Finite Simple Groups

Exercise Sheet 6 Due 25.06.2019

Exercise 1 (14 Points). Consider the group SL(2, F), where F is an arbitrary field.

1. Prove that the sets of matrices

$$T = \left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) : a \in F \right\} \ \text{ and } \ D = \left\{ \left(\begin{array}{cc} b & 0 \\ 0 & b^{-1} \end{array} \right) : b \in F^{\times} \right\}$$

are abelian subgroups of SL(2, F), with matrix multiplication. Furthermore, show that T and D are isomorphic to F^+ and to F^{\times} respectively.

Assume that F is the finite field of size $q = p^k$, where p is a prime.

- 2. Prove that D acts transitively on $T \setminus {\text{Id}}$ by conjugation whenever p = 2. Hint: Which are the solutions of $x^2 = 1$?
- 3. Deduce that T is a p-Sylow subgroup of SL(2,q) which is isomorphic to $C_p \times .^k . \times C_p$ and that D is cyclic of order q-1.
- 4. Conclude that all elements of order p of SL(2,q) are conjugated whenever p = 2.
- Prove that GL(2, q) has a cyclic subgroup of order q² − 1. Hint: ℝ⁺_{q²} is an F-vector space of dimension 2.
- Deduce that SL(2,q) has a cyclic subgroup of order q + 1. Hint: The determinant is a group homomorphism from GL(2,q) to F[×].
- 7. Let r > 2 be a prime not dividing q. Conclude that an r-Sylow subgroup of SL(2,q) is cyclic.

In particular, the 2-Sylow subgroups of $SL(2, 2^k) = PSL(2, 2^k)$ are isomorphic to $C_2 \times . \cdot . \times C_2$ and the other Sylow subgroups are all cyclic.

Exercise 2 (6 Points).

Let F be the finite field of size $q = p^k$, where p > 2 is a prime. Consider the group SL(2,q).

- 1. Show that -Id is the unique element of order 2 of SL(2,q).
- 2. Let a and b be elements of F with the property that $a^2 + b^2 = -1$, which always exist in a finite field. Consider the following elements of SL(2, q):

$$x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $y = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$.

Prove that $x^2 = y^2 = -\text{Id}$ and that $y^x = y^{-1}$.

3. Deduce that the group $\langle x, y \rangle / \langle -\text{Id} \rangle$ is isomorphic to $C_2 \times C_2$ and conclude that the 2-Sylow subgroups of SL(2,q) cannot be cyclic.