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Motivation

Higher dimension n: (M", g) — several notions of curvature
» Scalar curvature: scal, : M — R
1
vol(B(p) C M) = vol(B.(0)  R") <1 - mg + 0(63)>

» Ricci curvature: Ricg : TM® T,M — R
» Sectional curvature: plane 0 C T,M
M’ C B.(p) 2D-surface whose tangent space in p is o

secg(0) = KM (p) = Gauss curvature of M’ in p
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Motivation

Given a manifold M. Can one prescribe the scalar curvature?

> local: no obstruction
» global: compact M: obstructions

e.g. M compact surface:

Gauss-Bonnet [, KdA = 2m(2 — 2#tholes)

noncompact connected M:

On each M there is a metric whose scal is
everywhere positive (negative).
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Gromov'’s relative h-principle - Black Box

M noncompact and connected

» h-principle implies:
For constants ¢; < ¢ each of the relations scal > ¢,
scal < ¢, ¢1 < scal < ¢ can be fulfilled. Analog for Ric, sec.

> relative h-principle implies:
Let B C M be a closed subset of M such that M\ B has exits
to infinity. Let there be a metric g on M that on B fulfills a
relation as above. Then there is a metric g’ fulfilling the same
relation on all of M and g’|s = g|5.

(M \ B has exits to infinity = each connected component of M\ B
is not relatively compact in M)
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Do there exist obstructions for curvature on noncompact
connected manifolds?

Today: Can curvature grow in an arbitrary way?
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Enlarging scal, - First version

Basic idea:
Mixture out of explicit constructions on 'cylinder’ and Gromov's
relative h-principle

cylinders: to enlarge the curvature
h-principle: to save curvature inequalities when topology changes

» (M;); compact exhaustion
(‘exits to infinity’)
» near N; := OM; cyl: N; x |



Enlarging scal, - First version

Basic idea: ¢;:= MAXp7= M,U(N; < 1) f
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Cylinders:

scalg = e 2(scaly — 2(n — 1)g®h" + arh’ + ap(h')?)



Enlarging scal, - Second Version

Theorem (G.-Nardmann '12)

Let (M, g°) be a noncompact connected manifold of dim n > 2.
Let A be a closed codimension-0 submanifold-with-boundary, such
that M\ A has exits to infinity. Let f € C°°(M,R) with scalgo = f
on A. Then there is a metric g on M with

g=g"onA and scalg > fon M\ A.



Enlarging ric,

_ Ricg(X, X)

ricg(X) 1= XE X e T,M\ {0}



Enlarging ric,

rieg ([X]) = W X € TM\{0}, [X] = {AX | € Ryo)



Enlarging ric,

Ricg(X, X)

I'ng([X]) = ‘X‘é ’

X € TM\{0}, [X] := {AX A € R0}

Theorem (G.-Nardmann '12)

Let (M, g°) be a noncompact connected manifold of dim n > 2.
Let A be a closed codimension-0 submanifold-with-boundary, such
that M\ A has exits to infinity. Let F € C*°(5:M,R) with

ricgo = F on A. Then there is a metric g on M with

g:go on A and ricg > Fon M\ A.



