M
be bijective on a neighbourhood U ⊂ TpM ∼= Rn with expp(U) =: V ⊂ M and let
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(x1, . . . , xn) = exp−1
p (m) denote the corresponding normal coordinates for a point

m ∈ V . Furthermore, define the map

G : V → S2
+(n,R); m 7→ Gm := (gij(m))ij ,

where Gm is the matrix of the coefficients of the metric g at m in the basis ∂i := ∂
∂xi .

S2
+(n,R) is the set of all real, symmetric and positive-definite n×n matrices. Thus,

there exists exactly one symmetric positive-definite matrix Bm = (bji (m))ij with
B2

m = G−1
m .

For each m ∈ V ⊂M the matrix Bm gives rise to the isometry

Bm : (Texp−1
p (m)U

∼= Rn, gE)→ (TmV, gm); (a1, . . . , an) 7→
∑
i,j

bji (m)ai∂j(m),

since gm(
∑

i b
i
k∂i,

∑
j b

j
l ∂j) =

∑
i,j b

i
kb

j
l gm(∂i, ∂j) =

∑
i,j b

i
kb

j
l gij = δkl = gE(∂k, ∂l).

This map is used to identify the SO(n)-principal bundles PSO(n)UgE and PSO(n)Vg

which lifts to an identification of the corresponding Spin(n)-principal bundles and,
thus, of the spinor bundles

SU,gE
= PSpin(n)UgE ×ρ ∆n → SV,g = PSpin(n)Vg ×ρ ∆n; ψ 7→ ψ.

Again this identification is fibrewise an isometry.

Furthermore, let ∇ and ∇ denote the Levi-Civita connections on (TU, gE) and
(TM, g) as well as the lifted connections on the spinor bundles SU,gE

and SV,g,
respectively.

Next, the metric is developed in the geodesic normal coordinates (x1, . . . , xn) in
the neighbourhood V ⊂ M around a fixed point p ∈ M . The derivation of the
subsequent expressions can be found in [37, (5.4)]:

gij(p) = δij +
1
3
Riαβj(p)xαxβ +

1
6
Riαβj;γ(p)xαxβxγ +O(r4), (1.7)

where the curvature is given by

Rijkl = 〈∇ej∇eiek, el〉 − 〈∇ei∇ejek, el〉 − 〈∇[ej ,ei]ek, el〉

for the orthonormal frame (e1, . . . , en) of (TV, g) with ei := bji∂j .

In the next step, we will compare the Dirac operators, cf. [6, Sect. 3 and 4]:
For this purpose, let D and D denote the Dirac operators acting on Γ(SU,gE

) and
Γ(SV,g)), respectively. Then we have

Dψ = Dψ +
1
4

∑
ijk

Γ̃k
ijei · ej · ek · ψ +

∑
ij

(bji − δ
j
i )∂i · ∇∂j

φ, (1.8)



15 1.6. THE CONFORMAL TYPE OF A MANIFOLD

where
Γ̃k

ij := −〈∇eiej , ek〉 = ∂ib
k
j −

1
3
(Rikαj +Riαkj)xα +O(r2) (1.9)

with
bji = δj

i −
1
6
Riαβjx

αxβ +O(r3). (1.10)

Further
∇eiψ = ∇eiψ +

1
4

∑
Γ̃k

ijej · ekψ (1.11)

and
ei · ψ = ∂i · ψ. (1.12)

Later on, when using the Bourguignon-Gauduchon-Trivialization we will leave out
the bars on the spinors and identify the spinor bundles SU,gE

and SV,g. This can be
done since the identification is fibrewise an isometry.

1.6 The conformal type of a manifold

Definition 1.6.1. [34, Sect. 2] Let (M, g) be an n-dimensional Riemannian man-
ifold, and let C ⊂ M be a connected compact subset. Then the conformal capacity
of (C,M) is defined as

cap(C,M) = inf
∫

M
|∇f |ndvolg

where the infimum is taken over all compactly supported smooth functions with 0 ≤
f ≤ 1 and f ≡ 1 on C.

Whether the conformal capacity is positive or zero is independent of C and de-
pends only on the manifold at infinity. That’s why, we can define the following: If
cap(C,M) = 0, the manifold is called conformally parabolic, otherwise conformally
hyperbolic.
The term conformally refers to the fact that cap(C,M) only depends on the confor-
mal class of g.

Example 1.6.2.
i) The Euclidean space is conformally parabolic. This can be seen by taking f to
be a radial function with f(x) = 1 for |x| < r0, f(x) = 0 for |x| > r1 and in between
f(x) = ln r1−ln |x|

ln r1−ln r0
. Then f is continuous, compactly supported, f ∈ Hn

1 and

‖ ∇f ‖nn=
∫

Br1\Br0

1
(r ln r1

r0
)n
rn−1dvolgE = vol(Sn−1, gst) ln1−n r1

r0
→ 0

for r1 →∞. Since every function in Hn
1 can be approximated by smooth functions

such that also their Hn
1 -norms converge, we obtain that cap(Br0(0),Rn) = 0.

ii) The hyperbolic space is conformally equivalent to (B1(0) ⊂ Rn, gE) and, hence,
conformally hyperbolic.
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iii) [43, Cor. 5.2] Let (M, g) be a Riemannian manifold with a warped cylindrical
end (N × [1,∞), gend = f(t)2gN + dt2). Then M is conformally parabolic if and
only if

∫∞
1 f(t)−1dt =∞.

Finally, we state the following result which gives another description of being con-
formally parabolic:

Theorem 1.6.3. [47, Sect. 3] A Riemannian manifold is conformally parabolic if
and only if its conformal class contains a complete metric of finite volume.

Example 1.6.4. From Example 1.6.2.i we know that (Rn, gE) is conformally parabolic.
We now want to give a metric conformal to gE that illustrates Theorem 1.6.3, cf.
[47, Sect. 3]:
Let Rn be equipped with a metric f2gE where f(r) = (r ln r)−1 for r being large
enough. Since the integral∫ ∞

c

1
r ln r

dr = lim
R→∞

ln ln r|Rc =∞

diverges, the metric is complete and since∫ ∞

c

1
rn(ln r)n

rn−1dr = lim
R→∞

−1
(n− 1)(ln r)n−1

∣∣∣R
c
<∞,

the manifold is of finite volume.
Further, for the new metric and for dimension n > 2 the scalar curvature is bounded
from below since for h = f

n−2
2 we can compute

s = 4
n− 1
n− 2

h−
n+2
n−2 ∆h

= −4
n− 1
n− 2

(r ln r)
n+2

2

(
∂2

rh+
1
r
(n− 1)∂rh

)
= −4

n− 1
n− 2

(r ln r)
n+2

2

(
(n− 2)n

4
(r ln r)−

n+2
2 (ln r + 1)2 − n− 2

2
(r ln r)−

n
2
1
r

− 1
r

(n− 1)(n− 2)
2

(r ln r)−
n
2 (ln r + 1)

)

= 4
n− 1
n− 2

(
(n− 2)2

4
ln2 r − (n− 2)n

4

)
= (n− 1)(n− 2) ln2 r − n(n− 1).

1.7 Refined Kato inequalities

The Kato inequality states that for any section φ of a Riemannian or Hermitian
vector bundle E endowed with a metric connection ∇ on a Riemannian manifold
(M, g) we have

2|φ||d|φ|| = |d|φ|2| = 2| < ∇φ, φ > | ≤ 2|φ||∇φ|, (1.13)
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i.e. |d|φ|| ≤ |∇φ| away from the zero set of φ. For this estimate it is used that
< ∇Xφ, φ >∈ R for all X ∈ TM .
In [24] refined Kato inequalities were obtained for sections in the kernel of first-order
differential operators. They have the form

|d|φ|| ≤ kP |∇φ|

where kP depends on the operator P .

We now want to sketch the set-up used in [24]: Let E be an irreducible natural
vector bundle E over an n-dimensional Riemannian (spin) manifold (M, g) with
scalar product < ., . > and a metric connection ∇. Irreducible natural means that
the vector bundle is obtained either from the orthonormal frame bundle of M or from
the spinor frame bundle with an irreducible representation of SO(n) or Spin(n) on a
vector space V . We will denote this representation by λ. Furthermore, let τ be the
standard representation of SO(n) or Spin(n) on Rn. Then the real tensor product
τ ⊗ λ splits into irreducible components as

τ ⊗ λ =
N⊕

j=1

µj , Rn ⊗ V =
N⊕

j=1

Wj .

This induces a decomposition of T ∗M ⊗E into irreducible subbundles Fj associated
to µj . Furthermore, let Πj denote the projection onto the jth summand of Rn ⊗ V
and T ∗M ⊗ E, respectively.

Let P be a first-order linear differential operator of the form P =
∑

i∈I Πi ◦∇ where
I ⊆ {1, . . . , N}. Moreover, we denote ΠI :=

∑
i∈I Πi and Î := {1, . . . , N} \ I.

Following the ansatz for the refined Kato inequalities, we obtain the estimate:

Lemma 1.7.1. Let P be an operator as defined above. Then we have away from
the zero set of φ

|d|φ|| ≤ |Pφ|+ kP |∇φ|
where kP := sup|α|=|v|=1 |ΠÎ(α⊗ v)|.

Proof. Let φ be a section of E. Then away from the zero set of φ we obtain

|d|φ|| = |d|φ|
2|

2|φ|
=
| < ∇φ, φ > |

|φ|
Let now α0 be a unit 1-form with < ∇φ, φ >= cα0 for some c ∈ R. Then we have

< ∇φ, α0 ⊗ φ > =
∑

i

< ∇eiφ, α0(ei)φ >=
∑

i

1
c
< ∇eiφ, φ >

2

=
∑

i

< ∇eiφ, φ >
2

| < ∇φ, φ > |
= | < ∇φ, φ > |.
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Thus, we obtain

|d|φ|| = | < ∇φ, α0 ⊗ φ > |
|φ|

=
| < (ΠI + ΠÎ)∇φ, α0 ⊗ φ > |

|φ|

≤ | < Pφ, α0 ⊗ φ > |
|φ|

+
| < ∇φ,ΠÎ(α0 ⊗ φ) > |

|φ|
≤ |Pφ|+ |∇φ| sup

|α|=|v|=1
|ΠÎ(α⊗ v)| = |Pφ|+ kP |∇φ|.

The constant kP is the same as the one in the refined Kato inequality. In [24] this
constant is determined in terms of the conformal weights of the differential operator.

Example 1.7.2. [24, (3.9)] For the classical Dirac operator D and for D−λ, where

λ ∈ R, we have k =
√

n−1
n .



Chapter 2

The λ+
min-invariant and an

overview of known results

In this chapter we first define the λ+
min-invariant, then we give an overview on what

is known about this invariant and where can it be used.

Definition of λ+
min.

Let (M, g, σ) be a Riemannian spin manifold of dimension n ≥ 2 with Dirac operator
D. We define

λ+
min(M, g, σ) := inf

g0∈[g],vol(M,g0)<∞
λ+

1 (M, g0, σ)vol(M, g0)
1
n

where

λ+
1 (M, g, σ) := inf

{
‖Dφ‖2

(Dφ, φ)

∣∣∣∣∣ 0 < (Dφ, φ), φ ∈ C∞c (M,S)

}
and [g] is the set of all metrics conformal to g. Furthermore, C∞c (M,S) denotes the
compactly supported smooth spinors on (M, g, σ).

Note that in the conformal class of a metric there always exists a metric of finite
volume, e.g. take fn(x) = (r2vol(Br+1(p) \ Br(p), g))−1 for r = dist(x, p) large
enough and p ∈ M fixed. Then,

∫
fndvolg ≤ vol(Bj(p), f2g) +

∑∞
i=j

1
j2 < ∞. If

fi is a monotone approximation of f by smooth non-negative functions, we obtain
metrics f2

i g with finite volume.
If g = κg with κ ∈ R>0, then from the transformation formula (1.4) we obtain
λ+

1 (g) = κ−
1
2λ+

1 (g). Furthermore, we have vol(M,κg) = κ
n
2 vol(M, g). Thus, λ+

min

could equally be defined as the infimum over all conformal metrics of unit volume.

In the case of closed manifolds λ+
1 coincides with the smallest positive eigenvalue of

the Dirac operator. That’s why, λ+
min is sometimes called the first positive conformal

eigenvalue of D. For complete manifolds λ+
1 is the infimum of the positive part of

the Dirac spectrum, cf. Lemma 4.1.2.

19
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As we will see in the next Lemma, the λ+
min-invariant can also be defined by the

following variational problem:

Λ+
min(M, g, σ) := inf

{
‖Dφ‖2q
(Dφ, φ)

∣∣∣∣∣ 0 < (Dφ, φ), φ ∈ C∞c (M,S), q =
2n
n+ 1

}
. (2.1)

The equations (1.5) and (1.6) make sure that this definition is conformally invariant,
i.e. Λ+

min(M, g, σ) = Λ+
min(M, g, σ) for all g ∈ [g].

Lemma 2.0.1. The invariants defined above coincide:

λ+
min(M, g, σ) = Λ+

min(M, g, σ).

Proof. This was proven in [1, Prop. 2.6] for closed manifolds, and a similar proof
works for open manifolds:
We restrict to metrics g of unit volume. Since q = 2n

n+1 < 2, the Hölder inequality
implies ‖Dφ‖q ≤ ‖Dφ‖2 for all φ ∈ C∞c (M,S). Hence, we obtain Λ+

min(g) ≤ λ+
1 (g)

and, thus, Λ+
min ≤ λ

+
min.

For the converse inequality let g = h
4

n+1 g with vol(M, g) = 1. Setting φ = h−
n−1
n+1φ,

equation (1.5) implies (φ,Dφ)g = (φ,D φ)g for all φ ∈ C∞c (M,S). We further re-
strict to spinors φ satisfying ‖Dφ‖q = 1. By a small perturbation of φ we can always
achieve that |Dφ| ∈ C∞c (M).

Now we choose the conformal factor h ∈ C∞(M) such that h = |Dφ|+ ε > 0. Then
due to Lebesgue’s dominated convergence theorem we have

vol(M, g) =
∫

M
h

2n
n+1 dvolg → 1

and
‖Dφ‖2L2(g) =

∫
M
|Dφ|2h−

2
n+1 dvolg → ‖Dφ‖qq = 1

as ε→ 0 . Therefore,

λ+
min ≤ lim

ε→0
λ+

1 (g)vol(g)
1
n ≤ lim

ε→0

‖Dφ‖2L2(g)

(φ,D φ)g

vol(g)
1
n =

1
(φ,D φ)g

=
‖Dφ‖2Lq(g)

(φ,Dφ)g

which yields the claim.

Bounds for λ+
min.

As in the Yamabe problem the standard sphere plays a special role. The λ+
min-

invariant of the standard sphere (Sn, gst) with its unique spin structure χst is given
by

λ+
min(Sn, gst, χst) = λ+

1 (Sn, gst, χst)vol(Sn, gst)
1
n =

n

2
vol(Sn, gst)

1
n . (2.2)
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This is obtained by using the conformal Hijazi inequality or Bär’s inequality and the
Dirac spectrum of the standard sphere, cf. in [3, pp. 22, 32] and for n = 2 in [15,
Thm. 2].
In the case of the standard sphere the infimum λ+

min is really attained by a metric
– the standard metric.

This value λ+
min(Sn) is the highest the λ+

min-invariant can reach, cf. [3, Thm. 3.1], [6,
Thm. 1.1] for closed manifolds of dimension n > 2, [28, Cor. 1.3] for closed surfaces
and Chapter 3 for general manifolds. Thus, for all Riemannian spin manifolds
(M, g, σ)

λ+
min(M, g, σ) ≤ λ+

min(Sn, gst, χst).

A trivial lower bound is given by

λ+
min(M, g, σ) ≥ 0.

Theorem 2.0.2. Let (M, g, σ) be a closed Riemannian spin manifold or an open
Riemannian spin manifold that is spin conformally equivalent to an open and bounded
subset with smooth boundary of any Riemannian spin manifold. Then we have

λ+
min(M, g, σ) > 0.

Proof. For closed manifolds this was shown in [4, Lem. 4.3.1].
Let now (M, g, σ) be spin conformally equivalent to an open and bounded subset Ω of
a Riemannian spin manifold (N,h, χ) such that Ω has a smooth boundary. Without
loss of generality we can assume N to be closed since we can always ”double” N in
such a way that Ω can still be viewed as a subset of the double and equipped with
the original metric and spin structure (This procedure will be explained explicitly
in the proof of Lemma 3.3.2). Then with Lemma 2.0.3 we obtain

λ+
min(M, g, σ) = λ+

min(Ω, h, χ) ≥ λ+
min(N,h, χ) > 0.

On general open manifolds this is no longer true, the λ+
min-invariant can vanish. In

[29, Ex. 3.4], see also Lemma 3.4.1, we gave a first example, namely the cylinder
S1 × R equipped with the metric g = gS1 + dt2 and with the spin structure whose
restriction to S1 has harmonic spinors – that is the one which does not bound to
the spin structure of the disk. Further examples will be given in Section 3.4 and
Example 4.1.5.ii.

λ+
min for subsets and disjoint unions.

Lemma 2.0.3. [29, Lem. 2.1.i] Let Ω1 ⊂ Ω2 ⊂ M be open non-empty subsets
of a Riemannian spin manifold (M, g, σ) equipped with the induced metric and the
induced spin structure. Then

λ+
min(Ω1, g, σ) ≥ λ+

min(Ω2, g, σ).
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This is easily seen from the definition of λ+
min, cf. (2.1). In the same way we see

immediately that for a compact exhaustion Mi of M , where Mi is open, we have

λ+
min(M, g, σ) = inf

i
λ+

min(Mi, g, σ).

We can say even more about open subsets of the standard sphere:

Lemma 2.0.4. Let Ω ⊂ Sn be an open non-empty subset and n ≥ 2. Then

λ+
min(Ω, gst, χst) = λ+

min(Sn, gst, χst).

This Lemma was proven in [29, Lem. 2.1.iii] for dimension n > 2. But it also holds
for n = 2 what we will show in Remark 3.1.5.

Next we examine the behaviour of λ+
min under disjoint unions:

Lemma 2.0.5. Let (M, g, σ) be the disjoint union of Riemannian spin manifolds
(Mi, gi, σi) with i = 1, . . . ,m. Then

λ+
min(M, g, σ) = min

i
λ+

min(Mi, gi, σi).

Proof. It is sufficient to prove the case m = 2.
Lemma 2.0.3 gives λ+

min(M) ≤ λ+
min(Mi) for all i. The converse inequality can be

obtained as follows:
Let φ ∈ C∞c (M,S) with (Dφ, φ) > 0. Then we have φ = φ1 + φ2 with φi := φ|Mi

∈
C∞c (Mi, S). This implies

‖DMφ‖2q
(DMφ, φ)

=
‖DMφ1 +DMφ2‖2q

(DM1φ1, φ1) + (DM2φ2, φ2)
=

(‖DM1φ1‖qq + ‖DM2φ2‖qq)
2
q

(DM1φ1, φ1) + (DM2φ2, φ2)

≥
‖DM1φ1‖2q + ‖DM2φ2‖2q

(DM1φ1, φ1) + (DM2φ2, φ2)

≥


inf
i

‖DMiφi‖2q
(DMiφi, φi)

if (DMiφi, φi) > 0

‖DMiφi‖2q
(DMiφi, φi)

if (DMjφj , φj) ≤ 0 for i 6= j

≥ inf
i
λ+

min(Mi, gi, σi).

The first inequality results from the monotonicity of the function

f : x ∈ R>0 → (ax + bx)
2
x = a2

(
1 +

(
b

a

)x) 1
x

for positive a and b which is deduced from

[(1 + cx)
1
x ]′ = (1 + cx)

1
x

(
cx ln c

(1 + cx)x
− ln(1 + cx)

x2

)
=

(1 + cx)
1
x

(1 + cx)x2
(cx lncx − (1 + cx) ln(1 + cx))
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and from the fact that x ∈ [1,∞)→ x lnx is monotonically increasing.
The second inequality is obtained from a+b

c+d ≥
a
c for b

d ≥
a
c and c, d > 0. Recall

that at most one summand (DMjφj , φj) is non-positive since its sum (DMφ, φ) is
positive.

Euler-Lagrange equation of the variational problem.
Since λ+

min is also given by a variational problem, one can consider the corresponding
Euler-Lagrange equation

D(ψ − (λ+
min)−1|Dψ|q−2Dψ) = 0, ‖Dψ‖q = 1. (2.3)

The following duality principle relates this equation to

Dφ = λ+
min|φ|

p−2φ, ‖φ‖p = 1. (2.4)

Lemma 2.0.6. [4, Lem. 4.2.6]
i) If ψ satisfies (2.3), then φ := |Dψ|p−2Dψ satisfies (2.4).
ii) If φ satisfies (2.4), then ψ := (λ+

min)−1φ satisfies (2.3).

This duality is quite useful since it is easier to work with equation (2.4), and in
particular we get the following existence result.

Theorem 2.0.7. [4, Thm. 4.2.2] If (M, g, σ) is closed and

λ+
min(M, g, σ) < λ+

min(Sn, gst, χst),

then there is a spinor φ ∈ C1,α(M,S) that is smooth away from its zero set and
fulfills (2.4).

Remark 2.0.8. Theorem 2.0.7 is also true if (M, g) is an open and smoothly
bounded subset of a manifold (N,h) with g = h|M , cf. [29, Thm. 3.1]. But in
contrast to the closed case the solution φ is not a minimizer of the variational prob-
lem since φ is then not compactly supported.

Thus, it would be interesting to know which Riemannian manifolds satisfy this
strict inequality. For the Yamabe problem it is known that for a closed manifold the
Yamabe invariant only attains the same value as the invariant of the standard sphere
if it is itself conformally equivalent to the standard sphere. For the λ+

min-invariant
this is not known. But there are some results describing classes of manifolds which
fulfill the strict inequality, cf. [9]. We want to sketch here the following:

Theorem 2.0.9. [9, Thm. 1.2] Let (M, g, σ) be a conformally flat closed Rieman-
nian spin manifold of dimension n ≥ 2 with invertible Dirac operator. If the mass
endomorphism (see below) possesses a positive eigenvalue, then

λ+
min(M, g, σ) < λ+

min(Sn, gst, χst).

For defining the mass endomorphism we need the notion of a Green function:
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Definition 2.0.10. [9, Def. 2.1] Let πi : M ×M →M be the projection to the i-th
component. A smooth section

GD : M ×M \ {(p, p) | p ∈M} → π∗1(Γ(M,S))⊗ (π∗2(Γ(M,S))∗

that is locally integrable on M×M is called a Green function for the Dirac operator
D if for any y ∈M , ψ0 ∈ Γy(M,S) and φ ∈ Γ(M,S) we have∫

< GD(x, y)ψ0, D
∗φ(x) > dx =< ψ0, φ(y) >,

Γy(M,S) denotes the set of values of a spinor at y ∈M .

On the Euclidean space the Green function is given by

Geucl(x, y) = − 1
ωn−1

x− y
|x− y|n

.

In general, there is the following result

Theorem 2.0.11. [9, Prop. 2.3] For a metric which is flat near y ∈ M the Green
function GD exists. Furthermore, in the trivialization given by the local comparison
of g and the Euclidean metric (cf. Section 1.4) the Green function expands for x
tending to y as follows:

GD(x, y)ψ0 = Geucl(x, y)ψ0 +
1

ωn−1
v(x, y)ψ0 (2.5)

where v(x, y) : Γy(M,S)→ Γx(M,S) is a homomorphism such that ∂xv(x, y)(ψ0) =
0 on a neighbourhood of y.

With these preparations the mass endomorphism can now be defined:

Definition 2.0.12. [9, Def. 2.10] Let (M, g, σ) be closed and conformally flat on
a neighbourhood of y ∈ M . Choose a metric g ∈ [g] that is flat on a neighbourhood
of y and fulfills gy = gy. Let GD be the Green function for D. Then the mass
endomorphism is defined as

αy : Γy(M,S)→ Γy(M,S), ψ0 7→ v(y, y)(ψ0)

where v is the map that appears in the expansion (2.5) with respect to g.

Since for two conformal metrics g1 = f2g2 that are both flat in a neighbourhood
of y the map v(y, y) coincides [9, Prop. 2.9], this definition is independent on the
choice of g.

Applications for λ+
min and other occurrences.

The first obvious application is that λ+
min is a conformal lower bound for the positive

part of the Dirac spectrum if the manifold has finite volume. Thus, it is interesting
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to get some estimates for λ+
min. The most prominent is probably the Hijazi inequal-

ity we will also deal with in Chapter 4.
Moreover, on closed surfaces a solution of (2.4) allows to prove the existence of a
constant mean curvature immersion, cf. [1, Prop. 10.2].
On open manifolds the λ+

min-invariant at infinity gives an obstruction to spin con-
formal compactification, see Theorem 3.0.1.

There are further investigations of the λ+
min-invariant in different directions.

Firstly, Raulot [40] considered in his PhD-thesis the λ+
min-invariant for manifolds

with boundary with different boundary conditions.
Additionally, another quantity that can be considered is the spin version of the σ-
invariant, that is the supremum of the Yamabe invariant of a manifold taken over
all conformal classes. This is called the τ -invariant

τ(M,σ) = sup
[g]∈C

λ+
min(M, g, σ)

where C is the set of all conformal classes on M [7]. This is now not only a conformal
invariant but depends only on the manifold and its spin structure.
In [7, Thm. 1.1] the behaviour of the τ -invariant under 0-dimensional surgery was
studied. This consideration also allowed to compute the τ -invariant on closed spin
surfaces, cf. [7, Thm. 1.3].

There still are a lot of open questions that would be interesting. One of the
most interesting ones might be: When does a Riemannian spin manifold fulfills
λ+

min(M, g, σ) = λ+
min(Sn)?
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Chapter 3

The λ+
min-invariant on surfaces

In [29] we examined the behaviour of the λ+
min-invariant on open spin manifolds.

However, most of the results were only proven for dimension n > 2. The main
goal of this chapter is to explore the two-dimensional case, although most of the re-
sults given here will be proven for all dimensions – as long as they are still valid then.

Firstly, we give the obstruction to spin conformal compactification of [29, Thm. 1.4]
now also for dimension 2.

Theorem 3.0.1. Let (M, g, σ) be an open complete Riemannian spin manifold of
dimension n ≥ 2 with λ+

min(M, g, σ) < λ+
min(Sn, gst, χst). Then (M, g, σ) is not spin

conformal to an open subset of a closed Riemannian spin n-manifold.

Definition 3.0.2. The λ+
min-invariant at infinity λ+

min of an open Riemannian spin
manifold (M, g, σ) is given by

λ+
min(M, g, σ) := lim

r→∞
λ+

min(M \Br(p), g, σ)

where Br(p) is a ball of radius r around a fixed p ∈M with respect to the metric g.

The existence of the limit follows from Lemma 2.0.3 and Theorem 3.0.6. The defi-
nition is independent of the chosen point p.

Here we give an example illustrating the two-dimensional case:

Example 3.0.3. Consider the cylinder S1 × R with metric g = gS1 + dt2, see
[29, Ex. 3.4] and Example 3.4.2. Due to Example 1.6.2.iii this cylinder is confor-
mally parabolic, and, furthermore, it is conformally compactifiable to the standard
sphere. But for the spin structure that is trivial on S1 we have λ+

min(S1 × R, g, σtr) =
λ+

min(S1 ×R, g, σtr) = 0 and, thus, due to the Theorem above the cylinder is in this
case not spin conformally compactifiable. In contrast, the cylinder equipped with
the spin structure that is nontrivial on S1 is conformally spin compactifiable by two
points and, hence, with Lemma 3.1.1 and Lemma 2.0.4 we have λ+

min(S1×R, g, σnt) =
λ+

min(S1 × R, g, σnt) = λ+
min(S2, gst, χst).

27
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Remark 3.0.4. Theorem 2.0.2 gives another obstruction to spin conformal com-
pactification:
If λ+

min(M, g, σ) = 0, it cannot be spin conformally compactified. That follows from
Lemma 2.0.3 since as a subset of a closed manifold its invariant would be greater
than zero.

To prove Theorem 3.0.1 we use an Aubin-type inequality that is an analog to the
original Aubin inequality [12, Thm. 9].

Theorem 3.0.5. Let (M, g, σ) be a closed Riemannian spin manifold of dimension
n ≥ 2. Set q = 2n

n+1 and λn = λ+
min(Sn)−1. Then for every ε > 0 there exists a

constant c(ε) such that for all φ ∈ C∞(M,S) we have

(DMφ, φ) ≤ (1 + ε)λn ‖ DMφ ‖2q +c(ε) ‖ φ ‖2q .

Moreover, we will also prove the existence of the upper bound of λ+
min for two-

dimensional manifolds. So we will have for dimensions n ≥ 2 and all manifolds,
closed or open:

Theorem 3.0.6. For any Riemannian spin manifold (M, g, σ) with dimension n ≥ 2
it holds

λ+
min(M, g, σ) ≤ λ+

min(Sn, gst, χst).

For closed manifolds this was proven for n > 2 in [3, Thm. 3.1] and [6, Thm. 1.1]
and for n = 2 in [28, Cor. 1.3]. For open manifolds with n > 2 we proved this in
[29, Thm. 1.2].

Furthermore, we collect some other properties for λ+
min. We examine the behaviour

of λ+
min when subsets of lower dimensions are removed. Moreover, in two dimensions

we state the Bär inequality for open manifolds.

3.1 Stability of λ+
min when removing subsets

In this section we examine the question which sets can be cut out of a manifold of
dimension n ≥ 2 without changing its λ+

min-invariant or even without changing λ+
1 .

The easiest case, cutting out a point, was considered in [29] for dimensions bigger
than 2. Before considering subsets of higher dimensions we will extend this result
to surfaces.

Lemma 3.1.1. Let (M, g, σ) be a Riemannian spin manifold of dimension n ≥ 2.
Fix a point p ∈M . Then

λ+
1 (M \ {p}, g, σ) = lim

β→0
λ+

1 (M \Bβ(p), g, σ) = λ+
1 (M, g, σ)

and
λ+

min(M \ {p}, g, σ) = lim
β→0

λ+
min(M \Bβ(p), g, σ) = λ+

min(M, g, σ)

with Bβ(p) being a closed ball around p of radius β with respect to the metric g.
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Proof. The proof is based on the idea of B. Ammann to use a logarithmic cut-off
function. The structure of the proof remains the same as in [29, Lemma 2.1]:
Lemma 2.0.3 shows that λ+

min(M \ Bβ(p), g, σ) ≥ λ+
min(M, g, σ) for all β and, anal-

ogously, the inequality holds with λ+
1 .

Now we show that for each spinor φ ∈ C∞c (M,S) the quotient ‖Dφ‖2
(Dφ,φ) can be approx-

imated by spinors from C∞c (M \ {p}, S) that are obtained from φ by a cut-off near
p. As cut-off function ρ we now use

ρa,ε(x) =

{ 0 for r < aε
1− δ ln ε

r for aε ≤ r ≤ ε
1 for ε < r

where r := d(x, p) is the distance from x to p with respect to the metric g. The
constant a fulfills a < 1, and δ is chosen such that ρ(aε) = 0, i.e. a = e−

1
δ . Then

ρ is continuous, constant outside a compact set and, thus, Lipschitz. Hence, for
φ ∈ C∞c (M,S) the spinor ρa,εφ is contained in Hr

1(M,S) for all 1 ≤ r ≤ ∞.

For every φ ∈ C∞c (M,S) we define φa,ε := ρa,εφ ∈ Hr
1(M,S) for every 1 < r < ∞.

This spinor is compactly supported in M \Baε(p). Since ρa,ε ↗ 1, we have

‖ φa,ε − φ ‖=‖ (ρa,ε − 1)φ ‖→ 0

for a→ 0. Furthermore,

‖ Dφa,ε −Dφ ‖ ≤ ‖ (ρa,ε − 1)Dφ ‖ + ‖ ∇ρa,ε · φ ‖
≤ ‖ (ρa,ε − 1)Dφ ‖ + sup

Bε(p)
|φ| ‖ ∇ρa,ε ‖ .

Provided that ‖ ∇ρa,ε ‖→ 0 for a→ 0, we obtain that Dφa,ε → Dφ in L2 for a→ 0.
Using the Hölder inequality we then have

|(Dφa,ε, φa,ε)− (Dφ, φ)| ≤ ‖ Dφa,ε −Dφ ‖‖ φa,ε ‖ + ‖ Dφ ‖‖ φa,ε − φ ‖→ 0

for a→ 0 and, therefore, λ+
1 (M \Bβ(p), g, σ)→ λ+

1 (M, g, σ).

Thus, it remains to consider the term including ∇ρa,ε:∫
Bε\Baε

|∇ρa,ε|2dvolg ≤ cωn−1

∫ ε

aε

δ2

r2
rn−1dr

=
{
c′δ2(ln ε− ln(aε)) = −c′δ2 ln a = c′δ for n = 2
cωn−1δ

2
∫ ε
aε r

n−3dr = c′′rn−2|εaε else
→ 0

for δ → 0 (i.e. a → 0) where ωn−1 is the volume of the standard sphere Sn−1 and
c, c′, c′′ are positive constants. The constant c in the first inequality arises when dvolg
is compared with the volume element of the Euclidean space via the exponential map
Bε(p)→ Rn.
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For the proof of the second equality we observe that the first equality already implies
that λ+

min(M \ {p}, g, σ) ≤ λ+
min(M, g, σ). The converse inequality is obtained from

Lemma 2.0.3.

The following is a generalization of Lemma 3.1.1 to higher codimensions.

Lemma 3.1.2. Let (M, g, σ) be a Riemannian spin manifold of dimension n ≥ 2.
Fix a closed and bounded subset Ω ⊂ M that is contained in a countable union
of m-dimensional submanifolds (m ≤ n − 2) that has locally finite m-dimensional
Hausdorff measure. Then

λ+
1 (M \ Ω, g, σ) = λ+

1 (M, g, σ)

and
λ+

min(M \ Ω, g, σ) = λ+
min(M, g, σ).

Definition 3.1.3. [18, p. 189] A subset of a manifold is called countably m-C∞-
rectifiable if it is contained in a countable union of smooth m-dimensional subman-
ifold.

Proof of Lemma 3.1.2: We can assume Ω to be itself this countable union of closed
smooth (n − 2)-dimensional submanifolds described in the assumptions, since for
every Ω′ ⊂ Ω we have with Lemma 2.0.3 λ+

1 (M) ≤ λ+
1 (M \ Ω′) ≤ λ+

1 (M \ Ω) and
λ+

min(M) ≤ λ+
min(M \ Ω′) ≤ λ+

min(M \ Ω).
Furthermore, we define ρa,ε as in Lemma 3.1.1 but with r := d(x,Ω) being the
distance from x to the set Ω. With Bε := {x ∈ M | d(x,Ω) ≤ ε} we set B2

ε (p) :=
{x ∈ Bε | d(x, p) = d(x,Ω)} for a point p ∈ Ω.
For sufficiently small ε each B2

ε (p) can be identified with a subset of Bε(0) ⊂ R2.
Then we can calculate∫

Bε

|∇ρa,ε|2dvolg ≤ voln−2(Ω) sup
x∈Ω

∫
B2

ε (x)\B2
aε(x)
|∇ρa,ε|2dvolg2

≤ cvoln−2(Ω)
∫

Bε(0)\Baε(0)
|∇ρa,ε|2dvolgE

≤ c′
∫ ε

aε

δ2

r2
rdr → 0 for a→ 0

where voln−2 denotes the (n − 2)-dimensional volume, g2 is the metric on B2
ε (x)

induced from g. The positive constants c, c′ arise from voln−2(Ω) and the comparison
of dvolg2 with the volume element of the Euclidean metric.
The rest of the proof is the same as the one of Lemma 3.1.1, only the balls Br(p)
around p are replaced by neighbourhoods Br(Ω) of Ω.

Remark 3.1.4.
i) We expect Lemma 3.1.2 to be wrong for codimension one although we have no
counterexample yet. It clearly does not hold for unbounded subsets of codimension
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one since it already fails for a real line embedded into the standard cylinder with
vanishing λ+

min-invariant, see Example 3.4.2. When leaving out a whole real line we
obtain R2 with λ+

min(R2) = λ+
min(S2), cf. Example 3.1.6.

ii) The analog of Lemma 3.1.2 for the Yamabe invariant on Riemannian (not nec-
essarily spin) manifolds can be proven in the same way.

Remark 3.1.5. Since we proved Lemma 3.1.1 now also for n = 2, the proof of
Lemma 2.0.4 [29, Lem. 2.1.iii] carries over, too:
Let Ω be an open domain of the standard sphere Sn (n ≥ 2). For all ε > 0 and
fixed p ∈ Sn there always exists a spin conformal map Φε : (Sn, gst)→ (Sn, gst) with
Sn \Bε(p) ⊂ Φε(Ω). Thus, we have then λ+

min(Ω) ≥ λ+
min(Sn) and for ε→ 0

λ+
min(Ω) = λ+

min(Φε(Ω)) ≤ λ+
min(Sn \Bε(p))→ λ+

min(Sn).

Hence, we obtained

λ+
min(Ω, gst, χst) = λ+

min(Sn, gst, χst).

Example 3.1.6. The Euclidean space and the hyperbolic space each admit exactly
one spin structure, cf. Remark 1.1.1. (Rn, gE) is spin conformally equivalent to
(Sn \ {∗}, gst). Hence, Lemma 3.1.1 ensures that λ+

min(Rn, gE) = λ+
min(Sn, gst).

Moreover, there is a spin conformal map (Hn, gH) → (B1(∗) ⊂ Sn, gst). Thus,
Lemma 2.0.4 and Remark 3.1.5 imply λ+

min(Hn, gH) = λ+
min(Sn, gst).

While λ+
min(Sn, gst) for n > 2 was computed using the Hijazi inequality, the value

of λ+
min(S2, gst) was obtained from Bär’s inequality:

Bär proved in [15, Thm. 2] that for any Riemannian spin manifold homeomorphic
to S2 each Dirac eigenvalue λ satisfies

λ2area(M) ≥ 4π.

Since for the standard metric on S2 equality is attained, this implies λ+
min(S2) =

2
√
π, cf. (2.2).

Next, we prove this inequality for the corresponding case of open manifolds:

Theorem 3.1.7. Let (M, g, σ) be a Riemannian spin surface of finite area that is
homeomorphic to R2. Then

λ+
1 (g)2area(M, g) ≥ 4π.

Proof. By the uniformization theorem (M, g) is either conformally equivalent to the
standard Euclidean or hyperbolic space. In both cases we have λ+

min(M, g, σ) =
λ+

min(S2, gst) = 2
√
π. That implies λ+

1 (M, g, σ)2area(M, g) ≥ 4π.

Remark 3.1.8. Let (M, g) be (R2, f2gE). Then the inverse stereographic projection
π−1 is a (spin-structure preserving) isometry from (R2, f2gE) to (S2 \ {∗}, F 2gst)
with f2 = 4

(|x|2+1)2)
(F 2 ◦ π−1). Thus, λ+

1 (R2, f2gE) = λ+
1 (S2 \ {∗}, F 2gst). If F
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can be continued through {∗} to the whole sphere, we get from Lemma 3.1.1 that
λ+

1 (R2, f2gE) = λ+
1 (S2, F 2gst). With Bär’s inequality we see that in this case equal-

ity can only be achieved for F ≡ 1, i.e. for f = 2
|x|2+1

.
If equality can also be achieved for a function F with an irremovable singularity at
{∗} or for (H2, f2gH), we do not know yet.

3.2 An Aubin-type inequality

In this section we want to prove a spin version of an inequality of Aubin which we
state now for the sake of comparison:

Theorem 3.2.1. [12, Thm. 9] Let (M, g) be a closed Riemannian manifold of
dimension n ≥ 3. Furthermore, let p′ = 2n

n−2 and σn = Q(Sn, gst)−1. Then for all
ε > 0 there exists a constant c(ε) such that for all v ∈ C∞(M)

‖v‖2p′ ≤ (1 + ε)σn‖∇v‖22 + c(ε)‖v‖22.

To prove the spin analog we start by considering the Euclidean space: On Rn we
have

(Dφ, φ) ≤ λn‖Dφ‖2q (3.1)

for all φ ∈ C∞c (Rn, S) and with λnλ
+
min(Sn) = 1. This follows from the description of

λ+
min by the variational problem (2.1) and the equality λ+

min(Rn, gE) = λ+
min(Sn, gst),

cf. Example 3.1.6.
But before proving the generalization of this statement, Theorem 3.0.5, we want to
mention the following Lemma where p = 2n

n−1 is the conjugate exponent of q:

Lemma 3.2.2. Let (M, g, σ) be a closed Riemannian spin manifold. Then there
exists a constant C > 0 such that for all ψ ∈ C∞(M,S) ∩ (kerDM )⊥ the following
inequalities hold
i) ‖∇Mψ‖q ≤ C‖DMψ‖q
ii) ‖ψ‖q ≤ C‖DMψ‖q
iii) ‖ψ‖p ≤ C‖DMψ‖q.

This Lemma was stated in [7, Prop. 2.4] for invertible Dirac operators and in
[8, Lem. 5.1] for the special case of the two-dimensional torus. The proof of ii),
we’ll give, follows mainly the arguments of [8] where the condition that the spinor
is (L2−)perpendicular to kerDM replaces the invertibility of the Dirac operator
assumed there.

Proof. ii) We give a proof by contradiction. Assume that there is a sequence of
spinors φi ∈ C∞(M,S) ∩ (kerDM )⊥ with ‖φi‖q = 1 but ‖DMφi‖q ≤ 1

i . Then the
sequence {φi} is bounded in Hq

1 . Since Hq
1 is reflexive, there exists a spinor φ that is

the weak limit of (a subsequence of) φi in Hq
1 . The inclusion Hq

1 ↪→ Lq is a compact
operator, see Theorem 1.3.2. Hence, φi → φ converges even strongly in Lq. Thus,
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‖φ‖q = 1 and, in particular, φ 6= 0. Together with the weak convergence of φi in Hq
1

this implies
‖DMφ‖q ≤ lim inf ‖DMφi‖q = 0.

Thus, φ is a harmonic spinor and, therefore, due to elliptic regularity theory φ ∈ C∞,
cf. Remark 1.2.2.i. Then the Hölder inequality implies for all ψ ∈ kerDM that

(φ, ψ) = (φ− φi, ψ) ≤ ‖φ− φi‖q‖ψ‖p → 0.

So we obtain φ ⊥ kerDM . But this is a contradiction to φ being harmonic.
i) Since the Sobolev norms with respect to DM and ∇M are equivalent, cf. Lemma
1.3.1, there exists a constant c > 0 such that for all φ ∈ Hq

1(M,S) we have

‖φ‖q + ‖∇Mφ‖q ≤ c(‖φ‖q + ‖DMφ‖q).

If c ≤ 1, we are done. For c > 1 we get the claimed inequality by using ii).
iii) Since Hq

1 → Lp is a continuous Sobolev embedding, there exists a constant c > 0
with

‖ψ‖p ≤ c(‖ψ‖q + ‖DMψ‖q)

for all ψ ∈ C∞(M,S). With i) and ii) the claim is obtained.

Remark 3.2.3. i) and ii) of Lemma 3.2.2 hold for every q > 1, iii) for all p ≤ qn
n−q .

The proof is the same, and the inequality is only used to assert the existence of the
Sobolev embedding Hq

1 → Lp.

Now we can prove the Aubin-type inequality:

Proof of Theorem 3.0.5. The proof uses a similar ansatz as the proof of the original
Aubin inequality for functions [37, Thm. 2.3] – the idea of a covering on which all
operations can be compared to the Euclidean case.

First we observe that it is sufficient to prove the inequality for spinors perpendicular
to kerDM since the part of the spinor parallel to the kernel only enlarges the right
handside.
Next we fix ε > 0 sufficiently small. For every point x ∈ M we choose Ux :=
exp−1

x (Bε(0)) equipped with geodesic normal coordinates. In order to compare the
metric and resulting quantities, we use the development of the metric in these co-
ordinates, see Section 1.5. Then, dvolg = fdvolgE (=: fdx) with f ∈ C∞(M) and
(1 + ε)−1 < f < (1 + ε). Since M is closed, we can fix a finite subcover {Ui} of
{Ux}x∈M and a subordinate partition of unity {α2

i } with αi ∈ C∞c (Ui) and
∑
α2

i = 1.

In the course of this proof the Lr-norms ‖.‖r are always taken with respect to the
metric g.
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(DMφ, φ) =
∫

M

∑
l

α2
l < DMφ, φ > dvolg

=
∑

l

∫
Ul

< DM (αlφ)−∇αl · φ, αlφ > dvolg

=
∑

l

∫
Ul

< DM (αlφ)⊥, (αlφ)⊥ > dvolg

=
∑

l

∫
Ul

Re < DM (αlφ)⊥, (αlφ)⊥ > fdx

≤
∑

l

∫
Ul

Re < DM (αlφ)⊥, (αlφ)⊥ > dx+ ε
∑

l

∫
Ul

| < DM (αlφ)⊥, (αlφ))⊥ > |dx

≤
∑

l

∫
Ul

Re < DM (αlφ)⊥, (αlφ)⊥ > dx+ ε(1 + ε)
∑

l

‖DM (αlφ)⊥‖q‖(αlφ)⊥‖p

≤
∑

l

∫
Ul

Re < DM (αlφ)⊥, (αlφ)⊥ > dx+ ε(1 + ε)C
∑

l

‖DM (αlφ)⊥‖2q .

The third equality follows since < ∇f ·ψ,ψ >∈ iR [31, Lem. 3.1] for all f ∈ C∞(M)
but (DMφ, φ) ∈ R. Furthermore, ψ⊥ denotes the part of the spinor ψ that is
perpendicular to kerDM . Moreover to obtain the first inequality, we used that for
a real-valued function h ∈ C∞(M)∫

Ul

hfdx ≤ (1 + ε)−1

∫
{h<0}∩Ul

hdx+ (1 + ε)
∫
{h>0}∩Ul

hdx

≤ (1− ε)
∫
{h<0}∩Ul

hdx+ (1 + ε)
∫
{h>0}∩Ul

hdx =
∫

Ul

hdx+ ε

∫
Ul

|h|dx.

The second last inequality was obtained from the Hölder inequality. The factor
(1 + ε) occurs since the Lr-norms refer to the volume form fdx. The last inequality
is deduced from Lemma 3.2.2.iii.
All constants C,Ci or ci arising here in this proof are positive.

Recall from (1.8) and (1.12) that the Bourguignon-Gauduchon-Trivialization reads

DMψ = DRn
ψ︸ ︷︷ ︸

A

+
1
4

∑
Γ̃k

ij∂i · ∂j · ∂kψ︸ ︷︷ ︸
B

+
∑

(bji − δ
j
i )∂i · ∇∂j

ψ︸ ︷︷ ︸
C

,

where we already identify spinors in Γ(M,S) with spinors in Γ(Rn, S), see Section
1.5.
In the development of the geodesic normal coordinates of U we can use (1.9) and
(1.10) to estimate ∣∣∣∑ Γ̃k

ij∂i∂j∂k

∣∣∣ ≤ εa1 and |bji − δ
j
i | ≤ ε

2a2 (3.2)
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where a1, a2 are positive constants arising from the curvature. Thus, these constants
only depend on (M, g) not on ε.

We start to estimate the summands arising from A. From (3.1) we find

∑
l

∫
Ul

< DRn
(αlφ), (αlφ) > dx ≤ λn

∑
l

(∫
Ul

|DRn
(αlφ)|qdx

) 2
q

≤ λn(1 + ε)
2
q

∑
l

‖DRn
(αlφ)‖2q .

Thus, we have∑
l

∫
Ul

< DRn
(αlφ)⊥, (αlφ)⊥ > dx

=
∑

l

∫
Ul

[< DRn
(αlφ), (αlφ) > −2Re < DRn

(αlφ)ker, (αlφ)⊥ >

− < DRn
(αlφ)ker, (αlφ)ker >]dx

≤ λn

∑
l

(∫
Ul

|DRn
(αlφ)|qdx

) 2
q

+
∑

l

c
∣∣∣ ∫

Ul

< DRn
(αlφ)ker, αlφ > dx

∣∣∣
≤ λn(1 + ε)

2
q

∑
l

‖DRn
(αlφ)‖2q +

∑
l

c‖DRn
(αlφ)ker‖2‖αlφ‖2,

where ψker is the part of a spinor ψ that belongs to the kernel of DM and c is a
positive constant. Equation (3.1) is not applicable on the perpendicular part of αlφ
since this spinor is in general not compactly supported.

Furthermore,

‖DRn
(αlφ)⊥‖q = ‖DM (αlφ)⊥ −

1
4

∑
Γ̃k

ij∂i · ∂j · ∂k(αlφ)⊥

−
∑
i,j

(bji − δ
j
i )∂i · ∇∂j

(αlφ)⊥‖q

≤ ‖DM (αlφ)⊥‖q + ‖1
4

∑
Γ̃k

ij∂i · ∂j · ∂k(αlφ)⊥‖q

+ ‖
∑
i,j

(bji − δ
j
i )∂i · ∇∂j

(αlφ)⊥‖q.

Using (3.2) we get

‖1
4

∑
Γ̃k

ij∂i · ∂j · ∂k(αlφ)⊥‖q ≤ εc1‖(αlφ)⊥‖q

and with baj∇M
∂a
φ = baj∇∂aφ+ 1

4

∑
Γ̃m

jk∂k · ∂m · φ, cf. (1.11),
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‖
∑
i,j

(bji − δ
j
i )∂i · ∇∂j

(αlφ)⊥‖q ≤ ε2c2‖∇∂j
(αlφ)⊥‖q

= ε2c2‖∇M
∂j

(αlφ)⊥ −
1
4

∑
(baj )

−1Γ̃m
ak∂k · ∂m · (αlφ)⊥‖q

≤ ε2c2‖∇M
∂j

(αlφ)⊥‖q + ε2c2‖
1
4

∑
(baj )

−1Γ̃m
ak∂k · ∂m · (αlφ)⊥‖q

≤ ε2c2‖∇M (αlφ)⊥‖q + ε3c3‖(αlφ)⊥‖q
≤ ε2C2‖DM (αlφ)⊥‖q + ε3c3‖(αlφ)⊥‖q

where the fourth line is again obtained from (3.2) and (1.10) and the last follows
from Lemma 3.2.2.i. Hence, we find

‖DRn
(αlφ)⊥‖q ≤ (1 + ε2C2)‖DM (αlφ)⊥‖q + εC1‖(αlφ)⊥‖q.

Similarly and bearing in mind that DM (αlφ)ker = 0 and ‖ψ‖q +‖∇Mψ‖q ≤ c(‖ψ‖q +
‖DMψ‖q), we obtain

‖DRn
(αlφ)ker‖q ≤ εC1‖(αlφ)ker‖q,

and, analogously,
‖DRn

(αlφ)ker‖2 ≤ εC ′1‖(αlφ)ker‖2.

Thus, for ε sufficiently small we have∑
l

∫
Ul

< DRn
(αlφ)⊥, (αlφ)⊥ > dx

≤ λn(1 + ε)
2
q

∑
l

(
‖DRn

(αlφ)⊥‖q + ‖DRn
(αlφ)ker‖q

)2

+
∑

l

c‖DRn
(αlφ)ker‖2‖αlφ‖2

≤ λn(1 + ε)
2
q

∑
l

(
(1 + ε2C2)‖DM (αlφ)⊥‖q + εC‖(αlφ)‖q

)2
+
∑

l

εc′‖αlφ‖22

≤ λn(1 + ε)
2
q
+1(1 + ε2C2)2

∑
l

‖DM (αlφ)‖2q + c3(ε)
∑

l

‖αlφ‖2q + εc′‖φ‖22

≤ λn(1 + ε)
2
q
+1(1 + ε2C2)2

∑
l

‖DM (αlφ)‖2q + c3(ε)
∑

l

‖α2
l |φ|2‖ q

2
+ εc′‖φ‖2p

≤ λn(1 + ε)
2
q
+1(1 + ε2C2)2

∑
l

‖DM (αlφ)‖2q + c3(ε)‖
∑

l

α2
l |φ|2‖ q

2
+ εc′′‖DMφ‖2q .

The third inequality is obtained by using (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2. The
ci(ε)’s are positive constants depending only on ε. The last line uses the Minkowski
inequality for the quasi-norm ‖.‖ q

2
(0 < q

2 < 1) of positive functions [30, Thm. 198]
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and again Lemma 3.2.2.iii.

With
∑

l |∇αl|2 ≤ c4(ε) we have∑
l

‖DM (αlφ)‖2q =
∑

l

‖αlD
Mφ+∇αl · φ‖2q

≤ (1 + ε)
∑

l

‖αlD
Mφ‖2q + (1 + ε−1)

∑
l

‖∇αlφ‖2q

≤ (1 + ε)
∑

l

‖α2
l |DMφ|2‖ q

2
+ (1 + ε−1)

∑
l

‖|∇αl|2|φ|2‖ q
2

≤ (1 + ε)‖
∑

l

α2
l |DMφ|2‖ q

2
+ (1 + ε−1)‖

∑
l

|∇αl|2|φ|2‖ q
2

≤ (1 + ε)‖DMφ‖2q + c5(ε)‖φ‖2q . (3.3)

After a rescaling of ε we finally obtain an estimate for the summand A:∑
l

∫
Ul

< DRn
(αlφ)⊥, (αlφ)⊥ > dx ≤ λn(1 + ε)‖DMφ‖2q + c6(ε)‖φ‖2q .

Next, we approximate the terms coming from B and C:

(1 + ε)Re
∑

l

∫
Ul

<
∑
i,j,k

1
4
Γ̃k

ij∂i · ∂j · ∂k · (αlφ)⊥, (αlφ)⊥ > dx

≤ (1 + ε)2
∑

l

∫
M
|
∑
i,j,k

1
4
Γ̃k

ij∂i · ∂j · ∂k||(αlφ)⊥|2dvolg

≤ (1 + ε)2
∑

l

∫
M
|
∑
i,j,k

1
4
Γ̃k

ij∂i · ∂j · ∂k||αlφ|2dvolg

≤ εc7
∫

M
|φ|2dvolg ≤ εc7‖φ‖q‖φ‖p ≤ εc7C2‖DMφ‖2q

where the first inequality uses Cauchy-Schwarz, the fourth one is the Hölder inequal-
ity and the last inequality is obtained from Lemma 3.2.2.ii and .iii. Further,

(1 + ε)Re
∑

l

∫
Ul

∑
i,j

< (bji − δ
j
i )∂i · ∇∂j

(αlφ)⊥, (αlφ)⊥ > dx

≤ (1 + ε)Re
∑

l

∫
Ul

∑
i,j

<(bji − δ
j
i )∂i ·

(
∇M

∂j
(αlφ)⊥

− 1
4

∑
(baj )

−1Γ̃m
jk∂k ·∂m ·(αlφ)⊥

)
,(αlφ)⊥>dx

≤ (1 + ε)Re
∑

l

∫
Ul

∑
i,j

< (bji − δ
j
i )∂i · ∇M

∂j
(αlφ)⊥, (αlφ)⊥ > dx+ ε3c7‖φ‖q‖φ‖p

≤ (1 + ε)
∑

l

∫
Ul

∑
i,j

|bji − δ
j
i ||∇

M (αφ)⊥||(αlφ)⊥|dx+ ε3c7‖φ‖q‖φ‖p
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≤ ε2c8
∑

l

‖∇M (αφ)⊥‖q‖(αφ)⊥‖p + ε3c7‖φ‖q‖φ‖p

≤ ε2c8C
∑

l

‖DM (αlφ)⊥‖2q + ε3c9‖φ‖2p ≤ ε2c10‖DMφ‖2q + c(ε)‖φ‖2q

where the first inequality arises from equation (1.11). The other inequalities are
obtained by combinations of the Hölder inequality, Lemma 3.2.2 and the estimates
(3.2) and (3.3).

Collecting all the terms estimated above we get

(DMφ, φ) =
∑

l

∫
Ul

Re < DM (αlφ)⊥, (αlφ)⊥ > dx+ ε(1 + ε)C
∑

l

‖DM (αlφ)⊥‖2q

≤
∑

l

∫
Ul

< DRn
(αlφ)⊥, (αlφ)⊥ > dx+ εc11‖DMφ‖2q + c12(ε)‖φ‖2q

≤ (1 + ε)λn‖DMφ‖2q + c(ε)‖φ‖2q

where the last inequality is obtained by rescaling ε.

3.3 Proof of Theorem 3.0.1 and 3.0.6

The proofs of these theorems follow the ideas in [29] – even for n = 2. One only
has to make sure that the key lemmas are valid for all n ≥ 2. For the key lemma to
the proof of Theorem 3.0.6 [29, Lem. 2.3.] nothing changes, but since we know now
that λ+

min(R2) = λ+
min(S2), see Example 3.1.6, it is also valid for dimension two:

Lemma 3.3.1. Let (M, g, σ) be a Riemannian spin manifold of dimension n ≥ 2
and p ∈M fixed. Then

lim
ε→0

λ+
min(Bε(p), g, σ) = λ+

min(Sn, gst)

where Bε(p) is an open ball around p and radius ε.

Proof. We define rescaled geodesic normal coordinates by

σε : TpM ∼= Rn →M, σε(x) = expp(εx).

Let B ⊂ TpM be an open ball around 0 with respect to the Euclidean metric gE such
that the exponential map expp restricted to B is a diffeomorphism and we can use
the Bourguignon-Gauduchon-Trivialization. Then, Uε := σε(B) → {p} as ε → 0.
Furthermore, we define the spinor ψε := ε−

n−1
2 ψ ◦ σε for any ψ ∈ C∞(B,S) and

the metric gε := ε−2σ∗ε (g), i.e. locally (gε)ij = (gij ◦Mε)dxidxj where Mε denotes
multiplication by ε. Then conformal invariance implies

(Dgψε, ψε)Uε,g

‖ Dgψε ‖2Lq(Uε,g)

=
(Dεψ,ψ)B,gε

‖ Dεψ ‖2Lq(B,gε)
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where Dε is the Dirac operator with respect to gε.
Next, we show

‖Dεψ‖2Lq(B,gε)

(Dεψ,ψ)gε

−
‖DRn

ψ‖2Lq(B,gE)

(DRnψ,ψ)gE

→ 0 for ε→ 0. (3.4)

At first, with the Bourguignon-Gauduchon-Trivialization we have

|Dεψ −DRn
ψ| ≤ 1

4

∣∣∣∑ Γ̃k
ij(gε)∂i · ∂j · ∂k · ψ

∣∣∣+ ∣∣∣∑(bji − δ
j
i )∂j · ∇∂i

ψ
∣∣∣

Using (gε)ij = gij◦Mε and the expansions (1.7), (1.8) and (1.10), we obtain |bji−δ
j
i | =

O(ε2) and |Γ̃k
ij(gε)| = O(ε) which implies

|Dεψ −DRn
ψ| → 0 for ε→ 0.

Furthermore,

|‖Dεψ‖Lq(B,gε) − ‖Dεψ‖Lq(B,gE)| ≤
∫

B
|Dεψ|q(dvolgε − dvolgE )→ 0

since dvolgε = (1 +O(ε))dvolgE . Summarizing we have

|‖Dεψ‖Lq(B,gε) − ‖D
Rn
ψ‖Lq(B,gE)|

≤ |‖Dεψ‖Lq(B,gε) − ‖Dεψ‖Lq(B,gE)|+ |‖Dεψ‖Lq(B,gE) − ‖DRn
ψ‖Lq(B,gE)|

→ 0 for ε→ 0

For the denominators of (3.4) we get

|(Dεψ,ψ)gε−(DRn
ψ,ψ)gE | ≤ |(Dεψ,ψ)gε)−(Dεψ,ψ)gE )|+ |((Dε−DRn

)ψ,ψ)gE | → 0

and, thus, (3.4) is shown. Hence, there exist sequences ψi ∈ C∞c (B,S) and δi ∈ R>0

such that δi → 0 and

λ+
min(Sn)−1 − δi =

(DRn
ψi, ψi)

‖DRnψi‖2Lq(B,gE)

= lim
ε→0

(Dgψ
i
ε, ψ

i
ε)

‖Dgψi
ε‖2Lq(Uε,g)

≤ lim inf
ε→0

λ+
min(Uε, g)−1.

Here we used λ+
min(Sn, gst) = λ+

min(B, gst), cf. Remark 3.1.5.
Furthermore, there exist sequences φi

ε ∈ C∞c (Uε, S) and βi ∈ R>0 with βi → 0 such
that

lim
ε→0

(λ+
min(Uε, g)−1 − βi) = lim

ε→0

(Dgφ
i
ε, φ

i
ε)

‖Dgφi
ε‖2Lq(Uε,g)

=
(DRn

φi, φi)
‖DRnφi‖2Lq(B,gE)

≤ λ+
min(Sn)−1.

For i tending to infinity we obtain from these estimates that λ+
min(Uε, g) tends to

λ+
min(Sn, gst). Since for each ε > 0 there exists an ε′ > 0 with Bε′(p) ⊂ Uε, we obtain

the claim.
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Proof of Theorem 3.0.6. Let p ∈M be fixed and for ε > 0 let Bε be the ball around
p with radius ε with respect to g. Then, with Lemma 3.3.1 we have λ+

min(M, g, σ) ≤
λ+

min(Bε, g, σ)→ λ+
min(Sn, gst, χst) for ε→ 0.

The next Lemma generalizes Lemma 3.3.1. But we needed Lemma 3.3.1 to prove
first Theorem 3.0.6 since that will be used in the following proof.

Lemma 3.3.2. Let (M, g, σ) be a Riemannian spin manifold of dimension n ≥ 2.
Assume that there exists a sequence {Γi} of smoothly bounded open subsets of (M, g)
with |Γi| := vol(Γi, g)→ 0 and Γi ⊂ Γ1 for i ∈ N. Then

lim
i→∞

λ+
min(Γi, g, σ) = λ+

min(Sn, gst, χst).

Remark 3.3.3. This Lemma was stated in [29, Lem. 3.2]. Unfortunately, in the
proof we used the wrong statement of [29, Lem. 2.2.]. Here, we will give a new proof
using the Aubin-type inequality.

Proof of Lemma 3.3.2. Set λi := λ+
min(Γi, g, σ). We prove the statement by contra-

diction. Due to Theorem 3.0.6 we have λi ≤ λ+
min(Sn) for all i. Thus, we assume

that there exists a constant k such that λi ≤ λ+
min(Sn)− k for all i.

Due to the definition of λ+
min there exists a sequence φi ∈ C∞c (M,S) with supp φi ⊂

Γi, (DMφi, φi) = 1 and

λi ≤ ‖DMφi‖2q ≤ λi +
1
i
.

Let Γ be a doubling of Γ1, i.e. we choose an open subset Γ̂ with Γ1 ⊂ Γ̂ ⊂ M
and perturb the metric in such a way that it is unchanged on Γ1 and has product
structure near the boundary ∂Γ̂ (That is only necessary if M is open. If M is closed,
we can take Γ = M .) Then the perturbed metric gives a metric on the double Γ
of Γ̂, such that the original and the perturbed metric coincide on Γ1 ⊂ Γ̂. With
the double of Γ we mean the manifold that is obtained by glueing two copies of Γ
with different orientations along their boundaries by means of the identity. Then
the double is also oriented.
Furthermore, Γ is equipped with a spin structure that restricted to Γ1 is the original
one: This can be seen when considering a sufficiently fine open cover {Uα}α∈A of Γ
that is obtained by doubling an open cover of Γ̂ and by adding the following open
sets: Let {Vα}α∈B be an open cover of ∂Γ̂. Then all Uα that intersect ∂Γ̂ are chosen
to have the structure Uα = Vα × (−ε, ε) and B ⊂ A.
Let further be ϕαβ : Uα ∩ Uβ → SO(n) the transition functions for PSO(n)Γ. Then
for β, α ∈ B the maps ϕαβ : (Vα ∩ Vβ)× (−ε, ε)→ SO(n) are constant along (−ε, ε)
since the metric has product structure near ∂Γ̂. When trying to lift the ϕαβ ’s to
obtain transition functions that map into Spin(n) – as described in Remark 1.1.1.i –
only the sets Uα where α ∈ B could cause problems since Γ̂ ⊂M is already assumed
to be spin. Thus, this breaks down to the question whether the lifts ϕ̃αβ fulfill the
cocycle condition for Uα ∩Uβ ∩Uγ with α, β, γ ∈ B. This is true since ∂Γ̂ possesses
a spin structure, see 1.1.1.iv, and, therefore, fulfills the cocycle condition for the
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Vα’s. As a lift, ϕ̃αβ is also constant along (−ε, ε). Thus, the cocylce condition for
Vα extends to Uα.

Then the φi’s can be viewed as elements of C∞c (Γ, S) with DMφi = DΓφi =: Dφi.
Let ψi be the part of φi that is perpendicular to kerDΓ. Then Dψi = Dφi and,
thus, (Dψi, ψi) = 1. We apply Theorem 3.0.5 and obtain

1 ≤ (1 + ε)λn‖Dψi‖2q + c(ε)‖ψi‖2q

≤ (1 + ε)λn

(
λi +

1
i

)
+ c(ε)‖ψi‖2q .

The Hölder inequality yields

‖ψi‖q ≤ ‖ψi‖p|Γi|
1
n

where p = 2n
n−1 . Due to the assumption we can choose ε small enough such that

1− (1 + ε)λn

(
λi +

1
i

)
≥ k′ > 0

for a constant k′ and for all i being large enough. Hence,

k′ ≤ c(ε)‖ψi‖2p|Γi|
2
n .

Since |Γi| → 0 for i → ∞, the Lp-norm ‖ψi‖p has to diverge for i → ∞. With
Lemma 3.2.2.iii this contradicts ‖Dψi‖q = 1.

Proof of Theorem 3.0.1. The statement is proven by contradiction in complete anal-
ogy to the proof for the Yamabe invariant in [35]. Assume that (M, g) is conformal
to a subdomain (M,u

4
n−1 g) of a closed Riemannian spin manifold (K,h), where

u ∈ C∞(M,S). Take smooth compact domains Xi in M with Xi ⊂ Xi ⊂ Xi+1 such
that vol(M \Xi, u

4
n−1 g) → 0 for i → ∞. Since λ+

min(M, g) < λ+
min(Sn) is assumed,

there exist spinor fields φi ∈ C∞c (M \Xi, S) with

‖Dgφi‖2q
(Dgφi, φi)g

≤ λ+
min(Sn)− c

for a positive constant c and for all i ∈ N. We take smoothly bounded open subsets
Yi of M with Xi ⊂ Xi ⊂ Yi and supp φi ⊂ Yi \Xi ⊂ M \Xi. The only use of the
Yi’s is to get smoothly bounded subsets Yi \Xi to which we will apply Lemma 3.3.2.
By the conformal invariance of λ+

min it follows

λ+
min(Yi \Xi, h) = λ+

min(Yi \Xi, g) ≤
‖Dgφi‖2q

(Dgφi, φi)g
≤ λ+

min(Sn)− c.

Since the volume vol(Yi \Xi, u
4

n−1 g)→ 0, this contradicts Lemma 3.3.2.
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3.4 Surfaces with cusps

Let (M, g, σ) be an open complete spin surface with cusps. This means that M is
the union of a compact surface M0 and finitely many ends Ui = S1 × (0,∞) each
equipped with a warped product metric gi = fi(t)2dφ2 + dt2.
Since we have

λ+
min(M, g, σ) ≤ λ+

min(M, g, σ) = λ+
min(tiUi, g, σ)

and from Lemma 2.0.5

λ+
min(tiUi, g, σ) = min

i
λ+

min(Ui, gi, σ),

we now want to obtain upper bounds for λ+
min(Ui) and λ+

min(Ui), i.e. for cylinders
with warped product metrics.

Lemma 3.4.1. Let the cylinder M = S1 × R be equipped with the warped product
metric g = f(t)2gS1 + dt2 and the spin structure σtr whose restriction to S1 admits
harmonic spinors. Then we have

λ+
min(S1 × R, f(t)2gS1 + dt2, σtr) ≤ 4 inf

ε>0
(ε−

1
2 max

t∈[0,5ε]
f(t)

1
2 )

and

λ+
min(S1 × R, f(t)2gS1 + dt2, σtr) ≤ 4 lim inf

c→∞
inf
ε>0

(ε−
1
2 max

t∈[c,c+5ε]
f(t)

1
2 ).

Proof. The Dirac operator on M is given by

DMφ = ∂t ·

(
DS1

0
0 −DS1

)
φ+ ∂t · ∂tφ+

ḟ

2f
∂t · φ,

see [17, Prop. 2.2] and [14, Sect. 1]. The operator acts on spinors φ =
(
φ1

φ2

)
: M → C2

where ∂t is the unit vector field along R that is normal to S1 with ∂t ·
(
φ1

φ2

)
=
(−φ2

φ1

)
.

As a test function we choose φ = ψ
(
κ1

κ2

)
where ψ : S1 → C with DS1

ψ = 0 and κi

are compactly supported real-valued Lipschitz functions on R.
We obtain

DMφ = ∂t · ψ

((
∂tκ1

∂tκ2

)
+

ḟ

2f

(
κ1

κ2

))
.

Thus,

(DMφ, φ) = ‖ψ‖22
∫

R
(∂tκ1 κ2 − ∂tκ2 κ1)fdt

and

‖DMφ‖qq = ‖ψ‖qq
∫

R

(∑
i

∣∣∣∂tκi +
ḟ

2f
κi

∣∣∣2) q
2
fdt.



43 3.4. SURFACES WITH CUSPS

Setting κi = f
1
2κi we have

‖DMφ‖2q
(DMφ, φ)

=
‖ψ‖2q
‖ψ‖22

[∫
R

(∑
i |∂tκi|2

) q
2
f1− q

2dt

] 2
q

2
∫

R ∂tκ1 κ2dt
.

We choose κ2 to be compactly supported on [0, 4ε] for ε > 0 such that κ2(2ε− t) =
κ2(2ε+t). Further, κ2 is chosen to be 1 on (ε, 3ε). On (0, ε) and on (3ε, 4ε) we choose
the cut-off function such that it satisfies |∂tκ2(t)| = 1

ε and such that it is continuous
on R. Moreover, κ1(t) := κ2(t− ε).

�
�

� @
@

@��

�� @@

@@

κ2 κ1

0 ε 2ε 3ε 4ε 5ε

Then we have with q = 2n
n+1 = 4

3

‖DMφ‖2q
(DMφ, φ)

≤ max
t∈[0,5ε]

f(t)
2
q
−1

[ ∫
R

(∑
i |∂tκi|2

) q
2
dt
] 2

q

2

≤ max
t∈[0,5ε]

f(t)
2
q
−1

1
ε2

(4ε)
2
q

2

≤ max
t∈[0,5ε]

f(t)
1
2 4ε−

1
2 .

Thus, we get

λ+
min(S1 × R, f(t)2gS1 + dt2, σtr) ≤ 4 inf

ε>0
(ε−

1
2 max

t∈[0,5ε]
f(t)

1
2 ).

Analogously, shifting κ2 such that it is compactly supported on (c, c+4ε) we obtain
the claimed estimate for λ+

min.

Example 3.4.2. If f(t) < kt for a constant k > 0 and all large enough t, we have
λ+

min = 0. With Lemma 2.0.3 this already implies λ+
min = 0.

In particular, this includes the example of the cylinder with product metric and
trivial spin structure we gave in [29, Ex. 3.4].

In a similar way we can estimate the λ+
min-invariant if the spin structure along S1

does not admit harmonic spinors.

Lemma 3.4.3. Let the cylinder M = S1 × R be equipped with the warped product
metric g = f(t)2gS1 + dt2 and the non-trivial spin structure σnt. Then the following
estimate holds for any c ∈ R and ε > 0:

λ+
min(S1 × (c,∞), f(t)2gS1 + dt2, σnt) ≤ 4ε

3
2 (2−25

3
4 + ε−1)2 max

[c,c+5ε]
f(t)

1
2 .
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Proof. We only need to slightly modify the proof of Lemma 3.4.1. As a test function
we choose φ = ψ

(
κ1

κ2

)
where the κi’s and κi’s are defined as above but ψ is now an

eigenspinor satisfying DS1
ψ = 1

2ψ. Recall that 1
2 is the lowest positive eigenvalue of

DS1
if the spin structure is nontrivial, see Example 1.2.7.i. We obtain

DMφ = ∂t · ψ

((
∂tκ1

∂tκ2

)
+

(
ḟ

2f
+

1
2

)(
κ1

κ2

))

and, therefore, with q = 4
3 we have

‖DMφ‖2q
(DMφ, φ)

=
‖ψ‖2q
‖ψ‖22

[∫
R

(∑
i |∂tκi + 1

2κi|2
) q

2
f1− q

2dt

] 2
q

2
∫

R ∂tκ1 κ2dt

≤ 1
2

(∥∥∥f− 1
2∂tκi

∥∥∥
q
+
∥∥∥∥1
2
f−

1
2κi

∥∥∥∥
q

)2

≤ 1
2

max
[c,c+5ε]

f(t)
1
2

(
4

1
q ε

1
q
−1 +

1
2
2

1
2 5

1
q ε

1
q

)2

≤ 4ε
3
2 max

[c,c+5ε]
f(t)

1
2

(
ε−1 + 2−25

3
4

)2
.

The denominator is given by
∫

R ∂tκ1 κ2dt = 1 and, thus, the first inequality is simply
obtained by triangle inequality. The Lq-norm is taken with respect to the volume
element fdt.

Example 3.4.4. Let f(t) < kt−r for some constant k > 0, t large enough and r > 3.
If we apply Lemma 3.4.3, we get

λ+
min(S1 × R, f(t)2gS1 + dt2, σ) = 0.

Even if these estimates might be quite rough and probably more functions f will lead
to vanishing λ+

min-invariant, it is clear that we cannot expect this for all functions
from Example 3.4.2. Already f(t) ≡ 1 gives λ+

min = λ+
min(S2) since the cylinder

with product metric is conformally compactifiable.



Chapter 4

Estimates of λ+
1 and λ+

min

Naturally the question arises whether results for the λ+
min-invariant on closed mani-

folds can be carried over to the open case. In the next sections we will examine this
problem for the Hijazi and the Friedrich inequality.

It was shown by Hijazi in [31] that on closed Riemannian spin manifolds (M, g, σ)
of dimension n > 2 the smallest eigenvalue µ of the conformal Laplacian

L =
4(n− 1)
n− 2

∆ + s,

where s is the scalar curvature, gives a lower bound for the magnitude of a Dirac
eigenvalue λ by

λ2 ≥ n

4(n− 1)
µ.

In terms of the corresponding conformal invariants the Yamabe invariant Q(M, g)
and the λ+

min-invariant, this reads

λ+
min(M, g, σ)2 ≥ n

4(n− 1)
Q(M, g)

which in the following will be referred to as conformal Hijazi inequality.

The Yamabe invariant is usually defined by the variational problem

Q(M, g) = inf

{∫
M
vLvdvolg

∣∣∣∣∣ ‖v‖ 2n
n−2

= 1, v ∈ C∞c (M)

}

and it can be shown that for Q ≥ 0

Q(M, g) = inf
g0∈[g],vol(M,g0)<∞

µ(g0)vol(M, g0)
2
n (4.1)

where µ is the infimum of the spectrum of L.
Whereas on closed manifolds L is always bounded from below, since s is bounded
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and ∆ is a positive operator, this is not true on open manifolds. For example for
a complete Riemannian spin manifold with finite volume and with scalar curvature
unbounded from below L is unbounded from below.

Since the conformal Laplacian and the Dirac operator on open manifolds usually
do not have pure point spectrum, we will restrict to the case where there is still an
eigenvalue present, cf. Remark 4.2.1.

Theorem 4.0.5. Let (M, g, σ) be a complete Riemannian spin manifold of finite
volume and dimension n > 2. Moreover, let λ be an eigenvalue of its Dirac operator
D, and let µ be the infimum of the spectrum of the conformal Laplacian. Then the
following inequality holds:

λ2 ≥ n

4(n− 1)
µ.

If equality is attained, the manifold admits a real Killing spinor and has to be Ein-
stein and closed.

Using this result we will be able to prove the conformal Hijazi inequality for confor-
mally parabolic Riemannian spin manifolds.

Theorem 4.0.6. Let (M, g, σ) be a conformally parabolic Riemannian spin manifold
of dimension n > 2. If, additionally, there is a complete conformal metric g of finite
volume such that 0 6∈ σess(Dg), then the conformal Hijazi inequality holds:

λ+
min(M, g, σ)2 ≥ n

4(n− 1)
Q(M, g).

We will further provide a version of Theorem 4.0.5 in case λ is in the essential spec-
trum of the Dirac operator. To this end, we assume additionally that the scalar
curvature is bounded from below and that the dimension n ≥ 5, cf. Theorem 4.2.2.
With these requirements we can replace the assumption 0 6∈ σess(Dg) in Theorem
4.0.6, see Corollary 4.3.4.

Finally, we prove the Friedrich inequality [26, Thm. A] for open manifolds.

Theorem 4.0.7. Let (M, g, σ) be a Riemannian spin manifold. Let further φi ∈
C∞c (M,S) be a minimizing sequence of λ+

1 with ‖φi‖ = 1. Then

4(n− 1)
n

λ+
1 (g)2 ≥ lim sup

i

∫
M
s|φi|2dvolg ≥ inf

M
s.

Moreover, if (M, g) is complete and λ+
1 (g)2 = n

4(n−1) infM s, one of the following
cases occurs:

(a) λ+
1 is a positive eigenvalue. This implies that (M, g) is already closed, Einstein

and possesses a real Killing spinor.

(b) λ+
1 is in the essential spectrum.

If, additionally, (M, g) has finite volume, then 0 ∈ σess(D) and 0 ≤ s(x).
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1

4.1 Properties of λ+
1

The aim of this section is to prove some properties of λ+
1 .

Lemma 4.1.1.
i) If λ+

1 (M, g, σ) = 0 and vol(M, g) <∞, then λ+
min(M, g, σ) = 0.

ii) If λ+
1 (M, g, σ) = 0 and if f ∈ C∞(M) is bounded from below by a positive

constant, then λ+
1 (M,f2g, σ) = 0.

iii) If (M, g) is complete and λ > 0 is an eigenvalue of D or an element of its
essential spectrum, then λ+

1 (M, g, σ) ≤ λ.
iv) Any complete spin manifold of finite volume for which there exists λ > 0 in the
essential spectrum of its Dirac operator satisfies λ+

min(M, g, σ) = λ+
min(M, g, σ) = 0.

Proof. i) is obvious.
ii) We have the estimate

λ+
1 (g = f2g) ≤

‖Dφ‖2g
(Dφ, φ)g

=
‖f−

1
2Dψ‖2g

(Dψ,ψ)g
≤ (inf

M
f)−1

‖Dψ‖2g
(Dψ,ψ)g

for all ψ ∈ Cc(M,S) and φ = f−
n−1

2 ψ. Thus, λ+
1 (g) ≤ (infM f)−1λ+

1 (g). With the
assumptions λ+

1 (g) = 0 and infM f > 0 this gives the claim.
iii) There exists a sequence φi ∈ C∞c (M,S) with ‖Dφi−λφi‖ → 0 and ‖φi‖ → 1: If λ
is in the essential spectrum, we just choose the sequence φi as in the Definition 1.2.5.
If λ is an eigenvalue with eigenspinor φ ∈ C∞(M,S)∩L2(M,S), we choose φi = ηiφ
where ηi is a smooth cut-off function such that ηi ≡ 1 on Bi(p) (p ∈ M fixed),
ηi ≡ 0 on M \B2i(p) and in between |∇ηi| ≤ 2

i . This is always possible since (M, g)
is complete. Then φi is the sequence in demand since ‖(D−λ)φi‖ = ‖∇ηi·φ‖ ≤ 2

i ‖φ‖.
Thus, in both cases

‖Dφi‖2

(Dφi, φi)
→ λ

which proves the claim.
iv) Since the essential spectrum is a property of the manifold at infinity, see Theorem
1.2.6, there is a sequence φi ∈ C∞c (M \Bi(p), S) (p ∈M fixed) with ‖(D−λ)φi‖ → 0
and ‖φi‖ = 1. Thus, from iii) we find

λ+
min(M \Br(p), g, σ) ≤ λ vol(M \Br(p), g)→ 0

for r →∞. Hence, λ+
min(M, g, σ) ≤ λ+

min(M, g, σ) = 0.

For complete manifolds λ+
1 is closely related to the Dirac spectrum:

Lemma 4.1.2. Let (M, g, σ) be a complete Riemannian spin manifold. Then

λ+
1 (M, g, σ) = inf{σ(D) ∩ (0,∞)}

where σ(D) denotes the Dirac spectrum.
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Proof. Since M is complete, D is essentially self-adjoint and has no residual spec-
trum, cf. Theorem 1.2.4. By the spectral theorem for unbounded self-adjoint oper-
ators we obtain for all φ ∈ C∞c (M,S) with (Dφ, φ) > 0 that

‖Dφ‖2

(Dφ, φ)
=

∫
σ(D) λ

2 d < Eλφ, φ >∫
σ(D) λ d < Eλφ, φ >

≥

∫
σ(D)∩(0,∞) λ

2 d < Eλφ, φ >∫
σ(D)∩(0,∞) λ d < Eλφ, φ >

≥
λ0

∫
σ(D)∩(0,∞) λ d < Eλφ, φ >∫

σ(D)∩(0,∞) λ d < Eλφ, φ >
= λ0

where λ0 = inf{σ(D) ∩ (0,∞)}. Note that the denominator
∫
σ(D)∩(0,∞) λ d <

Eλφ, φ > is always positive since (Dφ, φ) > 0. Hence, we have λ+
1 ≥ inf{σ(D) ∩

(0,∞)}.
The converse inequality is obtained by Lemma 4.1.1.iii.

In particular, if D has pure point spectrum (e.g. if M is closed), λ+
1 is the first

positive Dirac eigenvalue.

Remark 4.1.3. The above relation of λ+
1 to the spectrum is no longer true if

the manifold is not complete. One example is an open subset Ω ⊂ Sn with the
induced standard metric. Let φ be an eigenspinor of DSn

with eigenvalue n
2 . Then

φ|Ω is an eigenspinor of DΩ with eigenvalue n
2 , but with Lemma 2.0.4 we have for

0 < vol(Ω, gst) < vol(Sn, gst) that

λ+
1 (Ω, gst) ≥

λ+
min(Ω, gst)

vol(Ω, gst)
1
n

=
λ+

min(Sn, gst)

vol(Ω, gst)
1
n

=
n

2

(
vol(Sn, gst)
vol(Ω, gst)

) 1
n

>
n

2
.

Corollary 4.1.4. Let (M, g, σ) be a complete Riemannian spin manifold of finite
volume with λ+

min > 0. Then σ(D) ∩ (0,∞) consists only of eigenvalues.

Proof. This follows immediately from Lemma 4.1.1.iv and Lemma 4.1.2.

Example 4.1.5.
i) The spectrum of the Dirac operator on the Euclidean space Rn and the standard
hyperbolic space Hn, respectively, consists of all real numbers, see Example 1.2.7.
Thus, from Lemma 4.1.1.iii we have λ+

1 (Rn) = λ+
1 (Hn) = 0 for n ≥ 2. But in Ex-

ample 3.1.6 we showed λ+
min(Rn) = λ+

min(Hn) = λ+
min(Sn).

ii) One class of manifolds satisfying the conditions of Lemma 4.1.1.iv are the com-
plete hyperbolic manifolds of finite volume that have trivial spin structure along at
least one cusp [20, Thm. 1].

4.2 Proof of Theorem 4.0.5

In this section we will prove Theorem 4.0.5. Then we will consider some additional
assumptions to replace the condition that zero is not in the essential spectrum of
the Dirac operator.
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Proof of Theorem 4.0.5. Let ψ ∈ C∞(M,S)∩L2(M,S) be an eigenspinor satisfying
Dψ = λψ and ‖ψ‖ = 1. Its zero-set Ω is closed and contained in a closed countable
union of smooth (n− 2)-dimensional submanifolds which has locally finite (n− 2)-
dimensional Hausdorff measure, cf. Remark 1.2.2.ii.

We fix a point p ∈ M . Since M is complete, there exists a cut-off function
ηi : M → [0, 1] which is zero on M \ B2i(p) and one on Bi(p). In between the
function is chosen such that |∇ηi| ≤ 4

i and ηi ∈ C∞c (M).
While ηi cuts off ψ at infinity, we define another cut-off near the zeros of ψ. For
this purpose, we can assume without loss of generality that Ω is itself the countable
union of (n− 2)-submanifolds described above.

Let now ρa,ε as in Lemma 3.1.1 be defined as

ρa,ε(x) =

{ 0 for r < aε
1− δ ln ε

r for aε ≤ r ≤ ε
1 for ε < r

where r = d(x,Ω) is the distance from x to Ω. The constant a < 1 is chosen such
that ρa,ε(aε) = 0, i.e. a = e−

1
δ . Then ρa,ε is continuous, constant outside a com-

pact set and Lipschitz. Hence, for φ ∈ C∞(M,S) the spinor ρa,εφ is an element in
Hr

1(M,S) for all 1 ≤ r ≤ ∞.

Now let ψia := ηiρa,εψ ∈ Hr
1(M,S) be defined. These spinors are compactly sup-

ported in M \ Ω. Furthermore, g = e2ug = h
4

n−2 g with h = |ψ|
n−2
n−1 is a metric on

M \ Ω. Setting φia := e−
n−1

2
uψia (φ = e−

n−1
2

uψ), the Lichnerowicz-type formula
(1.2) implies

‖(D − λe−u)φia‖2g = ‖∇λe−u

φia‖2g +
∫

M\Ω

(
s

4
− n− 1

n
λ2e−2u

)
|φia|2dvolg

− n− 1
n

(2λe−u(D − λe−u)φia + λe−ugrad e−u · φia, φia)g

= ‖∇λe−u

φia‖2g +
∫

M

(
s

4
− n− 1

n
λ2e−2u

)
eu|ψia|2dvolg

− 2
n− 1
n

((D − λ)ψia, λe
−uψia)g

= ‖∇λe−u

φia‖2g +
1
4

∫
M
h−1Lh e−u|ψia|2dvolg

− n− 1
n

λ2

∫
M
e−u|ψia|2dvolg − 2

n− 1
n

((D − λ)ψia, λe
−uψia)g,

where ∇f
Xφ := ∇Xφ + f

nX · φ for f = λe−u ∈ C∞(M) is the Friedrich con-
nection. For the second line we used |φia|2dvolg = eu|ψia|2dvolg, and the term
(λe−ugrade−u · φia, φia)g vanishes since < ∇f · φ, φ >∈ iR, cf. [31, Lem. 3.1]. The
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last line is obtained by replacing se2u = h−1Lh.

With Dψ = λψ and < ∇f · φ, φ >∈ iR we obtain

((D − λ)ψia, λe
−uψia)g = (∇(ηiρa,ε)ψ, λe−uηiρa,εψ)g = 0.

Inserting this result, Dφ = λe−uφ and ‖∇λe−u

φia‖2g ≥ 0 into the formula from above
we further have

‖∇(ηiρa,ε)φ‖2g ≥
1
4

∫
M
η2

i ρ
2
a,ε|ψ|

n−2
n−1L|ψ|

n−2
n−1 dvolg −

n− 1
n

λ2

∫
M
η2

i ρ
2
a,ε|ψ|

2n−2
n−1 dvolg.

Moreover, we have∫
M
|∇(ηiρa,ε)φ|2dvolg =

∫
M
|e−u∇(ηiρa,ε) · φ|2dvolg

=
∫

M
|∇(ηiρa,ε) · ψ|2e−udvolg

Thus, with eu = |ψ|
2

n−1 the above inequality reads∫
M
|∇(ηiρa,ε)|2|ψ|2

n−2
n−1 dvolg ≥

1
4

∫
M
ηiρa,ε|ψ|

n−2
n−1L(ηiρa,ε|ψ|

n−2
n−1 )dvolg

− n− 1
n− 2

∫
M
|∇(ηiρa,ε)|2|ψ|2

n−2
n−1 dvolg −

n− 1
n

λ2

∫
M
η2

i ρ
2
a,ε|ψ|

2n−2
n−1 dvolg.

Hence, we obtain

2n− 3
n− 2

∫
M
|∇(ηiρa,ε)|2|ψ|2

n−2
n−1 dvolg ≥

(
µ

4
− n− 1

n
λ2

)∫
M
η2

i ρ
2
a,ε|ψ|

2n−2
n−1 dvolg,

where µ is the infimum of the spectrum of the conformal Laplacian. With (a+b)2 ≤
2a2 + 2b2 we have

k

∫
M

(η2
i |∇ρa,ε|2 + ρ2

a,ε|∇ηi|2)|ψ|2
n−2
n−1 dvolg ≥

(
µ

4
− n− 1

n
λ2

)∫
M
η2

i ρ
2
a,ε|ψ|

2n−2
n−1 dvolg.

where k = 22n−3
n−2 .

Next, we want a tend to zero:
Recall that Ω∩B2i(p) is bounded, closed, (n−2)-C∞-rectifiable and has still locally
finite (n− 2)-dimensional Hausdorff measure. For fixed i we estimate∫

M
|∇ρa,ε|2η2

i |ψ|
2n−2

n−1 dvolg ≤ sup
B2i(p)

|ψ|2
n−2
n−1

∫
B2i(p)

|∇ρa,ε|2dvolg.
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Further, we set B2
ε (p) := {x ∈ Bε | d(x, p) = d(x,Ω)} with Bε := {x ∈M | d(x,Ω) ≤

ε}. For ε sufficiently small each B2
ε (p) is star shaped. Moreover, there is an inclusion

B2
ε (p) ↪→ Bε(0) ⊂ R2 via the normal exponential map. Then we can calculate∫
Bε∩B2i(p)

|∇ρa,ε|2dvolg ≤ voln−2(Ω ∩B2i(p)) sup
x∈Ω∩B2i(p)

∫
B2

ε (x)\B2
aε(x)
|∇ρa,ε|2dvolg2

≤ cvoln−2(Ω ∩B2i(p))
∫

Bε(0)\Baε(0)
|∇ρa,ε|2dvolgE

≤ c′
∫ ε

aε

δ2

r
dr = −c′δ2 ln a = c′δ → 0 for a→ 0

where vol(n−2) denotes the (n−2)-dimensional volume and g2 = g|
B2

ε (p)
. The positive

constants c and c′ arise from voln−2(Ω ∩B2i(p)) and the comparison of dvolg2 with
the volume element of the Euclidean metric.

Furthermore, for any compact set K ⊂ M and 0 < f ∈ C∞(M) it holds ρ2
a,εf ↗ f

and, thus, by the monotone convergence theorem∫
K
ρ2

a,εfdvolg →
∫

K
fdvolg

as a→ 0.

Since ηi has compact support, we finally have for a→ 0 that

k

∫
M
|∇ηi|2|ψ|2

n−2
n−1 dvolg ≥

(
µ

4
− n− 1

n
λ2

)∫
M
η2

i |ψ|
2n−2

n−1 dvolg.

Next we want to establish the limit for i→∞:
SinceM has finite volume and ‖ψ‖ = 1, the Hölder inequality ensures that

∫
M |ψ|

2n−2
n−1 dvolg

is bounded. With |∇ηi| ≤ 4
i we get

λ2 ≥ n

4(n− 1)
µ.

Equality is attained if and only if ‖∇λe−u

φia‖2g → 0 for i→∞ and a→ 0. We have

0←‖∇λe−u

φia‖g = ‖ηiρa,ε∇
λe−u

φ+∇(ηiρa,ε)φ‖g

≥ ‖ηiρa,ε∇
λe−u

φ‖g − ‖∇(ηiρa,ε)φ‖g.

With ‖∇(ηiρa,ε)φ‖g → 0, see above, ∇λe−u

φ has to vanish on M \ Ω. By Theorem
1.1.3 this implies that e−u is constant. Thus, by Theorem 1.1.4 (M, g) is Einstein
and possesses a real Killing spinor. Furthermore, its Einstein constant is positive.
Thus, the Ricci curvature is a positive constant and, hence, due to the Theorem of
Bonnet-Myers M is already closed.
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Remark 4.2.1.
i) Allowing an infinite volume and taking λ+

1 instead of an eigenvalue the Hijazi in-
equality is not fulfilled. A counterexample is given by the standard hyperbolic space.
There λ+

1 (Hn) = 0, cf. Example 4.1.5.i. But µ is positive: µ = 4n−1
n−2µ(∆)−n(n−1) =

n−1
n−2 where µ(∆) = (n−1)2

4 is the infimum of the spectrum of the Laplacian on Hn

[25, Prop. 7.2].
ii) There is still the hope that Theorem 4.0.5 also holds if λ is in the essential spec-
trum of a complete Riemannian spin manifold of finite volume. The next Theorem
gives a first partial result.

Theorem 4.2.2. Let (M, g, σ) be a complete Riemannian spin manifold of dimen-
sion n ≥ 5 with finite volume. Furthermore, let the scalar curvature of M be bounded
from below. If λ is in the essential spectrum of the Dirac operator, then

λ2 ≥ n

4(n− 1)
µ.

Proof. We may assume vol(M, g) = 1. If λ is in the essential spectrum of D, then
0 is in the essential spectrum of D − λ. Due to Lemma 1.2.11 there is a sequence
φi ∈ C∞c (M,S) such that ‖(D − λ)2φi‖ → 0 and ‖(D − λ)φi‖ → 0 while ‖φi‖ = 1.
We may assume that |φi| ∈ C∞c (M). That can always be achieved by a small per-
tubation.

Now let 1
2 ≤ β ≤ 1. Then |φi|β ∈ H2

1 (M). Firstly, we will show that the sequence
‖d|φi|β‖ is bounded:
By the Hölder inequality we have

0← ‖φi‖2β−1‖(D − λ)2φi‖ ≥ ‖|φi|2β−1‖{|φi|6=0}‖(D − λ)2φi‖

≥

∣∣∣∣∣
∫
|φi|6=0

|φi|2β−2 < (D − λ)2φi, φi > dvolg

∣∣∣∣∣ .
Using the Lichnerowicz formula (1.2) we obtain

‖(D − λ)2φi‖ ≥

∣∣∣∣∣
∫
|φi|6=0

|φi|2β−2 < ∆λφi, φi > dvolg +
∫ (

s

4
− n− 1

n
λ2

)
|φi|2βdvolg

− 2
n− 1
n

∫
|φi|6=0

|φi|2β−2 < (D − λ)φi, λφi > dvolg

∣∣∣∣∣
≥

∣∣∣∣∣
∫
|φi|6=0

|φi|2β−2|∇λφi|2dvolg+2(β − 1)
∫
|φi|6=0

|φi|2β−3< d|φi|·φi,∇λφi>dvolg

+
∫ (

s

4
− n− 1

n
λ2

)
|φi|2βdvolg − 2

n− 1
n

λ‖|φi|2β−1‖{|φi|6=0}‖(D − λ)φi‖

∣∣∣∣∣
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With the Hölder inequality and the Kato inequality for the connection∇λ, see (1.13),
we have

0← ‖(D − λ)2φi‖

≥ (2β − 1)
∫
|φi|6=0

|φi|2β−2|d|φi|||∇λφi|dvolg +
∫ (

s

4
− n− 1

n
λ2

)
|φi|2βdvolg

− 2
n− 1
n

λ‖φi‖2β−1‖(D − λ)φi‖

≥ (2β − 1)
∫
|φi|6=0

|φi|2β−2|d|φi||2dvolg +
∫ (

s

4
− n− 1

n
λ2

)
|φi|2βdvolg

− 2
n− 1
n

λ‖(D − λ)φi‖

≥ (2β − 1)
1
β2

∫
|φi|6=0

|d|φi|β|2dvolg +
∫ (

s

4
− n− 1

n
λ2

)
|φi|2βdvolg

− 2
n− 1
n

λ‖(D − λ)φi‖

Since s is bounded from below,
∫
s|φi|2βdvolg ≥ inf s ‖φi‖2β

2β ≥ min{inf s, 0} is also
bounded from below. Thus, with ‖(D − λ)φi‖ → 0 we obtain that ‖d|φi|β‖ is also
bounded.

Next we fix α = n−2
n−1 and obtain

µ

4
− n− 1

n
λ2 ≤

(
µ

4
− n− 1

n
λ2

)
‖|φi|α‖2

≤ 1
4

∫
|φi|αL|φi|αdvolg −

n− 1
n

λ2‖|φi|α‖2

=
∫
|φi|2

n−2
n−1

−2

(
n

n− 1
|d|φi||2 +

1
2
d∗d|φi|2

+
(
s

4
− n− 1

n
λ2

)
|φi|2

)
dvolg

where we used the definition of µ as infimum of the spectrum of L = 4n−1
n−2∆ + s.

The third line is obtained from

|φi|αd∗d|φi|α =
α

2
|φi|2α−2d∗d|φi|2 − α(α− 2)|φi|2α−2|d|φi||2.

Next, using

1
2
d∗d < φi, φi >=< ∇∗∇φi, φi > −|∇φi|2 =< D2φi, φi > −

s

4
|φi|2 − |∇φi|2

and

|∇λφi|2 = |∇φi|2 − 2Re
λ

n
< (D − λ)φi, φi > −

λ2

n
|φi|2,
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we have

µ

4
− n− 1

n
λ2 ≤

∫
|φi|6=0

|φi|2
n−2
n−1

−2

(
n

n− 1
|d|φi||2 − |∇λφi|2

)
dvolg

+
∫
|φi|6=0

|φi|2
n−2
n−1

−2 < (D2 − λ2)φi, φi > dvolg

−
∫
|φi|6=0

2|φi|2
n−2
n−1

−2Re
λ

n
< (D − λ)φi, φi > dvolg

≤
∫
|φi|6=0

|φi|2
n−2
n−1

−2

(
n

n− 1
|d|φi||2 − |∇λφi|2

)
dvolg

+
∫
|φi|6=0

|φi|2
n−2
n−1

−2 < (D − λ)2φi, φi > dvolg

+
∫
|φi|6=0

2
(

1− 1
n

)
λ|φi|2

n−2
n−1

−2Re < (D − λ)φi, φi > dvolg.

The last two summands vanish in the limit since∣∣∣∣∣
∫
|φi|6=0

|φi|2
n−2
n−1

−2 < (D − λ)2φi, φi > dvolg

∣∣∣∣∣ ≤ ‖(D − λ)2φi‖ ‖ |φi|
n−3
n−1 ‖ → 0

and∣∣∣ ∫
|φi|6=0

|φi|2
n−2
n−1

−2Re < (D − λ)φi, φi > dvolg
∣∣∣ ≤ ‖(D − λ)φi‖ ‖ |φi|

n−3
n−1 ‖ → 0.

For the other summand we use the Kato-type inequality of Lemma 1.7.1

|d|ψ|| ≤ |(D − λ)ψ|+ k|∇λψ|

which holds outside the zero set of ψ. Due to Example 1.7.2 we have k =
√

n−1
n .

Thus, for n ≥ 5 we can estimate∫
|φi|6=0

|φi|2
n−2
n−1

−2

(
n

n− 1
|d|φi||2 − |∇λφi|2

)
dvolg

=
∫
|φi|6=0

|φi|2
n−2
n−1

−2(k−1|d|φi|| − |∇λφi|)(k−1|d|φi||+ |∇λφi|)dvolg

≤ k−1

∫
{|d|φi||≥k|∇λφi|}∩{|φi|6=0}

|φi|2
n−2
n−1

−2|(D − λ)φi|(k−1|d|φi||+ |∇λφi|)dvolg

≤ 2k−2

∫
{|d|φi||≥k|∇λφi|}∩{|φi|6=0}

|φi|2
n−2
n−1

−2|(D − λ)φi||d|φi||dvolg

≤ 2k−2

∫ (
2
n− 2
n− 1

− 1
)−1

|(D − λ)φi||d|φi|2
n−2
n−1

−1|dvolg

≤ 2k−2n− 1
n− 3

‖(D − λ)φi‖ ‖d|φi|
n−3
n−1 ‖.
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For n ≥ 5 we have 1 ≥ n−3
n−1 ≥

1
2 and, thus, ‖d|φi|

n−3
n−1 ‖ is bounded. Together with

‖(D − λ)φi‖ → 0 we obtain the following: For all ε > 0 there is an i0 such that for
all i ≥ i0 we have∫

|φi|6=0
|φi|2

n−2
n−1

−2

(
n

n− 1
|d|φi||2 − |∇λφi|2

)
dvolg ≤ ε.

Hence, we have µ
4 ≤

n−1
n λ2.

4.3 The conformal inequality

Now we want to use the results of the previous section to prove the conformal Hijazi
inequality for conformally parabolic manifolds. Since we proved the Hijazi inequality
only for complete manifolds, we first need to express the λ+

min-invariant using only
complete metrics:

Lemma 4.3.1. Let (M, g, σ) be an open complete Riemannian spin manifold of
unit volume. Then λ+

min = inf{λ+
1 (g) | vol(g) = 1, f ≡ 1 near infinity} where “near

infinity” refers to the existence of a compact subset U ⊂ M such that f ≡ 1 on
M \ U .

Proof. Let gi = f2
i g be a sequence of conformal metrics of unit volume with λ+

1 (gi)→
λ+

min for i→∞. Thus, there is a sequence φi ∈ C∞c (M,S) such that

F (φi, gi) :=
‖ Dgiφi ‖2gi

(Dgiφi, φi)gi

→ λ+
min

Now choose the conformal factor hi such that hi is equal to fi on the support of φi,
hi = 1 near infinity and

∫
M hn

i dvolg = 1. Then, F (φi, h
2
i g) = F (φi, gi)→ λ+

min, and
the metrics h2

i g are complete, since g is complete, and they have unit volume.

In particular, we have:

Corollary 4.3.2. Let (M, g, σ) be a conformally parabolic Riemannian spin mani-
fold. Then there exists a sequence of complete conformal metrics gi of unit volume
such that λ+

1 (gi)→ λ+
min(g) and gi ≡ g1 near infinity, i.e.

λ+
min(M, g, σ) = inf{λ+

1 (M, g, σ) | g ≡ g1 near infinity, vol(M, g) = 1}.

With this Corollary the conformal inequality for conformally parabolic manifolds
follows from Theorem 4.0.5:

Proof of Theorem 4.0.6. For Q < 0 the inequality is trivially satisfied. Thus, we
restrict ourselves to the case Q ≥ 0:
We may assume that g is itself a complete metric of finite volume satisfying 0 6∈
σess(Dg). Due to Corollary 4.3.2 there exists a sequence gi of complete metrics of
unit volume with gi ≡ g near infinity and λ+

1 (gi)→ λ+
min.
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We first consider the case that there is an infinite subsequence gij such that λ+
1 (gij )

is an eigenvalue of Dgij
. Then we can apply Theorem 4.0.5 and equality (4.1) and

obtain
λ+

1 (M, gij , σ)2 ≥ n

4(n− 1)
µ(M, gij ) ≥

n

4(n− 1)
Q(M, g).

Thus, for j →∞ we obtain the conformal Hijazi inequality.
Now we consider the remaining case – only finitely many λ+

1 (gi) are eigenvalues.
Thus, from Lemma 4.1.2 we know that then there is an infinite subsequence gij such
that λ+

1 (gij ) ∈ σess(Dgij
). But if for two metrics gi and gk we have σess(Dgi) 3

λ+
1 (gi) ≥ λ+

1 (gk) ∈ σess(Dgk
), then λ+

1 (gi) already equals λ+
1 (gk) since gk ≡ gi near

infinity and the essential spectrum only depends on the manifold at infinity, see
Theorem 1.2.6. Hence, there has to exist a constant subsequence λ+

min = λ+
1 (gij ) ∈

σess(Dgij
) = σess(Dg). Lemma 4.1.1.iv then gives λ+

min = 0 and, thus, 0 ∈ σess(Dg).
This is a contradiction to the assumption.

Now, the question remains whether for any complete metric of finite volume with
0 ∈ σess(D) the Yamabe constant is negative. Then we could omit the condition on
the essential spectrum in Theorem 4.0.6. But for now we only know this for some
classes of manifolds:

Remark 4.3.3.
i) Let (M, g, σ) be complete, of finite volume and with non-positive scalar curva-
ture. Then, let ηi be a smooth function that is compactly supported on B2i(p) for
a fixed p ∈M , ηi = 1 on Bi(p) and in between such |∇ηi| ≤ 2

i . This gives

µ ≤ ‖ηi‖−2

∫
M
ηiLηidvolg

≤ ‖ηi‖−2

(
4
n− 1
n− 2

4
i2

vol(M, g) +
∫

M
s|ηi|2dvolg

)
≤ 4

n− 1
n− 2

4
i2

vol(M, g)vol(Bi(p), g)−1

Hence, Q ≤ 0.
ii) If the scalar curvature of the complete manifold (M, g, σ) is uniformly positive,
i.e. there is a constant c with s ≥ c > 0, then Q ≥ 0 but 0 6∈ σess(D) due to the
Lichnerowicz formula.
iii) Let (M, g, σ) be complete and of finite volume. Furthermore, let 0 ∈ σess(D)
and let the scalar curvature be nonnegative outside a compact set U ⊂M .
Thus, there exists a sequence φi ∈ C∞c (M \ U, S) with ‖Dφi‖ → 0 and ‖φi‖ = 1.
With the Lichnerowicz formula we obtain

0← ‖Dφi‖2 = ‖∇φi‖2 +
∫

M\U

s

4
|φi|2dvolg = ‖d|φi|‖2 +

∫
M\U

s

4
|φi|2dvolg

=
n− 2

4(n− 1)

∫
|φi|L|φi|dvolg +

1
n− 1

∫
M\U

s

4
|φi|2dvolg ≥ µ

n− 2
4(n− 1)

and, thus, Q ≤ 0.
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Theorem 4.2.2 allows to formulate such a result for another class of Riemannian spin
manifolds:

Corollary 4.3.4. Let (M, g, σ) be a complete Riemannian spin manifold of finite
volume and of dimension n ≥ 5. If, additionally, the scalar curvature is bounded
from below, then the conformal Hijazi inequality holds:

λ+
min(M, g, σ)2 ≥ n

4(n− 1)
Q(M, g).

Proof. The case where 0 6∈ σess(Dg) the inequality is already proven in Theorem
4.0.6. So we assume now that 0 ∈ σess(D). Then Theorem 4.2.2 implies Q ≤ 0.

Spin conformal compactifications give another class of manifolds for which the con-
formal Hijazi inequality hold. Such manifolds do not necessary have to be confor-
mally parabolic, one example is the hyperbolic space.

Corollary 4.3.5. Let (M, g, σ) be a Riemannian spin manifold that is spin confor-
mally equivalent to (N \ Ω, h, χ) where (N,h, χ) is a closed Riemannian spin man-
ifold and Ω is a closed and bounded subset that is contained in a countable union
of m-dimensional submanifolds (m ≤ n− 2) which has locally finite m-dimensional
Hausdorff measure. Then the conformal Hijazi inequality is valid.

Proof. The claim follows from the conformal Hijazi inequality on closed manifolds,
Lemma 3.1.2 and Remark 3.1.4.ii which imply λ+

min(M, g, σ) = λ+
min(N,h, χ) and

Q(M, g) = Q(N,h).

Example 4.3.6. We consider the Riemannian manifold (Hn−1×S1, gH+dt2) that is
conformally compactifiable to Sn by two points. Hence, we have Q(Hn−1×S1, gH +
dt2) = Q(Sn), see Remark 3.1.4.ii.
Furthermore, Hn−1×S1 admits two spin structures. The one that is induced from the
spin structure of Sn is σnt, the spin structure whose restriction to S1 is non-trivial.
Thus, Lemma 3.1.2 implies λ+

min(Hn−1 × S1, gH + dt2, σnt) = λ+
min(Sn, gst, χst).

Next, we want to examine the case if the manifold is equipped with the other spin
structure σtr:
We know that (Sn \ {p1, p2}, gst) is conformally parabolic, since (Rn, gE) is, and
(Rn, gE) and (Sn \ {p}, gst) are conformally equivalent. Thus, due to Example 1.6.4
in the conformal class of (Hn−1 × S1, gH + dt2) there is a complete metric of finite
volume and whose scalar curvature is bounded from below. Hence, with Corollary
4.3.4 we now know that at least for n ≥ 5 we have also for the trivial spin structure
that λ+

min(Hn−1 × S1, gH + dt2, σtr) = λ+
min(Sn, gst, χst).

4.4 Proof of Theorem 4.0.7

From the Lichnerowicz formula (1.2) we get

((D− λ)2ψ,ψ) = (∆λψ,ψ) +
∫

M

(
s

4
− n− 1

n
λ2

)
|ψ|2dvolg − 2

n− 1
n

(Dψ− λψ, λψ).
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With ((D − λ)2ψ,ψ) = ((D − λ)ψ,Dψ) − ((D − λ)ψ, λψ) for compactly supported
ψ we obtain

((D − λ)φi, Dφi) = ‖∇λφi‖2+
∫

M

(
s

4
− n− 1

n
λ2

)
|φi|2dvolg−

n− 2
n

(Dφi−λφi, λφi).

Since φi is a normalized minimizing sequence, we have for λ = λ+
1 (M, g, σ)

0← ‖Dφi‖2 − λ(Dφi, φi)
(Dφi, φi)

=
(Dφi, (D − λ)φi)

(Dφi, φi)
.

With

λ← ‖Dφi‖2

(Dφi, φi)
≥ (Dφi, φi)

we see that the denominator (Dφi, φi) cannot diverge since otherwise λ could not
be finite. Thus, the numerator (Dφi, (D − λ)φi) converges to 0. Furthermore,
(Dφi, φi)→≤ λ that shall denote the following: For all ε > 0 exists i0 such that for
all i ≥ i0 we have (Dφi, φi) ≤ λ+ ε. Thus, we have ((D − λ)φi, φi)→≤ 0.

Summarizing we have:

((D − λ)φi, Dφi)︸ ︷︷ ︸
→0

≥
∫

M

(
s

4
− n− 1

n
λ2

)
|φi|2dvolg −

n− 2
n

(Dφi − λφi, λφi)︸ ︷︷ ︸
→≤0

.

Hence, for all ε > 0 there is an i0 such that for all i ≥ i0 we have

4
n− 1
n

λ2 + ε ≥ sup
i≥i0

∫
s|φi|2dvolg

and, thus, for ε→ 0

4
n− 1
n

λ2 ≥ lim sup
i→∞

∫
s|φi|2dvolg

which implies the claimed inequalities.

For the equality of
λ+

1 (g)2 =
n

4(n− 1)
inf
M
s

it is necessary and sufficient that ∇λφi → 0 and if n > 2, ((D − λ)φi, φi) → 0 for
i→∞. This implies (D − λ)φi → 0.

Let now (M, g, σ) be complete. Then λ := λ+
1 is either a positive eigenvalue or in

the non-negative part of the essential spectrum, cf. Lemma 4.1.2
Firstly, let λ > 0 be an eigenvalue with normalized eigenspinor φ. We set φi = ηiφ



59 4.5. DIFFERENT λMIN -INVARIANTS

where ηi ∈ C∞c (M,S) is a cut-off function such that supp ηi ⊂ B2i(p) and |∇ηi| ≤ 4
i .

Inserting φi in the Lichnerowicz formula above gives

0← ‖∇λ(ηiφ)‖ ≥ ‖ηi∇λφ‖ − ‖∇ηi · φ‖ ≥ ‖ηi∇λφ‖ − 4
i
‖φ‖.

The limit i → ∞ gives ∇λφ = 0. Hence, by Theorem 1.1.4 (M, g, σ) is Einstein
with positive scalar curvature and, hence, due to the Theorem of Bonnet-Myers M
is already closed.
If otherwise λ ∈ σess(D) and (M, g) has additionally finite volume, then Lemma
4.1.1.iv shows λ+

min(M, g, σ) = 0. The conformal Hijazi inequality then implies
Q(M, g) ≤ 0. Thus, inf s ≤ 0. To obtain equality we necessarily have inf s = 0 and,
thus, λ = 0. �

Remark 4.4.1.
i) If λ+

1 ∈ σess(D), the spinors φi can be chosen such that supp φi ⊂M \Bi(p) for
fixed p ∈M . Thus, we get the following improvement:

4(n− 1)
n

λ+
1 (g)2 ≥ lim sup

i→∞
inf

M\Bi(p)
s.

ii) For the special case of a complete Riemannian spin manifold of finite volume
whose Dirac operator has pure point spectrum one can obtain the same result by
using the test function in the proof of Theorem 4.0.5 and without using a conformal
change.
iii) Examples for the case of equality of the Friedrich inequality can be obtained
from closed manifolds that also fulfill the equality: Let (N,h, χ) be such a closed
manifold. Then due to Lemma 3.1.2 for each bounded, closed and m-C∞-rectifiable
subset Ω ⊂ M of locally finite m-dimensional Hausdorff density (with m ≤ n − 2)
the manifold (N \ Ω, h, χ) will also give equality. But, only incomplete manifolds
arise in these examples.

4.5 Different λmin-invariants

In the introduction we stressed out that sometimes other definitions of the λ+
min-

invariant occur in the literature. Firstly, one can define

λ−min = inf

{
‖Dφ‖2q
|(Dφ, φ)|

∣∣∣ (Dφ, φ) < 0, φ ∈ C∞c (M,S)

}
and

λ±min = min{λ+
min, λ

−
min}.

In this case nothing new happens. All results and definitions carry over straight-
forwardly, e.g., for complete manifolds one has λ−1 = − supσ(D) ∪ {−∞, 0} and
λ±1 = inf |σ(D)| ∪ {0,∞}.
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The invariants of these definitions do not see the kernel of the Dirac operator. In
contrast to this, in [7] for closed manifolds the following definition was considered:

λmin = inf
g∈g

λ1(g)vol(M, g)
1
n

where λ1 is the first eigenvalue of the square of the Dirac operator. The invariant
λmin is zero if and only if the Dirac operator has a nontrivial kernel [38].
For our purpose, this is exactly the disadvantage of this definition. We are interested
in spin conformal compactification. For that we rely on the positivity of λ+

min on
closed manifolds to obtain the obstruction 3.0.1. That’s why we restricted ourselves
to λ+

min.

Nevertheless, we could also extend the notion of λmin to open manifolds by defining

λ1 = inf

{
‖Dφ‖2

‖φ‖2
∣∣∣ φ ∈ C∞c (M,S)

}

and
λmin(M, g, σ) = inf

g∈[g],vol(M,g)=1
λ1.

Then, we can also obtain estimates for λmin and λ1 as we did for λ+
min.
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[12] Aubin, T. Problèmes isopérimétriques et espaces de Sobolev. J. Differential
Geometry 11, 4 (1976), 573–598.

63



[13] Aubin, T. Some nonlinear problems in Riemannian geometry. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 1998.

[14] Baier, P. D. über den Diracoperator auf Mannigfaltigkeiten mit zylinderen-
den. diploma thesis (Freiburg, 1997).

[15] Bär, C. Lower eigenvalue estimates for Dirac operators. Math. Ann. 293, 1
(1992), 39–46.

[16] Bär, C. The Dirac operator on space forms of positive curvature. J. Math.
Soc. Japan 48, 1 (1996), 69–83.

[17] Bär, C. Metrics with harmonic spinors. Geom. Funct. Anal. 6, 6 (1996),
899–942.

[18] Bär, C. Zero sets of solutions to semilinear elliptic systems of first order.
Invent. Math. 138, 1 (1999), 183–202.

[19] Bär, C. Dependence of the Dirac spectrum on the Spin structure. In Global
analysis and harmonic analysis (Marseille-Luminy, 1999), vol. 4 of Sémin.
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