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Introduction

In geometry conformal invariants are used to examine different properties of a man-
ifold, e.g. to find estimates for eigenvalues. These invariants can be composed by
conformally covariant operators like the Laplacian in dimension 2, the conformal
Laplacian and the Dirac operator.

The conformal Laplacian or Yamabe operator on an n-dimensional Riemannian man-
ifold (M,g) with n ≥ 3 is defined as

Lg := 4
n− 1

n− 2
∆g + scalg,

where ∆g denotes the Laplace operator and scalg the scalar curvature of M . This
operator played an important role for the Yamabe problem, the problem of finding
in a given conformal class a metric of constant scalar curvature. The solution of this
problem crucially involves the investigation of the Sobolev quotient (the Yamabe
number)

Q(M,g) := inf
{∫

M
φLgφ dvolg | φ ∈ C∞

c (M), ‖ φ ‖
L

2n
n−2

= 1
}
,

that is conformally invariant, and its associated partial differential equation. An
overview about the main results in the surrounding of the Yamabe problem can be
found in [13].
Alternatively, on a compact manifold the Sobolev quotient can be defined with the
help of the first eigenvalue λL1 (g) of the conformal Laplacian Lg

Q(M,g) = inf
g0∈[g]

λL1 (g0)vol(M,g0)
2
n .

On compact Riemannian spin manifolds this expression can be used to define an
analogon for the Dirac operator in terms of the first positive Dirac eigenvalue λ+

1 (g)

λ+
min(M,g) := inf

g0∈[g]
λ+

1 (g0)vol(M,g0)
1
n .

This invariant was studied e.g. in [1, 4, 6]. Like the Sobolev quotient λ+
min can

be understood as the critical point of a functional. Many results found for the
Sobolev quotient have an analogon for the Dirac operator. The main reason for that
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INTRODUCTION 2

turns out to be that the transformation law for the Dirac operator under confor-
mal changes of the underlying metric is similar to the one of the conformal Laplacian.

Nevertheless, not all arguments from the Yamabe problem can be taken over since
the Dirac operator is unbounded on both sides and for spinors there does not exist
a maximum principle.
But most of the considerations can be generalized to noncompact manifolds by using
Rayleigh quotients. This will be done in this thesis.
Many results for compact manifolds also hold in the noncompact case, e.g. for every
Riemannian spin manifold the constant λ+

min is always bounded from above by the
appropriate constant of the standard sphere (cf. proposition 2.3.4).

As in the case of the Sobolev quotient it offers new applications such as an obstruc-
tion to the conformal compactification of a Riemannian spin manifold. It will be
shown that if λ+

min of a noncompact complete Riemannian spin manifold of dimen-
sion n ≥ 2 at infinity (cf. definition 3.0.7) does not coincide with the one of the
standard sphere, this manifold can not be conformal to a subdomain of any com-
pact Riemannian spin manifold. This is an analogon to a theorem given in [11] that
involves Sobolev quotients.

The thesis is structured as follows: In the first chapter the basic concepts of spin
manifolds and their Dirac operator are introduced to provide the notations and
theorems that are used in the following.
The conformal invariant λ+

min will be generalized to noncompact manifolds in the
second chapter and some results that hold on compact manifolds will be carried
over.
In the last chapter the obstruction to the conformal compactification will be given.
Results concerning the development of the metric and the Dirac operator in normal
coordinates that are needed in the second chapter are listed in the appendix.



Chapter 1

Preliminaries

1.1 Spin manifolds and the Dirac operator

In this section basic notions concerning spin manifolds and the Dirac operator that
are used in this thesis are shortly listed to fix notations. All this can be found in
detail in [8] and [12].

Let (M,g) be an oriented Riemannian manifold with dimension n ≥ 2 and let
PSO(n)Mg be the SO(n) principal bundle over M of positively oriented frames. A
spin structure γ of (M,g) is a Spin(n) principal bundle PSpin(n)Mg over M with a
double covering η : PSpin(n)Mg → PSO(n)Mg such that the diagram

Spin(n) × PSpin(n)Mg

Θ×η

��

// PSpin(n)Mg

η

��

%%JJJJJJJJJJ

M

SO(n) × PSO(n)Mg // PSO(n)Mg

99tttttttttt

commutes, where Θ is the double covering Spin(n) → SO(n) and the horizontal
arrows denote the corresponding group actions. A Riemannian manifold that admits
such a spin structure is called a spin manifold.

Remark 1.1.1.
i) A spin manifold can allow different spin structures. In the following, when
talking about a Riemannian spin manifold (M,g), it will always be assumed that a
spin structure is already chosen and fixed.
ii) A simply connected Riemannian manifold is spin if and only if its fundamental
group π1(PSO(n)Mg) = Z2 and then the spin structure is uniquely determined [8, p.
42].

Let further Sg = PSpin(n)Mg×ρ∆n be the associated spinor bundle, where ∆n = C
2[ n

2 ]

and ρ : Spin(n) → End(∆n) is the spinor representation. A section of Sg will

3



1.1. SPIN MANIFOLDS AND THE DIRAC OPERATOR 4

be called spinor. Sg is equipped fibrewise with a hermitian metric 〈 . , . 〉m
that depends smoothly on the base point m and with the Clifford multiplication
TM ⊗ Sg → Sg; X ⊗ φ 7→ X · φ such that for all m ∈M

〈Xm · φ1(m), φ2(m)〉m + 〈φ1(m),Xm · φ2(m)〉m = 0 ∀X ∈ TM ;φ1, φ2 ∈ Γ(Sg)

and

Xm ·Ym ·φ(m) + Ym ·Xm ·φ(m) = −2gm(Xm, Ym) ·φ(m) ∀X,Y ∈ TM ;φ ∈ Γ(Sg).

Further, with this hermitian metric a L2-scalar product

(φ,ψ)M,g :=

∫

M
〈φ(m), ψ(m)〉mdvolg

is defined for spinors φ,ψ of Sg. Additionally, the Levi-Civita connection on PSO(n)Mg

induces a metric connection ∇ on the spinor bundle that is parallel w.r.t. the Clifford
multiplication, that means it fulfills

∇X(Y · φ) = (∇XY ) · φ+ Y · ∇Xφ (1.1)

for all X,Y ∈ Γ(TM) and φ ∈ Γ(Sg).

By the composition of the connection and the Clifford multiplication the Dirac
operator is defined:

Definition 1.1.2. [8, p. 75]
The operator Dg = µ ◦∇ : Γ(Sg) → Γ(T ∗M ⊗Sg) ∼= Γ(TM ⊗Sg) → Γ(Sg) is called
Dirac operator, where µ denotes the Clifford multiplication. Its local form w.r.t. an
orthonormal Repère e = (e1, . . . , en) on the manifold (Mn, g) is given by

Dgψ =

n∑

i=1

ei · ∇eiψ.

Remark 1.1.3.
i) The local form of the Dirac operator is independent of the choice of the frame
(e1, . . . , en) [10, p. 144].
ii) The Dirac operator is a first order elliptic differential operator [12, p. 113] and
using the L2-product introduced above it is defined as an operator over L2(Sg).
iii) The Dirac operator is formally self-adjoint [12, p. 115], i.e. for all spinors φ,ψ, at
least one of them being compactly supported on M , it is (φ,Dψ)M,g = (ψ,Dφ)M,g.
Thus, due to this self-adjointness and the hermiticity of the scalar product, (φ,Dφ)
is real for all compactly supported spinors φ.
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1.2 Conformal transformation of the Dirac operator

The spin structure, the spinor bundle and hence the Dirac operator depend on the
metric g of M . Below, the Dirac operators belonging to two conformal equivalent
metrics and the corresponding isomorphic spinor bundles are compared.

Let g and g̃ be conformal equivalent metrics, i.e. there is a function f ∈ C∞(M) with
f > 0 and g̃ = f2g. The appropriate equivalence class is denoted by [g]. Having
the fixed spin structure γ on (M,g) there always exists a spin structure γ̃ (and
the corresponding spinor bundle Sg̃) on (M, g̃) and a vector bundle isomorphism
A : Sg → Sg̃ that is fibrewise an isometry [9]. Using this isometry it is possible to
compare the Dirac operators Dg and Dg̃.

Proposition 1.2.1. [9, prop. 4.3.1.] Let (M,g) be an n-dimensional Riemannian
spin manifold. The Dirac operators Dg and Dg̃, respectively, satisfy

Dg̃(A(f−
n−1

2 ψ)) = A(f−
n+1

2 Dgψ) (1.2)

for any spinor ψ of Sg.

From now on, the explicit notation for the identification of spinors of the differ-

ent spinor bundles will be omitted and it is set ψ̃ := A(f−
n−1

2 ψ) ≡ f−
n−1

2 ψ and
S = Sg = Sg̃.

Using the transformation law (1.2), the identification of spinors ψ̃ = f−
n−1

2 ψ and
dvolg̃ = fndvolg, conformal invariants can be found:

I. (φ,Dgφ)g = (f
n−1

2 φ̃,Dg(f
n−1

2 φ̃))g = (f
n−1

2 φ̃, f
n+1

2 Dg̃φ̃)g

= (fnφ̃,Dg̃φ̃)g = (φ̃,Dg̃φ̃)g̃

II. ‖ φ ‖Lp,g =‖ f
n−1

2 φ̃ ‖Lp,g=‖ f
n
p φ̃ ‖Lp,g=‖ φ̃ ‖Lp,g̃

III. ‖ Dgφ ‖Lq ,g =‖ Dg(f
n−1

2 φ̃) ‖Lq ,g=‖ f
n
q Dg̃φ̃ ‖Lq ,g=‖ Dg̃φ̃ ‖Lq ,g̃,

where p = 2n
n−1 and q = 2n

n+1 .

1.3 Spectrum

Next, some general properties of the spectrum of the Dirac operator and its be-
haviour under conformal transformations are given.
In general, the Dirac operator can possess all types of spectrum: point spectrum,
continuous spectrum and residual spectrum. But in special cases some of these
spectra vanish. For the following, the most important one will be the case of a
compact manifold:
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Theorem 1.3.1. [8, pp. 108, 111],[2, prop. 4.30] Let (M,g) be a closed Riemannian
spin manifold. Then the Dirac operator Dg has pure real point spectrum and it
exists an orthonormal basis ψi of L2(Sg) (i ∈ N) such that Dgψi = λiψi with λi ∈ R.
Further, as well +∞ as −∞ are accumulation points of the spectrum.

For noncompact manifolds it can also occur that the Dirac operator has no point
spectrum. This is for example the case for (R, gE). Thus, in chapter 2 a general-
ization will be used to make statements for noncompact manifolds similar to those
given in [4] for compact ones.

1.4 Elliptic regularity

In this section the Sobolev embedding theorems for the Dirac operator and the def-
inition of the spaces needed, as Sobolev and Hölder spaces, will be provided.

The Sobolev spaces Hq
k with q ∈ (1,∞) and k ∈ N defined as the completion of

C∞(M,S) by the Hq
k-norm

‖ φ ‖Hq
k
=‖ ∇kφ ‖Lq

can be generalized on compact manifolds to k ∈ R:
Let now (M,g) be compact and define for a spinor φ the norm

‖ φ ‖H̃q
k
=‖ |D|kφ ‖Lq + ‖ πφ ‖1,

where π denotes the projection on the kernel of D and ‖ . ‖1 an arbitrary norm on
it. The operator |D|k is defined on compact manifolds for every k ∈ R (see [4]) and
acts by

|D|k
∑

βiφi :=
∑

λi 6=0

βi|λi|
kφi

where φi is an orthonormal basis of L2(S) consisting of Dirac eigenspinors with the
corresponding eigenvalues λi (cf. theorem 1.3.1). For k ∈ N the norms Hq

k and H̃q
k

are equivalent [4]. Thus, in both cases the corresponding Sobolev spaces will be
denoted by Hq

k .

The next type of spaces needed are the Hölder spaces.

Definition 1.4.1. The Hölder spaces C0,α(M,S) and C1,α(M,S), respectively, for
α ∈ (0, 1] are the completions of C∞(M,S) w.r.t. the Hölder norm

‖ φ ‖C0,α := hölα(φ) and ‖ φ ‖C1,α :=‖ φ ‖C0 +hölα(∇φ),

respectively, where

hölα(φ) := sup
{ |φ(x) − Pγφ(y)|

d(x, y)α

∣∣∣ x, y ∈M,x 6= y
}

and Pγ being the parallel transport along a shortest geodesic γ from x to y.
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With these definitions the Sobolev embedding theorems on spin manifolds can be
formulated.

Theorem 1.4.2 (Sobolev embedding I, [4] thm. 3.4.1). Let k, s ∈ R, k ≥ s and
q, r ∈ (1,∞) with

1

r
−
s

n
≥

1

q
−
k

n
, (1.3)

then Hq
k(M,S) is continuously embedded into Hr

s (M,S).

Theorem 1.4.3 (Rellich-Kondrakov, [4] thm. 3.4.3). Under the same conditions as
in theorem 1.4.2, but with strict inequality (1.3) the inclusionHq

k(M,S) → Hr
s (M,S)

is a compact operator.

Theorem 1.4.4 (Sobolev embedding II, [4] thm. 3.4.4). Suppose 0 < α < 1,
m ∈ {0, 1} and

1

q
≤
k −m− α

n
. (1.4)

Then Hq
k(M,S) is continuously embedded into Cm,α(M,S).
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Chapter 2

The conformal invariant

2.1 Generalization of the first positive Dirac eigenvalue

As stated in section 1.3, on noncompact spin manifolds Dirac eigenvalues do not have
to exist and in general the spectrum does not only consist of eigenvalues. In analogy
to the first positive Dirac eigenvalue λ+

1 (M,g) of a closed Riemannian spin manifold
(M,g) and the corresponding first conformal positive Dirac eigenvalue λ+

min(M, [g])
[1, p. 4], a similar notion shall be also defined on open manifolds:

Definition 2.1.1. Let (M,g) be a Riemannian spin manifold without boundary.
Then,

λ+
1 (M,g) := inf

{
(Dgφ,Dgφ)M,g

(Dgφ, φ)M,g

∣∣∣ 0 < (Dgφ, φ)M,g <∞, φ ∈ C∞
c (M,S)

}
(2.1)

Further, the conformal invariant λ+
min(M,g) := infg′∈M(g) λ

+
1 (g′) is defined, where

M(g) denotes the set of metrics in [g] with unit volume.

Remark 2.1.2.
i) In general, the volume of a noncompact manifold (M,g), denoted by vol(M,g),
is not finite. But M(g) is always non-empty.
ii) If M is closed, λ+

1 (M,g) really gives the first positive Dirac eigenvalue. This can
be seen by using an orthonormal basis of eigenspinors of L2(S) that always exists
due to theorem 1.3.1. Thus, φ =

∑
i βiφi with Dgφi = λiφi and (φi, φj)M,g = δij for

all i, j. Let λ be the non-zero eigenvalue with the lowest magnitude. Then it holds

(Dgφ,Dgφ)M,g

(Dgφ, φ)M,g
=

∑
λ2
i |βi|

2

∑
λi|βi|2

≥ λ

∑
λi>0

λ2
i
λ |βi|

2

∑
λi>0 λi|βi|

2
≥ λ

∑
λi>0 λi|βi|

2

∑
λi>0 λi|βi|

2
= λ.

Furthermore, λ can be attained by inserting for φ an eigenspinor of λ. Thus, λ = λ+
1 .

Firstly, some properties of λ+
min shall be presented in analogy of some properties of

the Sobolev quotient of the Yamabe problem (see e.g. [14] lemma 2.1).

9
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Lemma 2.1.3.
i) If Ω1 ⊆ Ω2 are two open subsets of a manifold (M,g), it holds

λ+
min(Ω1, g) ≥ λ+

min(Ω2, g).

ii) Let (M,g) be a Riemannian spin manifold of dimension n > 2 and fix a point
p ∈M . Then

lim
ǫ→0

λ+
min(M \Bǫ(p), g) = λ+

min(M,g)

with Bǫ(p) being a ball around p of radius ǫ w.r.t. g.
iii) If Ω is an open subset of Sn with n > 2 equipped with its standard metric gst,
then

λ+
min(Ω, gst) = λ+

min(S
n, gst).

Remark 2.1.4. Since the sphere Sn for n ≥ 2 is simply connected it possesses only
one spin structure (see remark 1.1.1.ii).

Proof of lemma 2.1.3:
i) That follows since every spinor φ ∈ C∞

c (Ω1, S) can be extended by zero to a
spinor φ ∈ C∞

c (Ω2, S).
ii) From i) it is immediately seen that the limes has to exist and fulfills

lim
ǫ→0

λ+
min(M \Bǫ(p), g) ≥ λ+

min(M,g).

Let now φ ∈ C∞
c (M,S) be a spinor on M and let ρ : [0,∞) → [0, 1] be a smooth

function with ρ ≡ 0 on a neighbourhood of 0, ρ ≡ 1 on a neighbourhood of [1,∞)
and 0 ≤ ρ′ ≤ 2. For 0 ≤ δ < ǫ and for x ∈M such that d(x, p) ≥ δ it is

ρδ,ǫ(x) := ρ

(
d(x, p) − δ

ǫ− δ

)

and |gradρδ,ǫ| ≤
2
ǫ−δ . Setting φα := ρα

2
,αφ for all x with d(x, p) ≥ α/2 and else

φα := 0, the spinors obtained are elements of C∞
c (M \ Bǫ(p), S) for ǫ < α/2. It

holds

‖ φα − φ ‖L2(M,g)=‖ (ρα
2
,α − 1)φ ‖L2(Bα(p),g)≤ Fαvol(Bα(p), g)

1
2 ,

where Fα := max{|φ(x)| | x ∈ Bα(p)}. Now an estimation of Fα shall be obtained:
Let x ∈ Bα(p). Then

|φ(x)| ≤ |φ(x) − φ(p)| + |φ(p)| ≤ Cαα+ |φ(p)|, (2.2)

where Cα := max{|∇φ(x)|
∣∣ d(x, p) < α} and where the last inequality is obtained

by applying the mean value theorem. Hence, for α ≤ 1 it is

‖ φα − φ ‖L2(M,g)≤ (C1α+ |φ(p)|)vol(Bα(p), g)
1
2
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and thus, φα → φ in L2 for α→ 0. Due to definition of λ+
1 it is for ǫ ≤ α/2

λ+
1 (M \Bǫ(p), g) ≤

‖ Dgφα ‖2
L2(M\Bǫ(p),g

(Dgφα, φα)M\Bǫ(p),g
.

Thus, it suffices to show that

lim
ǫ→0

λ+
1 (M \Bǫ(p), g) ≤ lim

α→0

‖ Dgφα ‖2
L2(M,g)

(Dgφα, φα)M,g
=

‖ Dgφ ‖2
L2(M,g)

(Dgφ, φ)M,g
,

since if this inequality holds for arbitrary φ ∈ C∞
c (M,S), it is

lim
ǫ→0

λ+
1 (M \Bǫ(p), g) ≤ λ+

1 (M,g).

With Dgφα = ρα
2
,αDgφ+ gradρα

2
,α · φ it converges

‖ Dgφα −Dgφ ‖L2 ≤‖ (ρα
2
,α − 1)Dgφ ‖L2 + ‖ gradρα

2
,α · φ ‖L2

≤ maxd(x,p)≤α |Dgφ(x)| volBα(p)
1
2 + 4

αFαvolBα(p)
1
2

≤ (maxd(x,p)≤α |Dgφ(x)| + 4
α(Cαα+ |φ(p)|))volBα(p)

1
2

→ 0 for α→ 0,

since vol(Bα(p))
1
2 /α→ 0 for α→ 0. Thus, the limes

|(Dgφα, φα) − (Dgφ, φ)| ≤ |(Dgφα, φα − φ)| + |(Dgφ−Dgφα, φ)|
≤ ‖ Dgφα ‖L2‖ φα − φ ‖L2 + ‖ Dgφ−Dgφα ‖L2‖ φ ‖L2

→ 0 for α→ 0

is obtained.
Thus, λ+

1 (M,g) = limǫ→0 λ
+
1 (M \ Bǫ, g). Thus, there have to exist δgǫ ∈ R≥0 with

λ+
1 (M,g) = λ+

1 (M \Bǫ, g) − δgǫ and limǫ→0 δ
g
ǫ = 0. Hence, with

λ+
min(M,g) = inf

g̃∈[g]
(λ+

1 (M \Bǫ, g̃) − δg̃ǫ )

the claim is shown.
iii) Due to i) it is λ+

min(Ω) ≥ λ+
min(S

n). Further, with ii) for all ǫ > 0 it holds

lim
ǫ→0

λ+
min(S

n \Bǫ) = λ+
min(S

n),

where Bǫ denotes the ball with radius ǫ around a fixed point of the sphere w.r.t. the
standard metric. Since Ω is a domain of the sphere, for a fixed ǫ > 0 there exists
a conformal map Φ : Sn → Sn such that Φ(Ω) ⊆ Sn \ Bǫ

1. Due to the conformal
invariance of λ+

min it holds

λ+
min(Ω) = λ+

min(Φ(Ω)) ≤ λ+
min(S

n \Bǫ).

Carrying out the limiting process ǫ→ 0 yields λ+
min(Ω) ≤ λ+

min(S
n). �

1E.g. such a map can be obtained by a composition of stereographic projection, multiplication

by a constant and the inverse stereographic projection.
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Remark 2.1.5. The proof even shows that the first and second statement of lemma
2.1.3 already hold when replacing λ+

min by λ+
1 .

For a compact manifold the condition for the spinors in (2.1) of being compactly
supported is always fulfilled. Similarly, in the case of an open smoothly bounded
subset Ω the infimum can be taken over all smooth spinors defined on the closure of
Ω.

Lemma 2.1.6. If Ω is an open smoothly bounded subset of a Riemannian spin
manifold (M,g), then

λ+
1 (Ω, g) = inf

φ∈C∞(Ω,S)

{‖ Dφ ‖2
L2(Ω,g)

(Dφ,φ)Ω,g

∣∣∣ 0 < (Dφ,φ)Ω,g <∞
}
.

Proof: The proof is done analogously to the one of lemma 2.1.3.ii, but in the
definition of ρδ,ǫ the distance d(x, p) is replaced by d(x, ∂Ω) and thus Bα(p) by
Bα(∂Ω) := {x ∈M | d(x, ∂Ω) < α}. Further, the estimation (2.2) turns to

|φ(x)| ≤ |φ(x) − φ(p)| + |φ(p)| ≤ Cαα+ |φ(P )|,

where p ∈ ∂Ω such that d(x, p) < α and P ∈ ∂Ω such that |φ(y)| ≤ |φ(P )| for all
y ∈ ∂Ω. �

2.2 The corresponding variational problem

For q ∈ [qD = 2n
n+1 ,∞) define

FM
q : Hq := {ψ ∈ C∞

c (M,S)| ‖ Dgψ ‖Lq(M,g)= 1} → R, ψ 7→ (ψ,Dgψ)M,g (2.3)

µq := µq(M,g, σ) := sup
ψ∈Hq

FM
q (ψ) (2.4)

If only one particular manifold M or one metric g is under consideration, they will
be omitted in the notation.

Remark 2.2.1.
i) For q = qD the functional is conformally invariant (see section 1.2), thus µqD
will be the major object of interest.
ii) On a compact manifold the Dirac operator Dg has positive eigenvalues. Hence,
µq > 0. It also holds µq <∞ (see [4] and lemma 2.3.2).
iii) µ2 = λ+

1 (g)−1

Lemma 2.2.2. The Euler-Lagrange equation of the variational problem given by
FM
q reads (with D = Dg)

D(ψ − µq|Dψ|
q−2Dψ) = 0, ‖ Dψ ‖Lq= 1. (2.5)
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Proof: Let ψ, η ∈ C∞
c (M,S). A variation ψ+ ǫη of the functional FM

q (ψ) restricted
to Hq, where ǫ is the variation parameter, gives

FM
q (ψ + ǫη) =

∫
M 〈D(ψ + ǫη), ψ + ǫη〉 + λ〈D(ψ + ǫη),D(ψ + ǫη)〉

q
2 dvolg

0
!
= ∂

∂ǫF
M
q (ψ + ǫη)|ǫ=0 = 2 Re

∫
M 〈ψ,Dη〉 + λ q2 |Dψ|

q−2〈Dψ,Dη〉dvolg
= 2 Re

∫
M 〈ψ + λ q2 |Dψ|

q−2Dψ,Dη〉dvolg
= 2 Re

∫
M 〈D(ψ + λ q2 |Dψ|

q−2Dψ), η〉dvolg

Then, by the fundamental lemma of variational calculus

ψ + λ
q

2
|Dψ|q−2Dψ ∈ kerD.

Rescaling to a solution ψ with ‖ Dψ ‖Lq= 1 yields (2.5). �

The Euler-Lagrange equation will be further considered in section 2.4.

Remark 2.2.3.
i) Since q−2 > −1 for all q ∈ [2n/(n+1),∞) the expression |Dgψ|

q−2Dgψ converges
to 0 as Dgψ → 0. Setting |Dgψ|

q−2Dgψ = 0 for Dgψ = 0 the obtained spinor
|Dgψ|

q−2Dgψ is smooth if ψ and |Dgψ| is so.
ii) The map FM

q introduced in [4] maps φ ∈ imC∞D with ‖ φ ‖Lq= 1 to (φ,D−1φ),
where D−1φ is the preimage under D orthogonal to its kernel and imC∞D is the
image of the Dirac operator on (M,g). In this case the Euler-Lagrange equation
reads

D−1φ− µq|φ|
q−2φ ∈ kerD, ‖ φ ‖Lq= 1.

On closed manifolds, with φ = Dψ and the decomposition ψ = ψ0 + ψ⊥ with ψ0

belonging to the kernel of D and ψ⊥ being orthogonal to it, there holds

(ψ,Dψ) = (ψ0 + ψ⊥,Dψ⊥) = (Dψ0, ψ
⊥)︸ ︷︷ ︸

=0

+(ψ⊥,Dψ⊥) = (D−1φ, φ).

Thus, both maps give the same constant µq.

2.3 Properties of µq

In this section some properties of µq and especially of µqD are stated. In particular,
the interest is directed towards the connection of µqD with the previous conformal
invariant λ+

min and the comparison of µqD of an arbitrary manifold with µqD of the
standard sphere.

Lemma 2.3.1. For any Riemannian spin manifold (M,g) it is λ+
min = µ−1

qD
, where

the case λ+
min = 0 corresponds to µqD = ∞.
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Proof: For compact spin manifolds the claim was proved in [1, prop. 5.5.], the same
arguments work here.
Let g0 ∈ M(g). Then the function q → µq(M,g0) is nondecreasing in q, since for
q2 ≤ q1 the Hölder inequality gives:

‖ ϕ ‖Lq2 = (

∫
|ϕ|q2dvolg0)

1
q2 ≤

(
(

∫
|ϕ|q1dvolg0)

q2
q1 vol(M,g0)

1
q2

− 1
q1

) 1
q2 =‖ ϕ ‖Lq1 .

With remark 2.2.1.iii it holds λ+
1 (g0) = µ2(g0)

−1 ≥ µqD(g0)
−1 and hence λ+

min ≥ µ−1
qD .

Thus, the inverse relation remains to show. If λ+
min = 0, then µqD = ∞ follows

directly.
Assume now λ+

min 6= 0. Choose spinors ψǫ such that FqD(ψǫ) → µqD for ǫ → 0
and ‖ Dg0ψǫ ‖LqD = 1. By using a small perturbation of ψǫ it can be assumed that
|Dg0ψǫ| is smooth and thus, it can be used to define the conformal equivalent metric

gǫ = (|Dg0ψǫ| + δ)
4

n+1 g0 and ψ = (|Dg0ψǫ| + δ)
n−1
n+1ψǫ. Then

Dgǫψ = (|Dg0ψǫ| + δ)−1Dg0ψǫ i.e. |Dgǫψ| → 1 if δ → 0
‖ Dgǫψ ‖2

L2(M,gǫ)
→ 1 and vol(M,gǫ) → 1.

Thus, it holds

FqD(ψǫ) =
(Dg0ψǫ, ψǫ)g0
‖ Dg0ψǫ ‖

2
LqD

= (Dgǫψ,ψ)gǫ

For δ → 0 (Dgǫψ,ψ)gǫ approaches
(Dgǫψ,ψ)gǫ

‖Dgǫψ‖
2
L2

≤ λ+
1 (gǫ)

−1.

Hence, µqD ≤ λ+
min

−1
= supg∈M(g0) λ

+
1 (g)

−1
. �

As mentioned in remark 2.2.1.ii µqD < ∞ holds for every compact manifold. The
same is obtained for every bounded open subset of a Riemannian spin manifold.

Lemma 2.3.2. Let (Ω, g) be as above an open smoothly bounded subset of a Rie-
mannian spin manifold (M,g). Then µq(Ω, g) is finite for every q ∈ [qD,∞).

Proof: Ω is a compact manifold with boundary. By gluing two manifolds of this
kind together (at their boundary), a closed manifold Ω2 is obtained. Then, due to
lemma 2.1.3.i it holds µq(Ω) ≤ µq(Ω2). Thus, due to the finiteness of µq on closed
manifolds, µq(Ω) is finite, too.
For the sake of completeness the proof for µq < ∞ on closed manifolds shall be
sketched below:
Setting φ = D−1ψ (see remark 2.2.3.ii) it follows by the definition of H2

−1/2 (cf.

section 1.4) and due to theorem 1.4.2 that there exists a constant C with

(ψ,Dψ)

‖ Dψ ‖Lq
=

(D−1φ, φ)

‖ φ ‖2
Lq

≤
(|D|−1φ, φ)

‖ φ ‖2
Lq

=
‖ |D|−

1
2φ ‖2

L2

‖ φ ‖2
Lq

≤
‖ φ ‖2

H2
−1/2

‖ φ ‖2
Lq

≤ C.

�
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As in the case of the Sobolev quotient the constant µqD of a manifold can be com-
pared with the one of the standard sphere µqD(Sn, gst), namely µqD(M) ≥ µqD(Sn)
(For compact manifolds this was shown in [3]). Before proving this estimate, it will
be verified that in the limit of a point the value of µqD coincides with µqD(Sn).

Lemma 2.3.3. Let (M,g) a Riemannian spin manifold of dimension n > 2 and
let p ∈ M be fixed. For any ǫ > 0 let Uǫ be a sequence of nested neighbourhoods
around p such that diameter(Uǫ) → 0 as ǫ→ 0. Then it holds

lim
ǫ→0

µqD(Uǫ, g) = µqD(Sn, gst).

Proof: Introduce rescaled geodesic normal coordinates:

σǫ : TpM ∼= R
n →M, σǫ(x) = expp(ǫx).

LetB ⊂ TpM a ball around 0 w.r.t. gE such that the exponential map expp restricted
to B is a diffeomorphism. Then, Bǫ := σǫ(B) defines a sequence with Bǫ → {p} as
ǫ→ 0. W.l.o.g. it can be assumed Uǫ = Bǫ for all ǫ.

Defining ψǫ := ǫ−
n−1

2 ψ ◦ σǫ, where ψ ∈ C∞
c (B,S) and gǫ = ǫ−2σ∗ǫ (g) it holds by

conformal invariance

(Dgψǫ, ψǫ)Bǫ,g

‖ Dgψǫ ‖2
LqD (Bǫ,g)

=
(Dǫψ,ψ)B,gǫ

‖ Dǫψ ‖2
LqD (B,gǫ)

,

where Dǫ is the Dirac operator w.r.t. gǫ. Further, it is

µqD(Sn) = µqD(B̂) ≥
(Dsψ̂, ψ̂)B̂,gs

‖ Dsψ̂ ‖2
LqD (B̂,gs)

=
(Dflatψ,ψ)B,gE

‖ Dflatψ ‖2
LqD (B,gE)

,

where B̂ ⊂ Sn corresponds to B ⊂ R
n under the stereographic projection, Ds is

the Dirac operator on the sphere and ψ̂ is the spinor corresponding to ψ w.r.t.
the identification of the bundles. The first equality holds due to lemma 2.1.3.ii,
the second inequality is just due to definition and the last equality is given by the
conformal invariance of the quotient µqD .
In the next step, it will be shown that

∣∣∣∣∣
(Dǫψ,ψ)B,gǫ

‖ Dǫψ ‖2
LqD (B,gǫ)

−
(Dflatψ,ψ)B,gE

‖ Dflatψ ‖2
LqD (B,gE)

∣∣∣∣∣→ 0 as ǫ→ 0, (2.6)

The reason turns out to be that on a fixed ball B the metrics gǫ tend to the Eu-
clidean metric gE for ǫ→ 0, the same is true for the corresponding Dirac operators
Dǫ,D

flat. This can be obtained by the development of g in the rescaled geodesic
normal coordinates and is done in appendix A.
Thus, it follows from (A.4)

| ‖ Dǫψ ‖qDLqD (B,gǫ)
− ‖ Dǫψ ‖qDLqD (B,gE) | ≤

∫

B
|Dǫψ|

qD(dvolgǫ−dvolgE
) → 0 for ǫ→ 0
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and from (A.5)
|Dǫψ|

qD − |Dflatψ|qD → 0 for ǫ→ 0.

Hence,

| ‖ Dǫψ ‖2
Lq(B,gǫ)

− ‖ Dflatψ ‖2
Lq(B,gE) |

≤ | ‖ Dǫψ ‖2
Lq(B,gǫ)

− ‖ Dǫψ ‖2
Lq(B,gE) | + | ‖ Dǫψ ‖2

Lq(B,gE) − ‖ Dflatψ ‖2
Lq(B,gE) |

→ 0 for ǫ→ 0.

Analogously, it is obtained that

|(Dǫψ,ψ)B,gǫ − (Dflatψ,ψ)B,gE
| → 0 for ǫ→ 0

and thus (2.6) is shown.
Having now a sequence of spinors ψi ∈ C∞

c (B,S) and a sequence δi ∈ R>0 with
δi → 0 for i→ ∞ such that (2.3) becomes

µqD(Sn) − δi =
(Dflatψi, ψi)B,gE

‖ Dflatψi ‖2
LqD (B,gE)

= lim
ǫ→0

(Dǫψ
i, ψi)B,gE

‖ Dǫψi ‖2
LqD (B,gE)

≤ lim
ǫ→0

µqD(Bǫ, g)

and so µqD(Sn) ≤ limǫ→0 µqD(Bǫ, g). Analogously, the converse relation is obtained
when choosing a sequence of spinors ψi ∈ C∞

c (B,S) and a sequence δi ∈ R>0 with
δǫ → 0 for ǫ→ 0 such that

lim
ǫ→0

µqD(Bǫ, g) − δi = lim
ǫ→0

(Dǫψ
i, ψi)B,gE

‖ Dǫψi ‖2
LqD (B,gE)

=
(Dflatψi, ψi)B,gE

‖ Dflatψi ‖2
LqD (B,gE)

≤ µqD(Sn).

Hence, the claim is shown. �

Proposition 2.3.4. For any Riemannian spin manifold (M,g) it holds

µqD(M,g) ≥ µqD(Sn, gst).

Proof: Let p ∈ M be fixed and choose balls Bǫ around p with radius ǫ w.r.t. g.
Then, this sequence fulfills the assumptions of lemma 2.3.3. Thus, µqD(M,g) ≥
µqD(Bǫ, g) → µqD(Sn, gst) for ǫ→ 0. �

Remark 2.3.5.
i) µqD of the standard sphere is given by 2

nvol(Sn, gst))
− 1

n [3]. This result is obtained
by using the Hijazi inequality ([9] and for n = 2 [7])

(λ+
min)

2 ≥
n

4(n− 1)
λY ,

where λY is the Yamabe invariant that, in case of the standard sphere, equals
n(n− 1)vol(Sn, gst))

2/n . Further, this bound is really attained by an eigenvector to
the eigenvalue n

2 .
ii) The question arises when a manifold fulfills µqD(M,g) < µqD(Sn, gst). In [6] it is
e.g. shown that this condition is fulfilled if (M,g) is a compact but not conformally
flat manifold of dimension n ≥ 7.
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2.4 The Euler-Lagrange equation

Now the Euler-Lagrange equation (2.5) of the variational problem corresponding to
µq shall be examined. For compact manifolds all this can be found again in [4] and
here the analoga for an open smoothly bounded subset Ω of (M,g) are stated.

The first lemma shows the duality between the differential equation (2.5) and another
one that would arise as the Euler-Lagrange equation of the map FΩ

q under a different
constraint, namely ‖ φ ‖Lp(Ω,g)= 1. Unfortunately, even on compact manifolds the
supremum µq would then always be infinite since the Dirac operator is unbounded
on both sides (see theorem 1.3.1).

Lemma 2.4.1 (duality principle, [1] lem. 2.2.). Let p, q > 1, λ, µ ∈ R
+ with p−1 +

q−1 = 1 and λµ = 1 and D = Dg.
i) If φ satisfies

Dφ = λ|φ|p−2φ on Ω, ‖ φ ‖Lp(Ω,g)= 1, (2.7)

then ψ = µφ satisfies (2.5).
ii) If ψ satisfies (2.5), then φ = |Dψ|q−2Dψ satisfies (2.7).

Proof:
i)

D(ψ − µ|Dψ|q−2Dψ) = D(µφ− µq|Dφ|q−2Dφ)

= D(µφ− µqλq−1|φ|(p−1)(q−2)|φ|p−2φ)
= D(µφ− µφ) = 0

‖ Dψ ‖Lq =‖ µDφ ‖Lq=‖ |φ|p−2φ ‖Lq=‖ φ ‖Lp= 1

ii)

Dφ− λ|φ|p−2φ = D(|Dψ|q−2Dψ) − λ|Dψ|(q−1)(p−2)|Dψ|q−2Dψ
= D(|Dψ|q−2Dψ) − λDψ
= λD(µ|Dψ|q−2Dψ − ψ) = 0

‖ φ ‖Lp =‖ |Dψ|q−2Dψ ‖Lp=‖ Dψ ‖Lq= 1

�

The next step shall be to examine whether there exists a spinor that fulfills the
differential equation if the inequality in proposition 2.3.4 is strict.

Proposition 2.4.2 (analogon to [4] thm. 4.2.2.). Let (M,g) be a Riemannian spin
manifold of dimension n ≥ 2 with a fixed conformal class [g] and a spin structure σ
and Ω an open and smoothly bounded subset. Assume that

λ+
min = λ+

min(Ω, g0, σ) < λ+
min(S

n) (2.8)
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Then, there is a spinor field φ ∈ C(1,α)(Ω, S) that is continuous on Ω and smooth
on Ω \ φ−1(0) such that

Dgφ = λ+
min|φ|

2
n−1φ on Ω, ‖ φ ‖

L
2n

n−1
= 1. (2.9)

Proof: The proof follows mainly the proof of the analog statement for compact
M = Ω. This can be done by gluing two copies of Ω together at their boundaries
to obtain a closed manifold Ω2. Now, Ω is viewed as a compact subset of Ω2 and
all the embedding theorems and regularity theorems for a compact manifold can be
applied.
To proof this statement the plan goes as follows: Firstly, in lemma 2.4.3 it is shown
that for q > qD the subcritical problem of µq(Ω) has a weak solution φq ∈ C1,α(Ω2, S)
of (2.5) such that φq = D−1ψq for a ψq ∈ C0,α(Ω2, S). It is convenient to consider
at first the subcritical problem since qD turns out to be the critical exponent of the
Rellich-Kondrakov lemma 1.4.3 such that the embedding Lq →֒ H2

−1/2 is no more
compact.
Then theorem 2.4.5 shows that the ψq are uniformly bounded in L∞.
Let now q ∈ (qD, 2] be close enough to qD that µq is bounded by a positive constant
K. This can always be achieved, since µ−1

2 = λ+
1 < ∞ (see remark 2.2.1.iii) and

q 7→ µq is non-increasing and continuous from the right (due to the continuity of
q 7→‖ ψ ‖q for fixed ψ). Applying the regularity theorem 2.4.4 the ψq and the φq,
respectively, are uniformly bounded in C0,α(Ω2, g) and in C1,α(Ω2, g), respectively,
by a q-independent constant. Thus, there exists a subsequence φqi with qi → qD for
i → ∞ such that φqi converges in C1 to a spinor field φqD . Then, φqD fulfills 2.5.
To conclude that φqD is smooth on Ω \ φ−1

qD
(0) interior Schauder estimates can be

applied inductively as in the closed case (see [4] thm. 3.1.16 and the remark on page
46). �

With the above notations the lemmata needed in the previous proof will be formu-
lated:

Lemma 2.4.3. Let q > qD. Then the supremum µq(Ω) is attained by a spinor field
φ ∈ C1,α(Ω2, S) which is a solution of (2.5).

Proof: The proof follows the arguments of the case of a closed manifold in [4, prop
7.4.]: Let φi ∈ C∞

c (Ω, S) be a maximizing sequence for µq, this means Fq(φi) → µq
and ‖ Dφi ‖Lq(Ω,g)= 1. By extending every φi on Ω2 \ Ω by zero φi ∈ C∞(Ω2, S).
Now, as in the closed case the sequence ψi := Dφi is bounded in Lq(Ω2) and hence,
a subsequence of ψi converges weakly in Lq to a ψ. Since the spinors with Lq-norm
equal to one form a closed subset in Lq, ‖ ψ ‖Lq(Ω,g)=‖ ψ ‖Lq(Ω2,g)= 1. Because
of the compactness of the embedding Lq(Ω2) →֒ H2

−1/2(Ω2) for q > qD (Rellich-

Kondrakov, theorem 1.4.3), a subsequence converges strongly to ψ in H2
−1/2(Ω2).

Since D can be closed, it will be assumed w.l.o.g. that D is already closed. Thus,
it is ψ ∈ imD. Let φ = D−1ψ. Now, it remains to show that φ really attains the
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supremum, i.e. (φ,Dφ)Ω,g = µq(Ω). Using that φi,Dφi and Dφ are zero on Ω2 \ Ω
this follows directly from the case of a closed manifold [4] and

|(φi,Dφi)Ω − (φ,Dφ)Ω| = |(φi,Dφi)Ω2 − (φ,Dφ)Ω2 |.

Thus, due to lemma 2.2.2 φ is a solution of D(φ − µq|Dφ|
q−2Dφ) = 0. Using the

regularity theorem 2.4.4 stated below for fixed q, φ ∈ C1,α and ψ ∈ C0,α. �

The next two theorems are found in [4] for Ω being closed. They also hold for Ω
being an open and smoothly bounded subset of a Riemannian spin manifold. The
proofs turn out to be the same when substituting Ω always by Ω2, but in µqD(Ω)
the Ω remains unchanged.

Theorem 2.4.4 (regularity theorem). Suppose that φ is a spinor such that φ =
D−1ψ with ψ ∈ Lq(Ω2), q ≥ qD and φ fulfills (2.5) for µq = µq(Ω). Further suppose
that there is an r > qD such that ‖ ψ ‖Lr< ∞. We choose k,K > 0 such that
‖ ψ ‖Lr< k and µq ≥ K. Then, for any α ∈ (0, 1) there is a constant C depending
only on (Ω, g), its spin structure, r,K, k and α with

‖ ψ ‖C0,α(Ω2,g)≤ C and ‖ φ ‖C1,α(Ω2,g)≤ C.

Theorem 2.4.5. Let φ be a solution of (2.5) with q ∈ (qD, 2] such that φ = D−1ψ for
a spinor ψ and let µq(Ω) ≥ µqD(Sn, gst)+ ǫ for ǫ > 0. Then there is a q-independent
constant C = C(Ω, g, σ, ǫ) such that ‖ ψ ‖L∞< C.
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Chapter 3

Obstruction to conformal

compactification

In this chapter the conformal invariant µqD will be used to obtain a criterion when
a Riemannian spin manifold is not conformally compactifiable. A similar criterion
for the Yamabe invariant was given in [11].

Definition 3.0.6. A conformal compactification of a noncompact manifold (M,g)
is a compact manifold (N,h) such that there exists a f ∈ C∞(N) with g = f2h on
M with f > 0 on M and f = 0 else.

For that purpose, on noncompact manifolds a new figure shall be obtained from
λ+
min that is ”λ+

min at infinity”.

Definition 3.0.7. Let (M,g) be a noncompact complete Riemannian spin manifold.
Then

λ+
min(M,g) := lim

r→∞
λ+
min(M \Br, g),

where Br is a ball of radius r around a fixed p ∈M w.r.t. the metric g.

The existence of the limes and λ+
min(M,g) ≤ λ+

min(S
n, gst) follows with lemma 2.1.3.i

and proposition 2.3.4. Further, the limes does not depend on the centre of the balls
Br.

Before stating the criterion, lemma 2.3.3 will be generalized to sequences of nested
neighbourhoods of a fixed point where only their volumes have to converge to zero.

Proposition 3.0.8. Let (M,g) be a Riemannian spin manifold of dimension n > 2.
Assume that there exists a sequence {Γi} of smoothly bounded open subsets of
(M,g) with vol(Γi, g) → 0 and Γi ⊂ Γi−1 for i ∈ N. Then

lim
i→∞

λ+
min(Γi, g) = λ+

min(S
n, gst).

Proof: This will be proved by contradiction. Assume limi→∞ λ+
min(Γi) 6= λ+

min(S
n).

Since λ+
min(Γi) ≤ λ+

min(Γi+1) ≤ λ+
min(S

n) holds for every i (see lemma 2.1.3.i and

21
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proposition 2.3.4), limi→∞ λ+
min(Γi) = λ+

min(S
n) − c will be assumed for a positive

constant c. Due to theorem 2.4.2 (and since Γi is compact) there exists a spinor
field φi ∈ C(Γi, S) ∩ C1,α(Γi, S) with

Dgφi = λi|φi|
2

n−1φi on Γi, ‖ φi ‖LpD = 1, (3.1)

where λi := λ+
min(Γi), pD := 2n

n−1 . From ‖ φi ‖LpD = 1 and vol(Γi, g) → 0 as i→ ∞,
‖ φi ‖L∞→ ∞ follows. Then, there is a sequence of points si ∈ Γi with

mi := |φi(si)| = max{|φi(x)| | x ∈ Γi}. (3.2)

For i → ∞ mi also diverges. Since Γi is compact, w.l.o.g. si → p ∈ Γ1 will be
assumed. Let now rescaled geodesic normal coordinates on a fixed ball B̃ around p
be defined by

σi(x) = expp(δix)

with σi ↾B̃ being a diffeomorphism and δi := m
− 2

n−1

i → 0. Then the function

φ̃i(x) := m−1
i φi ◦ σi(x) defined on Γ̃i := σ−1

i (Γi ∩ σi(B̃)) ⊆ R
n fulfills

‖ φ̃i ‖Lp(Γ̃i,gi)
=‖ m−1

i φi ◦ σi ‖Lp(Γ̃i,gi)
=‖ φi ‖Lp(Γi∩σi(B̃),g)≤ 1

and

Diφ̃i = Di(m
−1
i φi ◦ σi) = m

−n+1
n−1

i Dg(φi ◦ σi)

= m
−n+1

n−1

i λi|φi ◦ σi|
pD−2φi ◦ σi = λi|φ̃i|

pD−2φ̃i,

where Di is the Dirac operator associated to the metric gi := δ−2
i σ∗i (g).

By stereographic projection each φ̃i on Γ̃i ⊆ R
n is mapped to φ̂i on Γ̂i ⊂ Sn. Using

lemma 2.1.3.iii, lemma 2.1.6 and the conformal invariance of FqD

µqD(Sn) = µqD(Γ̂i) ≥
(φ̂i,D

Sn
φ̂i)Γ̂i

‖ Dφ̂i ‖
2
LqD (Γ̂i)

=
(φ̃i,D

flatφ̃i)Γ̃i

‖ Dflatφ̃i ‖2
LqD (Γ̃i)

is obtained. It remains to show that
∣∣∣∣∣
(φ̃i,D

flatφ̃i)Γ̃i,gE

‖ Dflatφ̃i ‖2
LqD (Γ̃i)

−
(φ̃i,Diφ̃i)Γ̃i,gi

‖ Diφ̃i ‖2
LqD (Γ̃i)

∣∣∣∣∣→ 0

for i→ ∞. This is the same as (2.6) in proposition 2.3.4. Then with

(φ̃i,Diφ̃i)Γ̃i,gi

‖ Diφ̃i ‖
2
LqD (Γ̃i)

=
(φ̃i, λi|φ̃i|

pD−2φ̃i)Γ̃i,gi

‖ λi|φ̃i|pD−2φ̃i ‖
2
LqD (Γ̃i)

= λ−1
i

‖ φ̃i ‖
2
LpD (Γ̃i)

‖ φ̃i ‖
2p/q

LpD (Γ̃i)

≥ λ−1
i

the contradiction µqD(Sn) ≥ limi→∞ λ−1
i is obtained. �
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Proposition 3.0.9 (analogon to [11] thm. 3.1.). Let (M,g) be a noncompact com-

plete Riemannian spin manifold of dimension n > 2 with λ+
min(M,g) < λ+

min(S
n, gst).

Then (M,g) is not pointwise conformal to a subdomain of any compact Riemannian
spin n-manifold.

Proof: The statement will be proved by contradiction in fully analogy to the proof
for the Yamabe invariant in [11]. Assume that (M,g) is pointwise conformal to

a subdomain (M,u
4

n−1 g) of a compact Riemannian spin manifold (K,h), where
u ∈ C∞(M,S). Take smooth compact domains Xi in M with Xi ⊂ Xi ⊂ Xi+1 such

that vol(M \Xi, u
4

n−1 g) → 0 for i → ∞. Since λ+
min(M,g) < λ+

min(S
n) is assumed,

there has to exist a spinor field φi ∈ C
∞
c (M \Xi, S) with

‖ Dgφi ‖
2
Lq

(Dgφi, φi)g
≤ λ+

min(S
n) − c

for a positive constant c and for all i ∈ N. Take smoothly bounded open subsets
Yi of M with Xi ⊂ Xi ⊂ Yi and supp φi ⊂ Yi \ Xi ⊂ M \ Xi. By the conformal
invariance of λ+

min it follows

λ+
min(Yi \Xi, h) = λ+

min(Yi \Xi, g) ≤
‖ Dgφi ‖

2
Lq

(Dgφi, φi)g
≤ λ+

min(S
n) − c.

Since the volume vol(Yi \Xi, u
4

n−1 g) → 0, this contradicts proposition 3.0.8. �

Example 3.0.10. Let M = R
n (n ≥ 7) be equipped with the subsequently defined

metric g. On each ball B2(pm) around pm = (5m, 0) ∈ R
n with radius 2 the metric

g is chosen such that it is gE on B2(pm) \ B1(pm) but not conformally flat at the
centre. Everywhere outside the balls the metric g is also selected to coincide with
gE .
Since the balls are flat in a neighbourhood of their boundary, for every m there
exists a map h : (B2(pm), g) → (Sn, g̃) such that h is a conformal compactification
with h∗g̃ = g and h(B2(pm)) = Sn \ {p} with fixed p ∈ Sn.
Then using lemma 2.1.3.ii it is

λ+
min(B2(pm), g) = λ+

min(S
n \ {p}, g̃) = lim

ǫ→0
λ+
min(S

n \Bǫ(p), g̃) = λ+
min(S

n, g̃).

Since g and therewith g̃ is not conformally flat a, λ+
min(S

n, g̃) < λ+
min(S

n, gst) (cf.
remark 2.3.5.ii).
Further, for every r there exists an m ∈ N such that B2(pm) ⊂ M \ Br(0). Due
to lemma 2.1.3.i it holds λ := λ+

min(B2(pm), g) ≥ λ+
min(M \ Br(0), g). Using λ <

λ+
min(S

n, gst) as verified above the estimation λ+
min(M,g) < λ+

min(S
n, gst) is ob-

tained.
Thus, (M,g) is not conformally compactifiable.
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Appendix A

Development in geodesic normal

coordinates

Let the exponential map expp at p ∈M be defined on a neighbourhood U ⊂ TpM ∼=
R
n and let (x1, . . . , xn) denote the corresponding normal coordinates. Further, define

the map

G : V → S2
+(n,R); m 7→ Gm := (gij(m))ij ,

where Gm is the matrix of the coefficients of the metric g at m in the basis ∂i := ∂
∂xi

and S2
+(n,R) is the set of all real, symmetric and positive definite n × n matrices.

Thus, there exists exactly one symmetric positive-definite matrix Bm = (bji (m))ij
with B2

m = G−1
m .

For each m ∈M the matrix Bm gives rise to the isometry

Bm : (Texp−1
p (m)U

∼= R
n, gE) → (TmV, gm); (a1, . . . , an) 7→

∑

i,j

bji (m)ai∂j(m),

since gm(
∑

i b
i
k∂i,

∑
j b
j
l ∂j) =

∑
i,j b

i
kb
j
l gm(∂i, ∂j) =

∑
i,j b

i
kb
j
l gij = δkl = gE(∂k, ∂l).

This map is used to identify the SO(n)-principal bundles PSO(n)UgE
and PSO(n)Vg

that lifts to an identification of the corresponding Spin(n)-principal bundles and
thus, of the spinor bundles (see [5])

SU,gE
→ SV,g; ψ 7→ ψ.

Further, let ∇ and ∇, respectively, denote the Levi-Civita connections on (TU, gE)
and (TM, g) as well as the lifted connections on the spinor bundles SU,gE

and SV,g,
respectively.

Firstly, the metric shall be developed in the geodesic normal coordinates (x1, . . . , xn)
in the neighbourhood V ⊂ M around a fixed point p ∈ M . The derivation of the
subsequent can be found in [13].

gij = δij +
1

3
Riαβj(p)x

αxβ +
1

6
Riαβj;γ(p)x

αxβxγ + O(r4), (A.1)
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where
Rijkl = 〈∇ej∇eiek, el〉 − 〈∇ei∇ejek, el〉 − 〈∇[ej ,ei]ek, el〉

for the orthonormal frame (e1, . . . , en) of (TV, g) with ei := bji∂j .

In the next step, the Dirac operators will be compared.
For this purpose, let D (D) denote the Dirac operators acting on Γ(SU,gE

) (Γ(SV,g)).
It holds [5]

Dψ = Dψ +
1

4

∑

ijk

Γ̃kijei · ej · ek · ψ, (A.2)

where Γ̃kij := −〈∇eiej , ek〉. Thus, one needs a development of Γ̃kij:

Γ̃kij = ∂ib
k
j −

1

3
(Rikαj +Riαkj)x

α + O(r2). (A.3)

This calculation is implemented in [5].

Now the map σǫ(x) = expp(ǫx) is considered on a fixed ball B ⊂ TpM such that
expp (and hence all σǫ for ǫ ≤ 1) restricted to B are diffeomorphisms. Define the
metric gǫ = ǫ−2σ∗ǫ (g). With g = gijdx

idxj it is

gǫ = (gij ◦Mǫ)dx
idxj ,

where Mǫ denotes the multiplication with the scalar ǫ. The corresponding Dirac
operators will be denoted by Dǫ. With these preparations the following can be
proved.

Lemma A.0.11. In the above notations and for a function f : U ⊂M → R it holds
for ǫ→ 0 ∣∣∣

∫

U
fdvolgǫ −

∫

U
fdvolgE

∣∣∣→ 0. (A.4)

Further, for a spinor ψ ∈ C∞(U,S) and ǫ→ 0 it is

|Dǫψ −Dflatψ| → 0. (A.5)

Proof: It suffices to prove the claim for a chart κ : U → R
n. Then, it holds:

∣∣∣
∫

U
fdvolgǫ −

∫

U
fdvolgE

∣∣∣ =
∣∣∣
∫

κ(U)
(f ◦ κ−1)(

√
|det gij ◦Mǫ| − 1)dnx

∣∣∣.

With (A.1) it follows |
√

|det gij ◦Mǫ|−1| → 0 for ǫ→ 0 and, thus, (A.4) is obtained.
Further, using (A.2) it is obtained that

|Dǫψ −Dflatψ| =
1

4
|
∑

ijk

(Γ̃kij)gǫei · ej · ek · ψ|

with (Γ̃kij)gǫ denoting the Christoffel symbols for gǫ. Since (gǫ)ij = gij ◦Mǫ implies
that the entries of its positive definite square root are given by bij ◦Mǫ and with
(A.3) the claim is obtained. �
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