Finite Simple Groups Exercise Sheet 5

Due 04.06.2019

Exercise 1 (6 Points).

Let G be a group. The commutator [x, y] of two elements x, y of G is defined as $[x, y] = x^{-1}y^{-1}xy$. The derived subgroup G' of G is the subgroup generated by all commutators of the whole group, *i.e.*

$$G' = \langle [x, y] : x, y \in G \rangle.$$

- 1. Show that G' is the smallest normal subgroup of G such that G/G' is abelian.
- 2. Prove that G/Z(G) = (G/Z(G))' whenever G = G'.
- 3. Show for $n \ge 5$ that the derived subgroup of S_n is A_n .

Exercise 2 (4 Points).

Let t be an element of order 2 in A_5 , say (12)(34). Show that its centralizer is isomorphic to $C_2 \times C_2$.

Exercise 3 (10 Points).

Let V be an n-dimensional vector space over a field F. Define an equivalence relation \equiv on $V \setminus \{0\}$ by

 $v \equiv w$ if there exists some $\lambda \in F^{\times}$ with $v = \lambda w$.

Given an element v of $V \setminus \{0\}$, denote its equivalence class by [v] and let P(V) be the collection of all equivalence classes. The set P(V) is *projectivization* of V.

- 1. Prove that the map $(g, [v]) \mapsto [g(v)]$ defines an action from GL(V) on P(V).
- 2. Show that SL(V) acts 2-transitive on P(V).
- 3. Prove that the kernel of the group action of GL(V) on P(V) consists of scalar maps, *i.e* maps of the form $v \mapsto \lambda v$ for some $\lambda \in F^{\times}$.
- 4. Show that the center of GL(V) is formed by the scalar matrices.