Invertible Dirac operators and handle attachments

Nadine Große (University of Leipzig)

(joint work with Mattias Dahl (Stockholm))

July 16, 2013

Motivation

- Not every closed manifold admits a metric of positive scalar curvature.
- ► In contrast on every closed manifold (dim≥ 3 the space of metric with negative scalar curvature is nonempty and contractable.
- Topological obstruction for psc-metrics:
 (M, g) closed spin, Dirac operator D^g

Lichnerowicz formula

$$(D^g)^2 = \Delta_g + \frac{\mathsf{scal}_g}{4}$$

 $scal_g > 0 \Rightarrow D^g$ is invertible

Motivation

- Not every closed manifold admits a metric of positive scalar curvature.
- Topological obstruction for psc-metrics:
 (M, g) closed spin, Dirac operator D^g

Lichnerowicz formula

$$(D^g)^2 = \Delta_g + rac{\operatorname{scal}_g}{4}$$

 $\mathsf{scal}_g > 0 \Rightarrow D^g$ is invertible

• $Metr^{psc}(M) \subset Metr^{inv}(M) \subset Metr(M)$

Construction of manifolds admitting psc-metrics - Review Surgery

embedding f : S^k × B^{n-k} → M S := f(S^k × {0}) - surgery sphere
∂(M \ f(S^k × B^{n-k})) ≅ S^{k-1} × S^{n-k-1}
M' = (M \ f(S^k × B^{n-k})) ⊔_∼ B^{k+1} × S^{n-k-1}

M' is obtained from M by a surgery of dim $k / \operatorname{codim} n - k$.

Construction of manifolds admitting psc-metrics - Review Surgery

- ► View the cylinder W := M × [0, 1] as a bordism from M to itself
- Attach $B^{k+1} \times B^{n-k-1}$ to $M \times \{1\}$
- W' is a bordism from M to M'.

W' is obtained from W by attaching a (k + 1)-handle.

Construction of manifolds admitting psc-metrics - Review Surgery

Each closed manifold has a handle decomposition.

 B^2 + 1-handle + 1-handle + B^2 = T^2

Construction of manifolds admitting psc-metrics

Theorem (Gromov, Lawson / Schoen, Yau; '80)

Let (M, g) be a closed Riemannian manifold with $g \in Metr^{psc}(M)$. Let M' be obtained from M by a surgery of codimension ≥ 3 . Then, M' admits a psc-metric g'.

g' can be chosen such that it coincides with g outside a small neighbourhood around the surgery sphere.

Construction of manifolds admitting psc-metrics

- psc is a local property
- codim $n k \ge 3$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 2}$
- ▶ standard product structure on $B^{k+1} \times S^{n-k-1 \ge 2}$ has psc

Theorem (Carr '88 / Gajer '87)

Let (M^{n+1}, g) be a compact Riemannian manifold with closed boundary ∂M , $g \in Metr^{psc}(M)$ and g having product structure near ∂M . Let M' be obtained from M by adding a (k + 1)-handle of codimension $n - k \ge 3$. Then, M' admits a psc-metric g' that is again product near the (new) boundary.

Intuition

• On the boundary: surgery of codim $n - k \ge 3$

- On the boundary: surgery of codim $n k \ge 3$
- On the double: surgery of codim $n k \ge 3$

Intuition

- On the boundary: surgery of codim $n k \ge 3$
- On the double: surgery of codim $n k \ge 3$

Implication

Metr^{psc}(S^{4k−1}) has infinitely many components (k ≥ 2) (Metr^{psc}(S³) is connected (Marques, 2011))

What can be done for metrics with invertible Dirac operators?

• After the surgery the manifold should still be spin!

- After the surgery the manifold should still be spin!
 - $S^k imes B^{n-k}$ induces spin structure on $S^k imes S^{n-k-1}$
 - glue in $B^{k+1} \times S^{n-k-1}$

Its boundary should carry same spin structure.

For k = 1, two spin structures on S^1 - we only allow the one that bounds the disk.

- After the surgery the manifold should still be spin!
 - $S^k imes B^{n-k}$ induces spin structure on $S^k imes S^{n-k-1}$
 - glue in $B^{k+1} imes S^{n-k-1}$

Its boundary should carry same spin structure.

For k = 1, two spin structures on S^1 - we only allow the one that bounds the disk.

• $f: S^k \times B^{n-k} \to M$ spin-preserving embedding.

- Invertible Dirac operator is a global condition.
- codim $n k \ge 3$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 2}$
- ► standard product structure on ℝ^{k+1} × S^{n-k-1≥2} has invertible Dirac operator

- Invertible Dirac operator is a global condition.
- codim $n k \ge 2$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 1}$
- ► standard product structure on ℝ^{k+1} × S^{n-k-1≥1} has invertible Dirac operator ('When taking the right S¹')

- ► Invertible Dirac operator is a global condition.
- codim $n k \ge 2$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 1}$
- ► standard product structure on ℝ^{k+1} × S^{n-k-1≥1} has invertible Dirac operator ('When taking the right S¹')
- 'If the inserted cylinder is large enough, invertibility survives.'

Construction for manifolds admitting inv-metrics

Theorem (Ammann, Dahl, Humbert; 2009)

Let (M, g) be a closed Riemannian spin manifold with $g \in Metr^{inv}(M)$. Let M' be obtained from M by a surgery of codimension ≥ 2 . Then, M' admits a metric g' such that dim ker $D^{g'} \leq \dim \ker D^g$. Moreover, g' can be chosen such that it coincides with g outside a small nbh around the surgery sphere.

Consequences

$$\dim \ker D^g \ge \begin{cases} |\hat{A}(M)| & \text{if } n \equiv 0 \mod 4\\ 1 & \text{if } n \equiv 1 \mod 8, \quad \alpha(M) \neq 0\\ 2 & \text{if } n \equiv 2 \mod 8, \quad \alpha(M) \neq 0\\ 0 & \text{otherwise} \end{cases}$$

For a generic metric, equality is attained.

Construction for manifolds admitting inv-metrics

Theorem (Ammann, Dahl, Humbert; 2009)

Let (M, g) be a closed Riemannian spin manifold with $g \in Metr^{inv}(M)$. Let M' be obtained from M by a surgery of codimension ≥ 2 . Then, M' admits a metric g' such that dim ker $D^{g'} \leq \dim \ker D^g$. Moreover, g' can be chosen such that it coincides with g outside a small nbh around the surgery sphere.

Consequences

For a generic metric, equality is attained.

Inv-metrics on manifolds with boundary

When do we call D^g invertible?

Inv-metrics on manifolds with boundary

$$(\partial M \times [0,\infty), \partial g + dt^2) \rightarrow$$

$$(\partial M \times [-\epsilon,0], \partial g + dt^2) \rightarrow$$

$$(M_{\infty}, g_{\infty})$$

 $g \in \mathsf{Metr}^{\mathsf{inv}}(M)$ iff D^{g_∞} is invertible as operator on $L^2(M_\infty,S)$

Inv-metrics on manifolds with boundary

If M_1 and M_2 are glued together using a large enough cylinder $(N \times [-R, R], h + dt^2)$, the resulting metric has again invertible Dirac operator.

Inv-metrics + handle attachments

If you have a codim ≥ 2 handle attachment result for inv-metrics,...

Applications

- Metr^{inv}(S^{4k+3}) has infinitely many connected components for k ≥ 0
- genericity result
- "toy model" for concordance theory

Theorem (Dahl, G. 2012)

Let (M^{n+1}, g) be a compact Riemannian spin manifold with closed boundary ∂M , $g \in Metr(M)^{inv}$ and g having product structure near ∂M . Let M' be obtained from M by adding a (k + 1)-handle of codimension $n - k \ge 2$. Then, M' admits a inv-metric g' that is again product near the (new) boundary.

Strategy and Methods

'Topological strategy' - Decompose the handle attachment

'half' surgery of codim n - k + 1glue in ' $\frac{1}{2}B^{k+1} \times S^{n-k}$ '

Metric strategy

► Approx. by 'double' product metrics near the surgery sphere

Metric strategy

► Approx. by 'double' product metrics near the surgery sphere

First surgery

Metric strategy

Again approx. by 'double' product metrics

- 'Parameter for tuning': ρ
- ▶ Proof by contradiction: $\rho_i \rightarrow 0$, $g_{\rho_i} \notin \text{Metr}^{\text{inv}}(M')$

- 'Parameter for tuning': ρ
- ▶ Proof by contradiction: $\rho_i \rightarrow 0$, $g_{\rho_i} \notin \text{Metr}^{\text{inv}}(M')$

Step 1 each g_{ρ_i} has a harmonic spinor: $D^{g_{\rho_i}}\varphi_i = 0$, $\|\varphi_i\|_{L^2(M',g_{\rho_i})}$

- 'Parameter for tuning': ρ
- ▶ Proof by contradiction: $\rho_i \rightarrow 0$, $g_{\rho_i} \notin Metr^{inv}(M')$

Step 1 each g_{ρ_i} has a harmonic spinor: $D^{g_{\rho_i}}\varphi_i = 0$, $\|\varphi_i\|_{L^2(M',g_{\rho_i})}$

• (regularity) $\phi_i \to \phi$ in $C^1_{\text{loc}}(M \setminus (S \times [-\epsilon, \infty)))$

- 'Parameter for tuning': ρ
- ▶ Proof by contradiction: $\rho_i \rightarrow 0$, $g_{\rho_i} \notin \text{Metr}^{\text{inv}}(M')$

Step 1 each g_{ρ_i} has a harmonic spinor: $D^{g_{\rho_i}}\varphi_i = 0$, $\|\varphi_i\|_{L^2(M',g_{\rho_i})}$

- (regularity) $\phi_i \to \phi$ in $C^1_{\text{loc}}(M \setminus (S \times [-\epsilon, \infty)))$
- ▶ (removal of singularities) $D^{g}\phi = 0$ on M, $\|\phi\|_{L^{2}(M,g)} \leq 1$

- 'Parameter for tuning': ρ
- ▶ Proof by contradiction: $\rho_i \rightarrow 0$, $g_{\rho_i} \notin \text{Metr}^{\text{inv}}(M')$

Step 1 each g_{ρ_i} has a harmonic spinor: $D^{g_{\rho_i}}\varphi_i = 0$, $\|\varphi_i\|_{L^2(M',g_{\rho_i})}$

- (regularity) $\phi_i \to \phi$ in $C^1_{\text{loc}}(M \setminus (S \times [-\epsilon, \infty)))$
- ▶ (removal of singularities) $D^{g}\phi = 0$ on M, $\|\phi\|_{L^{2}(M,g)} \leq 1$
- (a priori estimate) $\phi \neq 0$

An Application

Theorem (Dahl, G.; 2012)

Let *M* be a closed 3-dimensional Riemannian spin manifold and $g \in Metr^{inv}(M)$. Then there are metrics $g^i \in Metr^{inv}(M)$, $i \in \mathbb{N}$, such that g^i is bordant to g but g^i is not concordant to g^j for $i \neq j$.

In particular, Metr^{inv}(M) has infinitely many connected components.

Notations

Inv-metrics are indicated in blue.

 $\mathbf{s}_0, \mathbf{g}_1$ are isotopic iff

Notations

Inv-metrics are indicated in blue.

 $\mathbf{s}_0, \mathbf{g}_1$ are isotopic iff

▶ g₀, g₁ are concordant iff

gt **g**1 ğ0 Metr(M) $(M \times [0,1], \tilde{g}))$ (M, g_0) (M, \mathbf{g}_1)

Notations

Inv-metrics are indicated in blue.

 $\mathbf{g}_0, \mathbf{g}_1$ are isotopic iff

▶ g₀, g₁ are concordant iff

▶ g₀, g₁ are bordant iff

An application

Theorem (Dahl, G.; 2012)

Let *M* be a closed 3-dimensional Riemannian spin manifold and $g \in Metr^{inv}(M)$. Then there are metrics $g^i \in Metr^{inv}(M)$, $i \in \mathbb{N}$, such that g^i is bordant to g but g^i is not concordant to g^j for $i \neq j$. In particular, $Metr^{inv}(M)$ has infinitely many connected components.

Lemma

There exist 4-manifolds (Y^i, \tilde{h}^i) $(i \in \mathbb{N})$ with $\tilde{h}^i \in Metr^{inv}(Y^i)$, $\partial Y^i = S^3$ such that $\alpha(Y^i \cup_{S^3} (Y^j)^-) = c(i - j)$ for a constant $c \neq 0$.

An application

Lemma

There exist 4-manifolds (Y^i, \tilde{h}^i) $(i \in \mathbb{N})$ with $\tilde{h}^i \in Metr(Y^i)^{inv}$, $\partial Y^i = S^3$ such that $\alpha(Y^i \cup_{S^3} (Y^j)^-) = c(i-j)$ for a constant $c \neq 0$.

Construction:

▶ Y^0 - B^4 with a 'torpedo metric' $\tilde{h}^0 \in \operatorname{Metr}^{\operatorname{psc}}(B^4)$ and $\tilde{h}^0|_{S^3} = \operatorname{stand.}$ metr.

►
$$Y^{i} = \underbrace{(K3\#K3\#\cdots\#K3)}_{i \text{ times}} \setminus B^{4} = Y^{0} + \text{several 2-handles}$$

 $h^{i} := \tilde{h}^{i}|_{S^{3}}$
► $\alpha(Y^{i} \cup_{S^{3}} (Y^{j})^{-}) = \alpha(\#_{(i-j)} K3) = (i-j)\alpha(K3) \neq 0 \text{ for } i \neq j$

Constructions of g^i

Constructions of g^{*i*}

(M,g) and (M,g^i) are bordant. Bordism $(W^i, \tilde{g}^i) \in \operatorname{Metr}(W^i)^{\operatorname{inv}}$

Constructions of g^i

Constructions of g^{*i*}

Closed manifold (W, \tilde{g}) with $\tilde{g} \in Metr^{inv}(W)$ and $\alpha(W) = (i - j)\alpha(K3)$.

Another application - Concordance theory Definition

 $R_n^{\text{inv}} = \{(M, h) \mid M \text{ is a spin } n \text{-manifold}, h \in \text{Metr}^{\text{inv}}(\partial M)\} / \sim$

where $(M_0, h_0) \sim (M_1, h_1)$ if

Another application - Concordance theory Definition

 $R_n^{\mathrm{inv}} = \{(M, h) \mid M \text{ is a spin } n\text{-manifold}, h \in \mathsf{Metr}^{\mathrm{inv}}(\partial M)\}/\sim$

where $(M_0, h_0) \sim (M_1, h_1)$ if

Another application - Concordance theory Definition

 $R_n^{\mathrm{inv}} = \{(M, h) \mid M \text{ is a spin } n \text{-manifold}, h \in \mathsf{Metr}^{\mathrm{inv}}(\partial M)\} / \sim$

where $(M_0, h_0) \sim (M_1, h_1)$ if

Concordance theory - exact sequence

$$\dots \to R_{n+1}^{\mathrm{inv}} \xrightarrow{\partial} \Omega_n^{\mathrm{inv}} \xrightarrow{i} \Omega_n^{\mathrm{spin}} \xrightarrow{j} R_n^{\mathrm{inv}} \to \dots$$

$$\blacktriangleright \ \partial([M,g]) := [\partial M,g]$$

•
$$i([M,g]) := [M]$$

►
$$j([M]) := [M, -]$$

Concordance theory - exact sequence

$$\ldots \to R_{n+1}^{\mathrm{inv}} \xrightarrow{\partial} \Omega_n^{\mathrm{inv}} \xrightarrow{i} \Omega_n^{\mathrm{spin}} \xrightarrow{j} R_n^{\mathrm{inv}} \to \ldots$$

$$\blacktriangleright \ \partial([M,g]) := [\partial M,g]$$

•
$$i([M,g]) := [M]$$

•
$$j([M]) := [M, -]$$

Theorem (Dahl, G; '12)

Let M be a connected spin manifold of dimension $n \ge 4$.

- 1. Metr^{inv}(M rel h) is nonempty if and only if $[M, h] \in R_n^{inv}$ vanishes.
- 2. If Metr^{inv}(M rel h) is nonempty, then R_{n+1}^{inv} acts freely and transitively on the set of concordance classes relative to the boundary metric h.

Concordance theory

round corners

 handle attachment result for manifolds with corners (handle are attached away from the corners)