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Motivation

Higher dimension n: (Mn, g) – several notions of curvature

I Scalar curvature: scalg : M → R

vol(Bε(p) ⊂ M) = vol(Bε(0) ⊂ Rn)

(
1− scalg (p)

6(n + 2)
ε2 + O(ε3)

)
I Ricci curvature: Ricg : TpM ⊗ TpM → R
I Sectional curvature: plane σ ⊂ TpM

M ′ ⊂ Bε(p) 2D-surface whose tangent space in p is σ

secg (σ) = KM′
(p) = Gauss curvature of M ′ in p
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Motivation

Given a manifold M. Can one prescribe the scalar curvature?

I local: no obstruction

I global: compact M: obstructions

e.g. M compact surface:

Gauss-Bonnet
∫
M KdA = 2π(2− 2#holes)

noncompact connected M:

On each M there is a metric whose scal is
everywhere positive (negative).
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Gromov’s relative h-principle - Black Box

M noncompact and connected

I h-principle implies:
For constants c1 < c2 each of the relations scal > c1,
scal < c2, c1 < scal < c2 can be fulfilled. Analog for Ric, sec.

I relative h-principle implies:
Let B ⊂ M be a closed subset of M such that M \B has exits
to infinity. Let there be a metric g on M that on B fulfills a
relation as above. Then there is a metric g ′ fulfilling the same
relation on all of M and g ′|B = g |B .

(M \B has exits to infinity = each connected component of M \B
is not relatively compact in M)
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Do there exist obstructions for curvature on noncompact
connected manifolds?

Today: Can curvature grow in an arbitrary way?
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Enlarging scalg - First version

Basic idea:
Mixture out of explicit constructions on ’cylinder’ and Gromov’s
relative h-principle

cylinders: to enlarge the curvature
h-principle: to save curvature inequalities when topology changes

I (Mi )i compact exhaustion
(’exits to infinity’)

I near Ni := ∂Mi cyl: Ni × I



Enlarging scalg - First version

Basic idea: ci := maxM′
i :=Mi∪(Ni×I ) f
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Cylinders:

ḡ = e2h(t)g :
scalḡ = e−2h(scalg − 2(n − 1)g tth′′ + a1h′ + a2(h′)2)



Enlarging scalg - Second Version

Theorem (G.-Nardmann ’12)

Let (M, g 0) be a noncompact connected manifold of dim n ≥ 2.
Let A be a closed codimension-0 submanifold-with-boundary, such
that M \ A has exits to infinity. Let f ∈ C∞(M,R) with scalg0 = f
on A. Then there is a metric g on M with

g = g 0 on A and scalg > f on M \ A.
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Theorem (G.-Nardmann ’12)

Let (M, g 0) be a noncompact connected manifold of dim n ≥ 2.
Let A be a closed codimension-0 submanifold-with-boundary, such
that M \ A has exits to infinity. Let F ∈ C∞(SxM,R) with
ricg0 = F on A. Then there is a metric g on M with

g = g 0 on A and ricg > F on M \ A.


