Finite Simple Groups

Exercise Sheet 8 Due 09.07.2019

Exercise 1 (4 Points).

Let H be a non-trivial subgroup of a group G.

- 1. Prove that $H \leq Z(N_G(H))$ if and only if $C_G(H) = N_G(H)$.
- 2. Let p be the smallest prime dividing |G|. Suppose that H is a cyclic subgroup of G of order p^m . Deduce that p divides $|N_G(H)/C_G(H)|$ or $H \leq Z(N_G(H))$.

Exercise 2 (4 Points).

Let G be a finite group and let $P \in \text{Syl}_p(G)$. Let a and b be two elements of $C_G(P)$ which are conjugate (in G). Show that they are conjugate in $N_G(P)$, *i.e.* there is some $h \in N_G(P)$ such that $a^h = b$.

Hint: P is a p-Sylow subgroup of $C_G(a)$.

Exercise 3 (4 Points).

Let G be an arbitrary group and let H be a subgroup of Z(G) of index n. Let v be the transfer homomorphism from G to H. Prove that $v(g) = g^n$ for every $g \in G$.

Exercise 4 (8 Points).

Let G be a finite group and let p be a prime divisor of $|Z(G) \cap G'|$. Let $P \in Syl_p(G)$.

- 1. Show that $Z(G) \cap G' \cap P$ is non-trivial.
- 2. If P were abelian, then we could consider the transfer group homomorphism v from G to P. Under this assumption:
 - (a) Prove that $v(z) = z^{|G:P|}$ for $z \in Z(G) \cap P$.
 - (b) Show that v(z) = 1 for $z \in G'$.
- 3. Conclude that P cannot be abelian.