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Introduzione

La teoria delle rappresentazioni è un settore della matematica che nell’ultimo se-

colo, anche grazie al suo interesse in fisica teorica, è stato fatto oggetto delle più

estese investigazioni. Lo studio delle rappresentazioni si concentra innanzitutto sulla

classificazione e lo studio delle rappresentazioni irriducibili. Uno dei primi risultati

fondamentali in questo contesto, dimostrato da H. Weyl nel 1925 [Hum78, §23.3],

fornisce una formula per calcolare i caratteri delle rappresentazioni irriducibili L(λ)

di dimensione finita di un’algebra di Lie riduttiva in termini di caratteri dei moduli

di Verma M(µ):

ch(L(λ)) =
∑
ω∈W

(−1)l(ω)ch(M(ω(λ+ ρ)− ρ))

I moduli di Verma sono le rappresentazioni di peso più alto senza ulteriori relazioni:

questi non sono sempre irriducibili ma sono, generalmente, di facile manipolazione.

La formula di Weyl è stata generalizzata a rappresentazioni irriducibili di di-

mensione infinita nel 1981 da Beilinson e Bernstein [BB81] e indipendentemente da

Brylinski e Kashiwara [BK81].

ch(L(−ωρ− ρ)) =
∑
ν≤ω

(−1)l(ω)−l(ν)Pν,ω(1)ch(M(−νρ− ρ)) (1)

Entrambe le dimostrazioni di questa formula fanno ricorso a strumenti tecnici com-

pletamente nuovi per la teoria delle rappresentazioni dell’epoca: in particolare si sta-

bilisce una corrispondenza tra le rappresentazioni considerate e una classe di oggetti

geometrici, i “D-moduli”, coi corrispondenti “fasci perversi” ad essi associati. Tali

oggetti geometrici erano in quegli anni al centro di intense ricerche motivate da

problemi matematici di diversa natura:

• lo studio della coomologia di intersezione, a opera di M. Goresky e R. MacPher-

son, che trae le sue motivazioni originali da questioni riguardanti la topologia

delle varietà singolari;

• la cosiddetta “analisi algebrica”, ovvero lo sviluppo della teoria algebrica delle

equazioni lineari alle derivate parziali, soprattutto a opera di M. Kashiwara e,

indipendentemente, dello stesso J. Bernstein;

• lo studio, ad opera principalmente di P. Deligne, della categoria derivata dei

fasci l-adici costruibili su una varietà algebrica definita su un campo finito,
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con le conseguenti nozioni di pesi dell’azione del morfismo di Frobenius e di

purezza. Si tratta di una teoria estremamente profonda e potente, motivata

principalmente dalle “congetture di Weil” sulle proprietà aritmetiche della

varietà algebriche, che si avvale del potente arsenale coomologico messo a

punto da A. Grothendieck e la sua scuola negli anni ’60.

Per una stimolante ricostruzione storica di questi sviluppi si veda [Kle07]

Per la novità dei metodi usati, il risultato di Beilinson-Bernstein e Brlylinski-

Kashiwara ha costituito un vero e proprio punto di svolta nello studio della materia,

che ha posto le basi di una nuova area di ricerca, chiamata teoria geometrica delle

rappresentazioni.

Questa tesi si pone in questo ambito e in essa ripercorreremo e approfondiremo

alcuni degli strumenti e dei risultati tipici di questa teoria con l’obiettivo di avvici-

narci ai risultati più recenti e ai settori in corrente sviluppo.

Nella formula (1) i termini Pν,ω sono i cosiddetti polinomi di Kazhdan-Lusztig.

Questi appaiono nella definizione di una particolare base dell’algebra di Hecke, un

oggetto algebrico ottenuto come deformazione dell’algebra di gruppo Z[W ] di un

gruppo di Coxeter W . Uno dei risultati fondamentali più sorprendenti in teoria

geometrica delle rappresentazioni è proprio l’interpretazione geometrica di questi

polinomi e dell’intera algebra di Hecke. Questa interpretazione coinvolge appunto

la “Coomologia d’Intersezione”.

La coomologia d’intersezione fu definita negli anni ’80 da Goresky e MacPherson

e come detto costituisce uno strumento adatto allo studio topologico delle varietà

singolari. Per la definizione si prende il fascio costante CU sulla parte nonsingolare

U di una varietà X e si cerca un’estensione “minimale”, in un senso appropriato che

sarebbe troppo lungo spiegare adesso, di questo fascio a tutto X: questa estensione

conduce in realtà non ad un fascio ma ad un complesso di fasci di spazi vettoriali,

vale a dire un oggetto della categorie derivata dei complessi a fasci di coomolo-

gia costruibili. Vari risultati classici riguardanti enunciati in termini di gruppi di

coomologia di varietà lisce, quali la dualita di Poincarè o, nel caso di varietà singolari

proiettive, il cosiddetto teorema di Lefschetz “difficile”, valgono per varietà singolari

se, al posto della coomologia, si considera la coomoogia di intersezione.

Preso un gruppo riduttivo G e un suo gruppo di Borel B, la varietà delle bandiere

X = G/B è una varietà liscia e proiettiva dotata di una stratificazione in B-orbite,

G =
⊔
BωB, parametrizzate dagli elementi ω del gruppo di Weyl di G. Le chiusure

di queste orbite, le varietà di Schubert Xω, sono varietà singolari. I loro complessi

di coomologia d’intersezione Lω forniscono appunto l’interpretazione geometrica dei

polinomi di Kazhdan-Lusztig: i coefficienti dei polinomi risultano essere le dimen-

sioni delle spighe dei fasci della coomologia d’intersezione nei vari strati della varietà

di Schubert Xω. In questo modo si può dimostrare il fatto, tutt’altro che evidente

dalla definizione combinatoria dei polinomi, che, se W è il gruppo di Weyl di un

gruppo algebrico riduttivo, i coefficienti dei polinomi Pν,ω sono interi positivi. A

tutt’oggi non esiste una dimostrazione puramente combinatorica di questa posi-

tività.

Se si passa dalle proprietè locali del complesso di intersezione a quelle globali,
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l’ipercoomologia H(Lω) dei complessi Lω (la cosiddetta coomologia di intersezione

IH(Xω)), è in modo naturale un modulo sull’anello (commutativo artiniano) di

coomologia C = H•(X) della varietè delle bandiere. Il teorema di decomposizione,

uno dei teoremi più profondi riguardanti la coomologia d’intersezione, dimostrato

da Beilinson, Bernstein Deligne e Gabber in [BBD], afferma in questo contesto che

H(Lω), considerato come C-modulo, è un addendo diretto di H•(X̃ω). Qui X̃ω è

una naturale risoluzione delle singolarità di Xω, chiamata varietà di Bott-Samelson.

Nel 1990 Soergel, nell’importante lavoro [Soe90] ha dimostrato l’“Erweiterungs-

satz” (Teorema di Estensione): presi due elementi ν, ω ∈ W si ha un isomorfismo di

C-spazi vettoriali graduati su

Hom(Lν ,Lω) ∼= HomC-Mod(H(Lν),H(Lω)),

dove gli omomorfismi a sinistra si intendono calcolati nella categoria derivata dei

complessi a coomologia costruibile. In particolare questo teorema rende possibile

la determinazione puramente algebrica dell’addendo HLω di H•(X̃ω). Infatti HLω
è isomorfo all’addendo contenente 1 in una qualunque decomposizione in indecom-

ponibile di H•(X̃ω).

Basandosi su questi risultati, B. Elias e G. Williamson [EW14a] hanno dimostrato

nel 2012 una congettura di Kazhdan e Lusztig che resisteva da più di 30 anni: i

polinomi Pν,ω hanno coefficienti positivi per un qualunque gruppo di Coxeter.

Veniamo ora alla struttura della tesi. Nel primo capitolo sono introdotte le va-

rietà considerate nel seguito: la varietà della bandiere, le varietà di Schubert e le loro

risoluzioni, le varietà di Bott-Samelson. Nel capitolo 2 si discute l’algebra di Hecke

di un gruppo di Coxeter e in particolare la sua base di Kazhdan-Lusztig. Il capi-

tolo 3 fornisce l’interpretazione geometrica dei polinomi di Kazhdan-Lusztig, costru-

endo una corrispondenza (o meglio una categorificazione) tra l’algebra di Hecke e

un’algebra costruita a partire dai complessi di coomologia d’intersezione delle va-

rietà di Schibert . Nel quarto capitolo si vede come questa corrispondenza può essere

definita anche in termini di una particolare classe di C-bimoduli, detti bimoduli di

Soergel. Questo risultato è una delle conseguenze dell’ “Erweiterungssatz”. Nella

seconda parte del capitolo è presente una dimostrazione di questo Teorema che si

avvale di un teorema di localizzazione dovuto a V. Ginzburg [Gin91],

Le appendici contengono alcune parti tecniche, che, se introdotte nel corpo prin-

cipale della tesi, ne avrebbero appesantito la lettura ed oscurato la linea argomen-

tativa. In particolare: l’appendice A contiene un riepilogo della categoria derivata

dei complessi di fasci a coomologia costruibile, e dei principali funtori naturalmente

definiti su questa. Nell’appendice B sono introdotti, in modo abbastanza esteso,

i fasci perversi e la coomologia d’intersezione. L’appendice C contiene una breve

introduzione alla teoria dei moduli misti di Hodge, sviluppata da Saito nei primi

anni ’90. Questa teoria, assai complessa, individua un analogo per varietà comp-

lesse della teoria dei fasci l-adici e del conseguente formalismo dei pesi. Dalla teoria

di Saito dipendono in modo cruciale alcuni risultati esposti nei capitoli 3 e 4.
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Chapter 1

Bott-Samelson Resolution

1.1 Reductive Groups and Weyl groups

In this first section we recall some fundamental properties of reductive linear alge-

braic groups. We refer to the book of Springer [Spr98] for the definitions and for a

more detailed account. All the groups and varieties in this section are defined over

C.

Let G be a reductive linear algebraic group and T a maximal torus. T acts on

G by conjugation and this determines a root decomposition in weight spaces of the

Lie algebra g of G

g = g0 ⊕
⊕
α∈R

gα

Here R is a finite subset of the group of characters X(T ) of the torus T .

X(T ) =

{
φ : T → C∗ φ is a morphism of algebraic

varieties and a group homomorphism

}
In the decomposition above, g0 is the tangent algebra of T while each gα is unidi-

mensional and t.g = α(t)g ∀t ∈ T g ∈ gα
For any α ∈ R there exists an unidimensional subgroup Uα of G, whose Lie

algebra is gα, and an isomorphism uα : C → Uα ( where the additive group (C,+)

is regarded as a unipotent linear algebraic group) such that

tuα(x)t−1 = uα(α(t)x) ∀t ∈ T ∀x ∈ C

The torus T and the groups Uα, α ∈ R, generate G. R has several properties and

it is called a root system

• R spans XR(T ) = X(T )⊗ R;

• there exists a suitable positive definite symmetric bilinear form ( , ) on XR(T )

such that for every root α ∈ R, R is stable under the reflection

sα(x) = x− 2
(α, x)

(α, α)
α
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• For any two roots α, β ∈ R, 2
(α, β)

(β, β)
is an integer

There exists a subset S of R, whose elements are called simple roots, with the

following properties:

1. The roots in S form a basis of XR(T )

2. Every root α ∈ R can be written as a positive (or negative) integral linear

combination of simple roots, i.e. α =
∑

β∈S csβ, where the coefficients cs are

integers and they are all positive (or all negative).

The choice of S gives also a partition of R into positive roots R+ (those with

positive coefficients) and the negative roots R− = −R+.

We denote by W = NG(T )/T the Weyl group. W is also the group generated

by the reflections of the root system R. Actually, simple reflections ( i.e. given by

the sα with α ∈ S) are enough to generate W . For a representative ω̇ ∈ NG(T ) of

ω we have ω̇−1tω̇ = t′ ∈ T and

t(ω̇uα(x)ω̇−1)t−1 = ω̇t′uα(x)(t′)−1ω̇−1 = ω̇uα(α(t′)x)ω̇−1 = ω̇uα (ω(α)(t)) ω̇−1

and this yields to the equality ω̇Uαω̇
−1 = Uω(α).

Let B a Borel subgroup of G containing T . Restricting the T -action to B we get

the decomposition

Lie(B) = g0 ⊕
⊕
α∈R+

gα

where R+ is a positive system of roots, and Uα ⊆ B if and only if α ∈ R+. One can

choose the isomorphisms uα in such a way that nα = uα(1)u−α(1)uα(1) represents

the reflection sα in W .

B is a solvable subgroup, hence there is a decomposition B = TBu = BuT ,

where Bu = [B,B] is the unipotent part of B. After choosing any numbering of the

roots {α1, . . . , αN} in R+ we have an isomorphism of algebraic varieties (but not of

groups)

φ : CN → Bu φ(x1, . . . , xn) = uα1(x1) · . . . · uαN (xN) (1.1)

For ω ∈ W we set R(ω) = {α ∈ R+ | ω(α) ∈ −R+}. The number of elements of

R(ω) is equal to the length l(ω), the minimum integer l such that there exists a

reduced expression ω = sα1 · . . . · sαl . Here the α1 are simple roots relative to R+.

Given a reduced expression for ω one can describe explicitly the elements of R(ω)

R(ω) = {αl, sαl(αl−1), . . . , sαl · . . . · sα2(α1)} (1.2)

Let S = {s1, . . . , sn} be the set of simple reflections for W . We say that an

element in W is a reflection if it has a conjugate in S. Thus, the set of reflections is

Q =
⋃
ω∈W

ωSω−1

8



There is a natural partial order < on W , called the Bruhat order. It is generated

by xq < x, if q ∈ Q and l(xq) < l(x). We notice that the definition does not change

if we consider multiplication on the left by elements of Q, since xq = (xqx−1)x and

xqx is clearly a reflection. There is another equivalent description of the Bruhat

order: we say that x ≥ y if there exists a reduced expression (si1 , . . . , sik) of x

containing a subsequence which is a reduced expression for y.

Example 1.1.1. The symmetric group S3 has 6 elements and 2 generators s = (1, 2)

and t = (2, 3). The Bruhat order can be drawn as

sts=tst•
st•

s•
e•

t•

ts•

where
x• −→

y
• means y ≥ x.

Let ω0 be the longest element in W . It is unique and R(ω0) = −R+, thus

l(ω0) = N = 1
2
|R|. By definition we see that R(ω) and R(ωω0) are disjoint subsets

and their union is the whole R+. Then we can define

Uω =
∏

α∈R(ω)

Uα

This is well defined as the product does not depend on the order of the factors.

Then the product morphism Uω×Uωω0 → Bu is an isomorphism of variety by (1.1).

1.2 Bruhat Decomposition

We now consider the homogeneous space X = G/B, also known as flag variety.

Example 1.2.1. Let G = SLn(C). A Borel subgroup for G is given by the group

of upper triangular matrices. The flag variety can be identified with the set of flags

in Cn

Flag(Cn) = {(Vi)0≤i≤n | Vi is a i-dimensional subspace of Cn and Vi ⊆ Vi+1}

G acts transitively on the set Flag(Cn) and the stabilizer of the ”standard” flag

0 ⊆ Ce1 ⊆ Ce1 ⊕ Ce2 ⊆ . . . ⊆ Ce1 ⊕ . . .⊕ Cen = Cn

is exactly the group of upper triangular matrices B.

This is a smooth projective variety and is supplied with a left G-action given by

left multiplication. Let’s restrict it to a B-action. We have the following:
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Theorem 1.2.2 (Bruhat Decomposition). The B-action on X decomposes the flag

variety in a finite number of orbits, each of which is of the form Bω̇B/B, where

ω̇ ∈ G is a representative for ω ∈ W . Every orbit Bω̇B/B is isomorphic, as a

variety, to Cl(ω) and is called a Schubert cell. The closure Xω = Bω̇B/B of a

Schubert cell is called a Schubert variety and is a union of B-orbits. More precisely,

Xω =
⊔
ν≤ω

Bν̇B/B

where ≤ is the Bruhat order.

If there is no room for confusion, from now on we will denote simply by ω any

element of G in the coset ω ∈ NG(T )/T .

For example the Schubert variety Xe of the identity element e ∈ G is a single

point. For a simple reflection sα ∈ S, the Schubert variety Xsα is isomorphic to P1
C.

In general the Schubert varieties are singular projective varieties.The aim of this

chapter is to define a natural resolution of singularities of these Schubert varieties, i.e.

a projective smooth variety X̃(ω) along with a birational morphism π : X̃(ω)→ Xω.

The following lemma will be useful for this purpose:

Lemma 1.2.3. Let ω = sα1 · . . . · sαl be a reduced expression for ω ∈ W . Then the

morphism

Uω−1 ×B → BωB (u, b) 7−→ uωb

defines an isomorphism of varieties.

Proof. We have

BωB = BuTωB = Uω−1Uω0ω−1ωB

Furthermore,

ω−1 (Uω0ω−1)ω = ω−1

 ∏
α∈R(ω0ω−1)

Uα

ω =
∏

α∈R(ω0ω−1)

Uω−1(α) ⊆ B

since, by definition, if α ∈ R(ω0ω
−1) then ω−1(α) ∈ R+ and Uω−1(α) ⊆ B. The

statement is thus equivalent to the fact that the map (u, b) 7−→ ω−1uωb defines an

isomorphism of Uω−1 ×B onto ω−1BωB. Since this map is bijective, and, regarding

both these spaces as homogeneous Uω−1 × B-spaces, equivariant, we conclude from

the general fact stated in the next theorem.

Theorem 1.2.4. [Spr98, 5.3.2.(iii)] Let G be a complex algebraic group and let

φ : X → Y be an equivariant homomorphism of G-homogeneous spaces. Then φ is

an isomorphism if and only if it is bijective.

Later we will also need:

Lemma 1.2.5. Let ω ∈ W , s ∈ S. We have

BsB ·BωB = B(sω)B if l(sω) = l(ω) + 1

BsB ·BωB = B(sω)B tB(ω)B if l(sω) = l(ω)− 1

10



Proof. Let s = sα. Then, as in the proof of Lemma 1.2.3, we have BsB = UαsB.

Thus, BsB ·BωB = UαsBωB. For l(sω) = l(ω)+1, by (1.2) we see that R(ω−1sα) =

{α} t sα(R(ω−1)) and

sUω−1s =
∏

β∈R(ω−1)

Usα(β) =
∏

β∈sα(R(ω−1))

Uβ

Hence

UαsBωB = Uα(sUω−1s)sωB = Uω−1ssωB = BsωB

For l(sω) < l(ω) we have

BsB ·BωB = BsB ·BsB ·BωB

It remains to show that BsB · BsB = BsB t B = Ps is the minimal parabolic

subgroup of G containing s. After taking the quotient by the radical of Psα , the

statement is reduced to the case in which the Weyl group has only 2 elements,

namely G = SL2(C) or G = PSL2(C). In these cases we need only to show that

the existence of elements x, y ∈ BsB such that xy ∈ BsB. For example, if B is the

subgroup of the upper triangular matrices and

(
0 −1

1 0

)
is a representative for s,

we can choose

x = y =

(
1 0

1 1

)
for G = SL2(C)

(or, similarly, x = y =

[(
1 0

1 1

)]
for G = PSL2(C).

1.3 The main construction

Let X and Y be two smooth varieties with, respectively, a right and a left action of

an algebraic group G. Then we denote by X ×G Y the quotient of X × Y by the

right G-action

(x, y) · g = (x · g, g−1 · y) ∀g ∈ G

This quotient is not an algebraic variety in general. However in our situation we

can make several regularity assumptions on the action. If:

• the action on X is free,

• the quotient X/G exists and is smooth,

• the projection X → X/G is a locally trivial fibration (i.e. locally on X/G it

is U ×G→ U),

then X×GY exists and it is a smooth variety because locally (U×G)×GY ∼= U×Y .

All the cases we are interested in will satisfy these hypotheses. As a significant

example, take X = P any parabolic subgroup of G containing B (the action is the

B-right multiplication). In fact, cfr. [Spr98, 8.4], there exists an element ωP ∈ W
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such that the Schubert cell BωPB is an open dense subvariety of P , and this yields

the morphism

Uω−1
P
×B → P (u, b) 7−→ uωP b

to be an isomorphism with an open dense subvariety of P . This gives the fibration

structure in a neighborhood of e ∈ P . We can easily translate it to a neighborhood

of any p ∈ P by multiplying on the left by p.

Let ω = sα1 · . . . · sαl be a reduced expression for ω. For any αi there exists

a minimal parabolic subgroup Pαi (in which B has codimension 1) and for such a

parabolic a subgroup we have ωPαi = sαi . We can iterate the above procedure to

obtain:

Definition 1.3.1. Let X̃(α1, . . . , αl) = Pα1 ×B Pα2 ×B . . .×B Pαl/B. Here the final

quotient by B is taken with respecto to the B-right multiplication action. This

quotient is called the Bott-Samelson variety relative to (the reduced expression of)

ω and it is a smooth and projective variety (projectivity will follow from Lemma

1.4.3). The morphism

π : X̃(α1, . . . , αl)→ G/B (p1, . . . , pl) 7−→ p1 · . . . · plB

is called the Bott-Samelson resolution. The image of π is exactly the Schubert

variety Xω.

We remark that we can also obtain X̃(α1, . . . , αl) at once quotienting P l by the

right Bl-action

(p1, p2, . . . , pl)(b1, b2, . . . , bl) = (p1b1, b
−1
1 p2b2, . . . , b

−1
l−1plbl)

Theorem 1.3.2. The Bott-Samelson resolution is a resolution of singularities of

the Schubert variety Xω, that is, X̃(α1, . . . , αl) is a smooth variety and

π : X̃(α1, . . . , αl)→ Xω

is a birational morphism.

Proof. The smoothness of X̃(α1, . . . , αl) follows from the above discussion. We re-

gard U−α1×. . .×U−αl as a subvariety of P l. Then, when restricted to this subvariety,

the morphism P l → P l/Bl becomes injective. In fact, if (u1, . . . , ul), (u
′
1 . . . , u

′
l) ∈

U−α1 × . . . × U−αl are in the same Bl-orbit, then there exists, b1, . . . , bl ∈ B such

that u1b1 = u′1, b
−1
1 u2b2 = u′2, . . . , bl−1ulbl = ul. But b1 = u−1

1 u′1 ∈ U−α1 ∩ B =⇒
b1 = 1 and continuing by induction all the bi must be 1. We call V the image of

U−α1 × . . .× U−αl .
In view of Theorem 1.2.4, the morphism

π|U−α1×...×U−αl : U−α1 × . . .× U−αl → V

is an isomorphism since it is bijective and it is an equivariant morphism between

U−α1 × . . .×U−αl-homogeneous spaces. Also, the subvariety V has the same dimen-

sion of X̃(α1, . . . , αl), hence it is an open dense subvariety. Then we conclude by

Lemma 1.2.3
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1.4 G-orbits on X ×X
Let’s consider the diagonal G-action on X × X. Then an analogue of the Bruhat

decomposition holds:

Proposition 1.4.1. i) Every G-orbit on X ×X contains an element of the form

(B,ωB), ω ∈ W . Let Oω be the orbit containing (B,ωB). Then its closure Oω
is a variety of dimension l(ω) + dimX and it is an union of orbits:

Oω =
⊔
ν≤ω

Oν

ii) The first projection p1 : Oω → X is a locally trivial fibration with fibers isomor-

phic to Xω

Proof. Let O ⊆ X × X a G-orbit. Then O ∩ ({B} ×X) is non-empty and it is

a B-orbit in the second component. Now i) is an immediate consequence of the

Bruhat decomposition for X.

We define U− = Uω0ω0. Then U− is also the unipotent radical of the opposite

Borel subgroup to B, the one corresponding to the positive root system R−. So

U−B/B ∼= U− is an open subset of X and we have the morphism

U− ×Xω → p−1
1

(
U−B/B

)
(u, xB) 7−→ (uB, uxB)

which is an isomorphism since (uB, vB) 7−→ (u, u−1vB) is the inverse. Hence p1

is a fibration in a neighborhood of eB ∈ X. By letting G act we can get a local

trivialization in a neighborhood of any point.

In general, the Oω’s are singular projective varieties: more precisely, by ii) of the

Proposition above, Oω is singular if and only if Xω is singular. As we have already

done for Xω, we will now look for a resolution of singularities for Oω.

We fix a reduced expression ω = sα1 · . . . · sαl . Then we define

Õ (sα1 , . . . , sαl) = {(x0, . . . , xl) ∈ X l+1 | (xi−1, xi) ∈ Osαi ∀i, 1 ≤ i ≤ l}

We have a sequence of projection

Õ (sα1 , . . . , sαl)→ Õ
(
sα1 , . . . , sαl−1

)
→ . . .→ Õ (sα1) = Osα1 → X

(x0, . . . , xl) 7−→ (x1, . . . , xl−1) 7−→ . . . 7−→ (x0, x1) 7−→ x0

is a sequence of locally trivial fibrations and for each of them the fibers are isomorphic

to Xsαi
∼= P1

C. This immediately shows that Õ (sα1 , . . . , sαl) is nonsingular. Now we

consider p̃1, the first projection on Õ (sα1 , . . . , sαl):

Proposition 1.4.2. p̃1 : Õ (sα1 , . . . , sαl) → X is a locally trivial fibration whose

fibers are isomorphic to X̃(α1, . . . , αl)
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Proof. To prove this proposition, we need an alternative and equivalent definition

of the Bott-Samelson variety, this time as a subvariety rather than as a quotient.

Let pαi : G/B → G/Pαi the projection. Then we define the variety

Y (α1, . . . , αl) = {(x1, . . . , xl) ∈ X l | x0 = e and pαi(xi) = pαi(xi−1)}

Lemma 1.4.3. Y (α1, . . . , αl) is a variety isomorphic to X̃(α1, . . . , αl)

Proof of Lemma 1.4.3. We define the morphism

φ : X̃(α1, . . . , αl)→ Y (α1, . . . , αl) [(p1, p2, . . . , pl)] 7−→ (p1B, p1p2B, . . . , p1 . . . plB)

p1 · . . . · piPαi = p1 · . . . · pi−1Pαi since pi ∈ Pαi and the morphism is well defined. To

show that φ is an isomorphism we have simply to exhibit an inverse

ψ : Y (α1, . . . , αl)→ X̃(α1, . . . , αl) (g1B, g2B, . . . , glB) 7−→ [(g1, g
−1
1 g2, . . . , g

−1
l−1gl)]

ψ is well defined and the lemma is proven.

We return to the proof of the proposition. The inverse image of U−B/B is

isomorphic to U− × Y (α1, . . . , αl) through the morphism

U− × Y (α1, . . . , αl)→ p̃1
−1(U−B/B) (u, (x1, . . . , xl)) 7−→ (u, ux1, . . . , uxl)

This describes the fibration in a neighborhood of eB. As before, we can multiply

by elements to get the thesis.

Let π : Õ (sα1 , . . . , sαl) → Oω the morphism defined by π(x1, . . . , xl+1) →
(x1, xl+1).

Theorem 1.4.4. π is a resolution of singularities of Oω.

Proof. We have the following chain of morphisms

Õ (sα1 , . . . , sαl)
π−→ Oω

p1−→ X π ◦ p1 = p̃1

and locally on a suitable open set U ⊆ X this can be written as

U × X̃(α1, . . . , αl)
IdU×π−→ U ×Xω

p1−→ U

Since X̃(α1, . . . , αl) is a resolution of singularities of Xω, then clearly Õ (sα1 , . . . , sαl)

is a resolution of Oω.

Moreover, let ν < ω and π : Y (α1, . . . , αl) ∼= X̃(α1, . . . , αl) → X(ω). We have

that Uν−1
∼= BνB/B ⊆ Xω and

Uν−1 × π−1(νB) ∼= π−1(BνB/B)

where the isomorphism is given by (u, (y1, . . . , yl)) → (uy1, . . . , uyl). Thus π :

π−1(BνB)→ BνB is a trivial fibration.

Arguing like in Theorem 1.4.4, we can get the analogous result for Oν ⊆ Oω and

π : Õ(α1, . . . , αl)→ Oω, i.e. π : π−1(Oν)→ Oν is a locally trivial fibration.
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1.5 The dual cell decomposition

We conclude this chapter with a discussion of the dual Bruhat decomposition, which

will be needed in Chapter 4.

The flag variety X = G/B can be seen also as the variety parameterizing the

Borel subgroups of G through the map

f : G/B → Bor(G) gB 7−→ gBg−1

Of course, there is nothing special about B so we can replace B with any other Borel

subgroup. For example we can consider the opposite Borel subgroup B̃ = ω0Bω
−1
0

(the one corresponding to negative roots) and we can define analogously f̃ : G/B̃ →
Bor(G). Thus we obtain the isomorphism θ = f−1 ◦ f̃ : G/B̃ → G/B, coming from

the isomorphism x→ xω0 on G.

The family of locally closed subsets B̃ωB̃/B̃, for ω ∈ W defines a cell decom-

position related to the usual one through θ(B̃ωB̃/B̃) = ω0Bω0ωω0B/B. So, if we

define, Yω = θ(B̃ω0ωB̃/B̃) we have Yω = ω0Xωω0 .

Lemma 1.5.1. Let ω, ν ∈ W with l(ω) ≤ l(ν) and ω 6= ν. Then

i) The intersection Xω ∩ ω0Xω0ν is empty.

ii) Xω ∩ ω0Xω0ω is the singleton {ωB}.

Proof. Let’s assume that Xω∩ω0Xω0ν 6= ∅ and let A be an irreducible component of

this intersection. A is stable with respect to the action of T and it is a proper variety

so it must contain a fixed point [Spr98, 6.2.6] of the form µB, µ ∈ W . Therefore

µB ∈ Xω and ω0µB ∈ Xω0ν but this, in particular, means that l(µ) ≤ l(ω) and

l(ω0µ) ≤ l(ω0ν) =⇒ l(µ) ≥ l(ν). From the hypothesis l(ω) ≤ l(ν) we get

l(ω) = l(µ) = l(ν). But then µB ∈ Xω if and only if µ = ω ω0µB ∈ XωνB if and

only if ω0µ = ω0ν thus ω = µ = ν and we reach a contradiction.

For the statement ii), by the same argument we obtain that every irreducible

component ofXω∩ω0Xω0ω must contain the point ωB. To conclude it suffices to show

that for a suitable neighborhood V of ωB we have Xω ∩ ω0Xω0ω ∩ V = {ωB} (this,

indeed, forces {ωB} to be the whole irreducible component and Xω ∩ ω0Xω0ω =

{ωB}). Clearly, by shrinking it if necessary, we can limit ourselves to consider

BωB/B ∩ ω0Bω0ωB ∩ V .

Let B̃ω = ωB̃ω−1 and let U−ω = (B̃ω, B̃ω) be its unipotent part. Analogously we

define Bω = ωBω−1 and Uω. The morphism

φ : U−ω → X u 7−→ uωB

is an open embedding and the image is a neighborhood of ωB. φ sends U ∩U−ω onto

BωB/B: it is a bijection since U ∩ U−ω ∼= U/(U ∩ Uω → BωB is clearly surjective.

Similarly φ induces a bijection between U− ∩ U−ω and ω0Bω0ωB/B. We get

φ−1(BωB ∩ ω0Bω0ωB/B) = {e} =⇒ BωB ∩ ω0Bω0ωB/B ∩ φ(U−ω ) = {ωB}
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Chapter 2

Hecke algebras

In this chapter we will define and describe the Hecke algebra of a general Coxeter

group W . The Hecke algebra may be thought as a deformation of the group algebra

C[W ] depending on a parameter q. Hecke algebras play an important role in many,

often apparently unrelated, important problems in representation theory.

2.1 Coxeter Groups

Definition 2.1.1. A Coxeter GroupW is a group which has finitely many generators

s1, . . . , sn subject to the relations s2
i = 1, ∀i ∈ {1, . . . , n}, and (sisj)

mij = 1, where

mij = mji ∈ {2, 3, . . . ,∞} (mij =∞ means that there is no relation).

The relation (sisj)
mij can be written also as

mij times︷ ︸︸ ︷
sisj · . . . · si =

mij times︷ ︸︸ ︷
sjsi · . . . · sj

and it is called braid relation

Example 2.1.2. The symmetric group Sn is a Coxeter Group. In fact, it is gener-

ated by the transpositions si = (i, i+ 1). The coefficient mij is 2 if |i− j| > 1 (this

means that si and sj commute) while mi,i+1 = 3

Coxeter groups form a very interesting class of groups playing an imortant role

in different areas of mathematics, such as Lie theory and finite group theory. Every

Coxeter group can be described using reflections. In fact, every Coxeter group has

a faithful linear representation in which it acts as a group generated by reflections.

In this sense, Coxeter groups form a generalization of Weyl groups. On the

other hand the Weyl Groups form a significant classes of examples for finite Coxeter

Groups. In this case the generators are the simple reflections for a given choice of

the positive roots.

The notions of length and of Bruhat order introduced in the previous chapter

are easily generalized to an arbitrary Coxeter group.
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Definition 2.1.3. A reduced expression for ω ∈ W is a sequence (si1 , . . . , sik),

sij ∈ S such that si1 · . . . · sik = ω and that k is minimal. In this case we call

l(ω) = k the length of ω.

We say that x ≥ y in the Bruhat order if there exists a reduced expression

(si1 , . . . , sik) containing a subsequence which is a reduced expression for y.

2.2 Definition of the Hecke Algebra

Let W be a Coxeter Group and S its set of generators. The Hecke algebra is a

deformation of the group algebra Z[W ] where the relations e2
s = 1 are replaced by a

different quadratic relations involving a parameter q

Definition 2.2.1. The Hecke Algebra H(W,S) of a Coxeter group is the free algebra

(with unity) over Z[q
1
2 , q−

1
2 ] with basis {Tω}ω∈W . The multiplication is given by

T 2
s = (q − 1)Ts + q if s ∈ S

TsTω = Tsω if l(sω) > l(s)

So, if (si1 , . . . , sik) is a reduced expression for ω, we have

Tω = Tsi1 · . . . · Tsik .

Since Ts · (Ts− q+ 1)q−1 = 1, every Ts, for s ∈ S, is invertible. Hence all Tω, ω ∈ W
are invertible.

2.3 The Hecke Algebra of a Chevalley group

We will now provide another construction of the Hecke Algebra, which works for a

Weyl Groups W . This provides also a natural way in which Hecke algebra arises.

Let Fq be the finite field with q elements, and let G = G(Fq) be the Chevalley

group corresponding to W . A general Chevalley group contains a subgroup T ⊆ G,

analogous to the maximal torus and B = TU , analogous to the Borel subgroup, and

there is a Bruhat decomposition G = tBωB [Car93, §8]. However, as this section

has only a motivational purpose and will not have any direct consequence on the

rest of this work, the reader may just keep in mind the case G = SLn(Fq).

Lemma 2.3.1. For any ω ∈ W the order of BωB/B is ql(ω)

Proof. As in the complex case, there exists a bijection U−ω−1 × B → BωB [Car93,

Cor 8.4.4.]. Here Uω is a subgroup of G in which each element can be written in an

unique way as an element
∏

α∈R(ω) Uα (after choosing any order of the factors) and

the Uα, α ∈ R are one parameter subgroups isomorphic to Fq.
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We keep G and q fixed. We define the C-algebra H̃ of B-bi-invariant C-valued

functions of G, that is, functions on G that are constants on the cells BωB for

ω ∈ B.

A basis of H̃ is formed by the characteristic functions χω of the double coset

BωB

χω(x) =

{
1 if x ∈ BωB
0 if x 6∈ BωB

The convolution product ∗, defined as

(f1 ∗ f2)(g) =
1

|B|
∑
x∈G

f1(x)f2(x−1g) =
1

|B|
∑
x∈G

f1(gx)f2(x−1),

gives H̃ a C-algebra structure.

The convolution is normalized, dividing by |B|, in such a way that χe, the char-

acteristic function of B, is the identity element in H̃.

It is easy to verify that the product of two B-biinvariant functions is again a

B-biinvariant function. In fact, ∀b ∈ B, ∀g ∈ G:

f1 ∗ f2(bg) =
∑
x∈G

f1(bgx)f2(x−1) =
∑
x∈G

f1(gx)f2(x−1) = f1 ∗ f2(g)

f1 ∗ f2(gb) =
∑
x∈G

f1(x)f2(x−1gb) =
∑
x∈G

f1(x)f2(x−1g) = f1 ∗ f2(g)

Apart from the normalization, we can notice that H̃ is the subalgebra of C[G]

formed by B-biinvariant functions. From this, we can deduce immediately the asso-

ciativity of the product.

We can define the so-called augmentation map ε : H̃→ C

ε(f) =
1

|B|
∑
x∈G

f(x)

Lemma 2.3.1 implies ε(χω) = ql(ω). Furthermore, ε is a C-algebra homomorphism,

that is ε(f1 ∗ f2) = ε(f1)ε(f2) We now prove that H̃ is another realization of the

Hecke Algebra.

For the proof we rely on the fact that a result completely analogous to Lemma

1.2.5 holds for Chevalley groups, see [Car93, 8.1.5.], namely, for a reflection s:

BωB ·BsB = BωsB if l(ωs) = l(ω) + 1

and

BωB ·BsB = BsB tB if l(ωs) = l(ω)− 1

Lemma 2.3.2. Let ω, ω′ ∈ W such that l(ωω′) = l(ω) + l(ω′). Then

χω ∗ χω′ = χωω′
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Proof. It suffices to show this when ω′ = s is a simple reflection. By the extension

of Lemma 1.2.5 to Chevalley groups we have BωB ·BsB = BωsB.

This means that χω ∗χs is supported on BωsB and thus, by the B-bi-invariance,

it should be a constant multiple of χωω′ . So χω ∗ χ′ω = cχωω′

Applying the augmentation map we immediately obtain that the constant c must

be 1, since ql(ω)ql(ω
′) = ql(ωω

′).

Lemma 2.3.3. Let s be a simple reflection in W . Then

χs ∗ χs = qχe + (q − 1)χs

Proof. By the extension of Lemma 1.2.5 to Chevalley groups we have BωB ·BsB =

BsB t B. This means that χs ∗ χs is supported on BsB t B and thus χs ∗ χs =

c1χe + c2χs for some c1, c2 ∈ C. By evaluating both sides at the identity e we get

χs ∗ χs(e) =
1

|B|
∑
x∈BsB

χs(x)χs(x
−1) =

|BsB|
|B|

= q

and it follows that c1 = q. At this point, applying the augmentation map, we get

c2 = q·q−q
q

= q − 1.

Remark 2.3.4. The parameter q in the definition of the Hecke Algebra H can be

given a specific value, for example we can set q to be any nonzero complex number

z ∈ C. More formally we are considering

Hz = H⊗
Z[q

1
2 ,q−

1
2 ]
C

where C is regarded as a Z[q
1
2 , q−

1
2 ]-algebra through the morphism Z[q

1
2 , q−

1
2 ] → C

which sends q to z. This process is called specialization at q = z.

If we specialize q to 1 the quadratic relation for Ts becomes T 2
s = 1 and we

recover the group algebra H1
∼= C[W ]

Theorem 2.3.5 (Iwahori). Let q = pn, p prime. Then the algebra H̃q is isomorphic

to the Hecke algebra Hq

Proof. The characteristic functions χω in H̃q satisfy the defining relations of the

algebra Hq and thus we get an homomorphism φ : Hq → H̃q such that φ(Tω) = χω.

Also, since φ sends the basis {Tω}ω∈W to the basis {χω}ω∈W , φ is an isomorphism.

We can give an equivalent definition of the convolution product, only in terms

of pullback and push-forward functors. As we will see in the chapter 3, this has an

analogue in a quite different context.

Firstly we notice that B-bi-invariant functors on G are in correspondence with

B-left invariant functions on X = G/B. These are in turn in bijection with G-

invariant map on X×X (i.e. functions h on X×X such that h(g ·x, g ·y) = h(x, y)

∀x, y ∈ X, g ∈ G) Thus we have established the bijection
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{
B-bi-invariant

functions on G

}
←→

{
B-left invariant

functions on X

}
←→

{
G-left invariant

functions on X ×X

}
and the composite map is

f 7−→ σ(f)

τ(h)←− [ h

where σ(f)(xB, yB) = f(x−1yB) and τ(h)(g) = h(eB, gB), ∀x, y, g ∈ G.

We can easily transport the definition of the convolution product in this new

situation

h1 ∗ h2(x, y) =
∑
z∈X

h1(x, z)h2(z, y) =
1

|B|
∑
z∈g

h1(x, zB)h2(zB, y)

In fact, we have σ(f1) ∗ σ(f2) = σ(f1 ∗ f2) since

σ(f1) ∗ σ(f2)(xB, yB) =
1

|B|
∑
z∈G

f(x−1zB)g(z−1yB) =

= (f ∗ g)(x−1y) = σ(f ∗ g)(xB, yB)

If φ : A → B is a map between finite sets, we can define the pullback and

push-forward of C-functions

φ∗(f) = f ◦ φ ∀f : B → C

φ∗(f)(b) =
∑

a∈φ−1(b)

f(a) ∀b ∈ B and ∀f : A→ C

Now let us consider the following diagram.

X ×X ×X ×X X ×X ×X

X ×X X ×X X ×X

p12 p34 r

∆

∆(x, y, z) = (x, y, y, z) r(x, y, z) = (x, z)

At this point we can define f ∗ g = r∗∆
∗(p∗12(f) ⊗ p∗34(g)) = r∗∆

∗(f � g) where

⊗ denotes simply the product (i.e. h1⊗ h2(x) = h1(x)h2(x)) and f � g(x, y, z, w) =

f(x, y)g(z, w), ∀x, y, z, w ∈ X). We just check that this definition agrees with the

one previously given.

r∗∆
∗(f � g)(x, y) =

∑
z∈X

∆∗(f � g)(x, z, y) =
∑
z∈X

f(x, z)g(z, y) = (f ∗ g)(x, y)
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2.4 Kazhdan-Lusztig basis

The ring Z[q
1
2 , q−

1
2 ] has a natural involution (·) given by f(q) = f(q−1). We can

extend this to an involution of the whole algebra H.∑
ω∈W

cω(q)Tω =
∑
ω∈W

cω(q−1)T−1
ω−1

We now want to construct a basis {Cω}ω∈W whose elements are self-dual, i.e. they

are fixed by (·), and such that the change of basis matrix from the basis {Tω}ω∈W
is upper triangular.

Theorem 2.4.1. For any ω ∈ W , there exists an unique element Cω ∈ H such that

Cω = Cω and

Cω = q−
l(ω)
2 Tω +

∑
ν<ω

q−
l(ν)+1

2 hν,ω(q)Tν

where hν,ω(q) ∈ Z[q−
1
2 ]

Proof. We start by proving the existence of Cω: we proceed by induction on the

length of ω. Of course, Ce = Te satisfies the requirements for ω = e. If ω = s is a

simple reflection, then Cs = q−
1
2Ts+q

− 1
2 works since Cs = q

1
2 (Ts−q+1)q−1+q

1
2 = Cs.

For the inductive step we need the following formula concerning the multiplication

on the right by Cs.

TωCs =

{
q−

1
2 Tωs + q−

1
2Tω if ωs > ω

q
1
2Tωs + q

1
2Tω if ωs < ω

This follows from

TωTs =

{
Tωs if ωs > ω

qTωs + (q − 1)Tω if ωs < ω

Now we fix ω ∈ W . By induction we can assume that Cν is already defined for

all the ν such that ν < ω. We can always choose a simple reflection s such that

xs < x (for instance, we can pick s = sk if ω = s1 · . . . · sk is a reduced expression

for ω).

Cωs · Cs =

(
q−

l(ωs)
2 Tωs +

∑
ν<ωs

hν,ωs(q)q
− l(ν)+1

2 Tν

)
· Cs =

= q−
l(ω)
2 Tω+q−

l(ω)
2 Tωs+

∑
ν<ωs
νs<ν

hν,ωs(q)q
− l(ν)

2 (Tνs+Tν)+
∑
ν<ωs
νs>ν

hν,ωs(q)q
− l(ν)+2

2 (Tνs+Tν) =

= q−
l(ω)
2 Tω +

∑
ν<ω

gν(q)q
− l(ν)

2 Tν (2.1)

and since hν,ωs(q) is a polynomial in Z[q−
1
2 ], we have that also gν(q) is in Z[q−

1
2 ].
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We define Cω as Cω = CωsCs −
∑

ν<ω gν(0)Cν (here, by gν(0), we just mean the

constant term of gν(q)). This is clearly self-dual with respect to (·). Writing the

just defined Cω in the {Tω} basis, we get

Cω = q−
l(ω)
2 Tω +

∑
ν<ω

h̃ν,ω(q)q−
l(ν)
2 Tν

Now we focus our attention on a single coefficient hν,ω(q) of a certain Tν .

h̃ν,ω(q) = gν(q)− gν(0) + (polynomials in Z[q−
1
2 ] without constant terms)

Thus, we can write h̃ν,ω(q) = q−
1
2hν,ω(q) and Cω satisfies both the required condi-

tions.

Also an element in H with these properties is unique. In fact, suppose that the

defining condition hold both for Cω and C ′ω. Then we denote by d = Cω − C ′ω their

difference.

d =
∑
ν<ω

rν(q)q
− l(ν)+1

2 Tν for some rν(q) ∈ Z[q−
1
2 ]

If d 6= 0 we can take a maximal z ∈ W such that rz(q) 6= 0. But, using the

self-duality of d, we obtain

rz(q)q
− l(z)+1

2 Tz +
∑
ν<z

rν(q)q
− l(ν)+1

2 Tν = rz(q
−1)q

l(z)+1
2 T−1

z−1 +
∑
ν<z

rν(q
−1)q

l(ν)+1
2 T−1

ν−1

(2.2)

If ν = s1 · . . . · sk is a reduced expression we have that

T−1
ν−1 = (Tsk · . . . · Ts1)−1 = q−l(ν)(Ts1 − q + 1) · . . . · (Tsk − q + 1)

and if we expand this expression in the {Tω}-basis, this is in the span of {Tµ}µ≤ν .
In particular,

T−1
ν−1 ∈ q−l(ν)Tν + span〈Tµ|µ < ν〉

By (2.2) we get

rz(q)q
− l(z)+1

2 Tz = rz(q
−1)q

l(z)+1
2 q−l(z)Tz =⇒ rz(q)q

− 1
2 = rz(q

−1)q
1
2

But, since rz(q) ∈ Z[q−
1
2 ], this would imply rz(q) = 0 and we get a contradiction.

Hence d = 0 and the proof is complete

Remark 2.4.2. This basis is denoted by C ′ω in the original paper [KL79] where it

was introduced. The polynomials hν,ω are related to the standard Kazhdan-Lusztig

polynomials by the formula:

Pν,ω(q) = q
l(ω)−l(ν)−1

2 hν,ω(q)

Using this polynomials the basis {Cω} takes the form

Cω = q−
l(ω)
2

(
Tω +

∑
ν<ω

Pν,ω(q)Tν

)
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Theorem 2.4.3. The Kazhdan-Lusztig polynomials Pν,ω are polynomials in Z[q] of

degree at most 1
2

(l(ω)− l(ν)− 1)

Proof. We just need to show that Pν,ω ∈ Z[q], ∀ν, ω ∈ W . The degree condition will

then automatically follow since Pν,ω(q) = q
l(ω)−l(ν)−1

2 hν,ω(q) and hν,ω(q) ∈ Z[q−
1
2 ].

This can be done by induction on the length of ω. For ω = s ∈ S, Cs =

q−
1
2Ts + q−

1
2Te and Pe,s = 1.

Let now ω be any element in W . As in the proof of 2.4.1 let s ∈ S such that

ωs < ω. By induction we can assume Pν,ωs(q) ∈ Z[q] for any ν < ωs.

Cωs · Cs = q−
l(ωs)

2

(
Tωs +

∑
ν<ωs

Pν,ωs(q)Tν

)
· Cs =

= q−
l(ω)
2 (Tω + Tωs) +

∑
ν<ωs
νs<ν

Pν,ωs(q)q
− l(ω)

2 q (Tνs + Tν) +
∑
ν<ωs
νs>ν

Pν,ωs(q)q
− l(ω)

2 (Tνs + Tν)

In this equation all the coefficients of the Tνs are in q−
l(ω)
2 Z[q]. Furthermore, from

this we can see that for the gν defined in (2.1), gν(0) must be 0 if l(ω)− l(ν) is odd.

This means that also in∑
ν<ω

gν(0)Cν = q−
l(ω)
2

∑
ν<ω

gν(0)q
l(ω)−l(ν)

2

(
Tν +

∑
µ<ν

Pµ,ν(q)Tµ

)

the coefficients of the Tν are in q−
l(ω)
2 Z[q]. So this must hold also for Cω = CωsCs −∑

ν<ω gν(0)Cν

Remark 2.4.4. From the proof of the previous theorem we see that Pν,ω(0), for

ν < ωs is exactly Pν,ωs(0) if νs > ν, while it is Pνs,ωs if νs < ν. Then we can easily

see by induction on the length of ω that the constant term of every polynomial Pν,ω
is 1.

Example 2.4.5. The above gives also an algorhitm to compute the Kazhdan-

Lusztig polynomials. Firstly we notice that Pν,ω = 1 whenever l(ω) − l(ν) ≤ 2.

We can see that this implies that CsCt = Cst if s, t ∈ S and s 6= t.

Let W = S3. Then the unique unknown polynomial is Pe,sts.

CstCs = q−1(Tst + Ts + Tt + 1)Cs = q−
3
2 (Tsts + Tst + Tts + Tt + (1 + q)Ts + (1 + q)Te)

We see that gν(0) = 0 for any ν 6= s, while gs(0) = 1. So Csts = CstCs − Cs =

q−
3
2 (Tsts + Tst + Tts + Tt + Ts + Te) and all the Kazhdan-Lusztig are trivial.

However we can find the first nontrivial polynomial already for W = S4. Let

S = {s, t, u} and we can check that Pν,tsu = 1 ∀ν < tsu.

CtsuCt =

(
q−

3
2

∑
ν≤tsu

Tν

)
Cs = q−2

∑
ν≤tsut

Tν + q−1(Tt + Te)

Here gν(0) = 0 for any ν, so we have Ctsut = CtsuCt and Pe,tsut(q) = Pt,tsut(q) = q+1.
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Chapter 3

Geometric Construction of the

Hecke Algebra

3.1 Convolution of sheaves

For any pair of complex algebraic varieties (X, Y ) we consider the derived category

Dbc(X × Y ) of bounded complexes of CX×Y -sheaves whose cohomology sheaves are

constructible, as defined in §B.2. Since we will always consider the bounded derived

category, from now on we will omit the b.

In analogy with what we have already done in §2.2 in the finite Chevalley groups

setting we can define a convolution between complexes of sheaves. IF X, Y and Z

are three algebraic varieties, we have the bifunctor:

Dc(X × Y )×Dc(Y × Z)→ Dc(X × Z) (F ,G) 7−→ F ∗ G

F ∗ G = Rr!∆
∗(F � G) = Rr!∆

∗(p∗12F ⊗ p∗34G) where the maps ∆ and r are:

X × Y × Y × Z X × Y × Z

X × Y Y × Z X × Z

p12 p34 r

∆

∆(x, y, z) = (x, y, y, z) r(x, y, z) = (x, z)

Proposition 3.1.1. The convolution product is canonically associative, that is, there

is a canonical isomorphism

(E ∗ F) ∗ G ∼= E ∗ (F ∗ G)

for any E ∈ Dc(X × Y ), F ∈ Dc(Y × Z) and G ∈ Dc(Z ×W ).
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Proof. We define the maps

v : X × Y × Z ×W → X × Y 2 × Z2 ×W (x, y, z, w) 7−→ (x, y, y, z, z, w)

π : X × Y × Z ×W → X ×W (x, y, z, w) 7−→ (x,w)

We want to show that (E ∗ F) ∗ G ∼= Rπ!v
∗(E �F �G). Then, in a symmetric way,

one can show that also E ∗ (F ∗ G) ∼= Rπ!v
∗(E � F �G).

Let’s consider the following commutative diagram:

X × Y × Z ×W X × Y × Z2 ×W X × Y 2 × Z2 ×W

X × Z ×W X × Z2 ×W

X ×W

IdX ×∆

u

∆× IdZ×W

r × IdZ×W

∆

r

where u(x, y, z, w) = (x, z, w). Since the upper left square is cartesian, we can

apply the Proper Base Change Theorem (A.2.4)

Rπ!v
∗ (E � F �G) = Rr!Ru!(IdX ×∆)∗(∆× IdZ×W )∗ (E � F �G) ∼=

∼= Rr!∆
∗R(r × IdZ×W )!(∆× IdZ×W )∗ (E � F �G) ∼= Rr!∆

∗((E ∗ F) � G)

and the last term is, by definition, (E ∗ F) ∗ G

3.2 Convolution on X ×X
Let now X be the flag variety of a reductive group G. We define DG(X ×X) as the

full subcategory of Dc(X ×X) consisting of objects whose cohomology sheaves are

constructible with respect to the stratification by G-orbits.

In view of the above proposition we will always omit parentheses. Then we can

define a map from this category into the Hecke algebra H = H(W,S) of the Weyl

group W of G.

h : DG(X ×X)→ H F 7−→
∑
i∈Z
ω∈W

hi(F)ωq
i
2Tω

where hi(F)ω is the dimension of the stalk Hi(F)x at any point x of Oω: this is well-

defined since Hi(F) is a locally constant sheaf when restricted to a single G-orbit

due to the constructibility condition.

Let N = 1
2
|R| = l(ω0) the dimension of X = G/B. We adopt the notation

Jω = IC(Oω)[−N ] and Lω = IC(Xω)
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Here IC stands for the Intersection Cohomology Complex, defined in §B.5. Clearly

Jω[i] ∈ DG(X ×X) for any i ∈ Z.

We recall from Proposition 1.4.1 that p1 : Oω → X is a locally trivial fibration

with fibers isomorphic to Xω. This means that locally Oω is isomorphic to U ×Xω

where U is a smooth open subvariety of X.

The Intersection Cohomology complexes can be computed locally on Zariski

dense open sets (B.4.4) and we have Jω|U×Xω = p∗2(Lω) = C�Lω. This implies that

Hi(Jω)ν = Hi(Lω)ν , where Hi(Lω)ν is the stalk of Hi(Lω) at any point of the orbit

BνB/B.

From the support conditions on Intersection Cohomology B.5.3 we obtain:

if ν < ω then Hi−l(ω)(Lω)ν = 0 for i− l(ω) ≥ −l(ν).

We define P̃ν,ω(q) =
∑

i dimHi−l(ω)(Lω)νq
i
2 . So far we only know that P̃ν,ω(q) ∈

Z[q
1
2 , q−

1
2 ] and that no power of q bigger that 1

2
(l(ω) − l(ν) − 1) appears. We can

rewrite h(Jω) as

h(Jω) = q−
l(ω)
2

∑
ν<ω

P̃ν,ω(q)Tν

The main goal of this section is to show that the convolution product between

complexes of sheaves is the geometric counterpart of the product in the Hecke Alge-

bra. To achieve this result we need to restrict our domain as the category DG(X×X)

is too large.

Definition 3.2.1. We denote by K the full subcategory of DG(X ×X) formed by

all objects in Dc(X × X) that are direct sum of Jω, ω ∈ W and of their shifts

Jω, i ∈ Z.

We start by dealing with a simple reflection s. In this case, Os is a smooth

variety. Js is merely COs [1] and h(Js) = q−
1
2 (Te + Ts) = Cs. The following Lemma

will provide the fundamental step.

Lemma 3.2.2. Let A ∈ K and suppose further that Hi(A) = 0 for all odd i (or for

all even i). Then

i) Js ∗ A ∈ DG(X ×X)

ii) Hi(Js ∗ A) = 0 for all even i (or for all odd i).

iii) h(Js ∗ A) = Csh(A)

Proof. i) holds because both ∆ and r are G-equivariant morphisms. We need to

compute hi(Js ∗ A)ω. We pick x = (B,ωB) ∈ Oω. Let pij : X4 → X2 be the

projection on the i-th and j-th factors. We have:

p∗12Js = COs×X×X [1]

Then

Js ∗ A = Rr∗(∆
∗((p∗34A)|Os×X×X))[1]

The following diagram is a Cartesian square:
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r−1(x) X ×X ×X

{x} X ×X

ir−1(x)

r|r−1(x) r

i{x}

Thus by Proper Base Change we obtain

Hi(Js∗A)x = i∗{x}(R
ir∗)(∆

∗((p∗34A)|Os×X×X)[1] = H i+1
(
∆∗
(
(p∗34A)|Os×X×X

)
|r−1(x)

)
But the composition

r−1(x) ∩∆−1(Os ×X ×X) ↪→ ∆−1(Os ×X ×X)
∆
↪→ Os ×X ×X ↪→ X4 p34

↪→ X2

is a closed embedding and

r−1(x) ∩∆−1(Os ×X ×X) = {(B, y, ωB) | y ∈ Xs} ∼= P1

Setting Y = Xs × {ωB} ⊆ X2 we have Hi(Js ∗ A)x = H i+1(Y,A|Y ). Using the

constructibility of the complex A we will prove that there exists an open subset

U ∼= C, U ⊆ Y , such that A|U has locally constant cohomology sheaves. For this we

divide into two cases:

• If l(sω) > l(ω), from Lemma 1.2.5, we have BsBωB = B(sω)B. The set

(BsB, ωB) is contained in the G-orbit G·(B, sBωB) = G·(B,BsBωB) = Osω.

So we can take U = Osω ∩ Y and Y \ U = {(B,ωB)} ∈ Oω

• If l(sω) < l(ω) then BsBωB = BωB t B(sω)B. Let s = sα. The set

(BsB, ωB) is contained in G · (B, sBωB) = Osω t Oω.

Furthermore, we have BsB = UαsB and the element (B, suα(x)ωB), or equiv-

alently (uα(−x)sB, ωB), belongs to Osω if and only x = 0. This is a conse-

quence of the proof of Lemma 1.2.5. Thus we can take U = Oω ∩ Y and

Y \ U = (sB, ωB) ∈ Osω

Up to a quasi-isomorphism (i.e. an isomorphism in D(U)) we can assume that

A|U = τ≤kA|U and Hk(A|U) 6= 0. We have the distinguished triangle

−→ τ≤k−1A|U −→ A|U −→ Hk(A|U)[−k]
+1−→

Furthermore we notice that since Hk−1(A|U) = 0 we have τ≤k−1A|U ∼= τ≤k−2A|U .

We can apply the cohomological functor RΓc to this triangle and we obtain the long

exact sequence

. . .→ H i
c(τ
≤k−2A|U)→ H i

c(A|U)→ H i
c(Hk(A|U)[−k])→ H i+1

c (τ≤k−2A|U)→ . . .

Hk(A|U) is a constant sheaf on U ∼= A1
C which is contractible, thus it is isomorphic

to Cnk
U for some nk ∈ N. If we apply the Poincaré Duality to Hk(A|U) we obtain

H i
c(Hk(A|U)[−k]) = H i−k

c (Hk(A|U)) ∼= H2−i+k(Cnk
U ) =

{
Cnk if i = k + 2

0 if i 6= k + 2
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We recall that for a sheaf F on C we have H i
c(C,F) = 0 for any i > 2. Hence,

H i
c(τ
≤k−2A|U) = 0 for any i > k. Thus, for any i we have

dimH i
c(A|U) = dimH i

c(τ
≤k−2A|U) +H i

c(Hk(A|U)[−k])

. By induction on the cohomological length of A|U (i.e. the number of nonzero

sheaves in the complex) we get

dimH i
c(A|U) =

∑
k∈Z

dimH i
c(Hk(A|U)[−k]) = dimH i

c(Hi−2(A|U)[−i+ 2]) =

= H i−2(Hi−2(A|U)[−i+ 2]) = dimH0(Hi−2(A|U))

But, due of the locally constancy, we can just pick any point u ∈ U and

dimH i
c(A|U) = dimH0(Hi−2(A|U)) = dimHi−2(A|U)u = dimHi−2(A)u

The following triangle is distinguished

j!j
!A −→ A −→ i∗i

∗A
+1−→

where j and i are respectively the open and closed embeddings

j : U ↪→ Y i : Y \ U = {u0} → Y

Then we get the long exact sequence taking the cohomology

. . .→ Hi−1(A)u0 → H i
c(U,A|U)→ H i(Y,A|Y )→ Hi(A)u0 →

Then, by the hypothesis on the cohomology sheaves of A, H i
c(A|U) = Hi−2(A)u

and Hi(A)u0 vanish for all the odd i, hence the long exact sequence splits into short

exact sequences

0→ H i
c(U,A|U)→ H i(Y,A|Y )→ Hi(A)u0 → 0

and we get

dimH i(Y,A|Y ) = dimHi−2(A)u + dimHi(A)u0

From which ii) follows. We divide again into two different cases:

• If l(sω) > l(ω) then

hi(Js ∗ A)ω = dimH i+1(Y,A|Y ) = hi+1(A)ω + hi−1(A)sω

• If l(sω) < l(ω) then

hi(Js ∗ A)ω = dimH i+1(Y,A|Y ) = hi+1(A)sω + hi−1(A)ω
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Finally, iii) follows from:

Csh(A) = Cs

(∑
i,ω

hi(A)ωq
i
2Tω

)
=

=
∑
i,ωs>ω

hi(A)ωq
i−1
2 (Tsω + Tω) +

∑
i,ωs<ω

hi(A)ωq
i+1
2 (Tsω + Tω) =

=
∑
i,ωs>ω

(
hi+1(A)ω + hi−1(A)sω

)
q
i
2Tω +

∑
i,ωs<ω

(
hi+1(A)sω + hi−1(A)ω

)
q
i
2Tω =

=
∑
i,ω

hi(Js ∗ A)ωq
i
2Tω = h(Js ∗ A)

Remark 3.2.3. In the last proof we have shown that dimH•c (U,A|U) is equal to

dimH•c (
⊕

j∈Z(U,Hj(A|U)[−j]). Actually, we can make a stronger statement: there

exists in Dc(X) an isomorphism

A|U ∼=
⊕
j∈Z

Hj(A|U)[−j]

We can prove this claim by induction on the cohomological length of A|U . Let’s

say that A|U has zero cohomology sheaves in odd degrees and let 2k the biggest

integer such that Hk(A|U) 6= 0. Then we have the following distinguished triangle

τ≤2k−1A|U → A|U → τ≥2kA|U ∼= H2k(A|U)[−2k]
+1→ (3.1)

By induction we can assume that τ≤2k−1A|U ∼=
⊕

j≤k−1H2j(A|U)[−2j]. Each

sheaf H2j(A|U) is locally constant on U ∼= A1
C, that is it is isomorphic to Cnj

U for

some nj ∈ N. The boundary map of the triangle above is an element of

HomD(U)(Cnk
U [−2k],

⊕
j≤k−1

Cnj
U [−2j + 1]) ∼=

∼=
⊕
j≤k−1

(
HomD(U)(CU ,CU [2(k − j) + 1]

)nknj ∼= ⊕
j≤k−1

(
H2(k−j)+1(U)

)nknj
So it is 0, since H i(U) ∼= H i(A1

C) = 0 ∀i 6= 0. This implies that the distinguished

triangle (3.1) is isomorphic to the triangle

τ≤2k−1A|U → τ≤2k−1A|U ⊕H2k(A|U)[−2k]→ H2k(A|U)[−2k]
+1→

Hence, in particular A|U ∼= τ≤2k−1A|U ⊕ H2k(A|U)[−2k] ∼=
⊕

j∈ZHj(A|U)[−j] in

Dc(X).
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3.3 The Bott-Samelson Decomposition

We want to generalize the previous result to an arbitrary ω ∈ W . Here, the Bott-

Samelson resolution turns out to be a very useful tool. From now on, with a slight

abuse of notation, we will use Õω in place of Õ(s1, . . . , sl)

Lemma 3.3.1. Let ω = s1 · . . . · sl be a a reduced expression and π : Õω =

Õ(s1, . . . , sl)→ Oω be the Bott-Samelson resolution defined in section 1.4. Then

Rπ∗CÕω [l(ω)] = Js1 ∗ . . . ∗ Jsl

Proof. We set l = l(w). Working like in the proof of Proposition 3.1.1, if we define

the maps

v : X l+1 → X2l (x0, x1, . . . , xl) 7−→ (x0, x1, x1, x2, x2, . . . , xl−1, xl−1, xl)

π : X l+1 → X2 (x0, x1, . . . , xl) 7−→ (x0, xl)

we have that

Js1 ∗ . . . ∗ Jsl ∼= Rπ∗v
∗ (Js1 � . . .� Jsl) = Rπ∗v

∗
(
COs1 [1] � . . .� COsl [1]

)
∼=

∼= Rπ∗v
∗COs1×...×Osl [l]

Since

v−1
(
Os1 × . . .×Osl

)
= {(x0, . . . , xl) ∈ X l+1 | (xi−1, xi) ∈ Osi} = Õω

we can conclude, as

v∗COs1×...×Osl [l]
∼= CÕω [l]

Before stating the next proposition we need to make some comments on the

Decomposition Theorem C.3.6. Given a map f : X → Y of algebraic varieties, a

stratification of f for a morphism is a stratification Y =
⊔
β Yβ where Yβ are locally

closed subsets with the property that the Intersection cohomology complexes of the

Yβ’s are constructible with respect to it, and with the additional property that, for

any β, the restriction f : f−1(Yα)→ Yα is a topologically locally trivial fibration.

It is not hard to see that the locally closed subvarieties supporting the local

systems appearing in the statement of the Decomposition Theorem are a subset of

the Yβ’s. In our situation Oν , with ν ≤ ω, form a stratification for π, as we have

pointed out in the discussion after Theorem 1.4.4.

Proposition 3.3.2. h(Jω) = Cω

Proof. We recall that

h(Rπ∗CÕω [l(ω)]) = h (Js1 ∗ . . . ∗ Jsl) = Cs1 · . . . · Csl
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and, since Cs = Cs, we get h(π∗CÕω [l(ω)]) = h(π∗CÕω [l(ω)]). We can apply the

Decomposition Theorem C.3.6 to the proper birational map π : Õω → Oω:

Rπ∗COω [N + l(ω)] =
⊕
i∈Z

pHi(Rπ∗COω [N + l(ω)])[−i],

and each single perverse cohomology sheaf decomposes into simple objects

pHi(Rπ∗COω [N + l(ω)]) =
⊕
ν≤ω

ICOν (Lν,i)

The Lν,i should be local system on a smooth open subset ofOν , but, asOν ∼= Cl(ν)

is smooth and contractible, every local system on it is trivial. This means that

ICOν (Lν,i)
∼= ICOν (C

ni
Oν

) ∼= IC(Oν)⊗ V i
ν where V i

ν is a C-vector space of dimension

ni.

Since π is a birational and in particular is an isomorphism when restricted to

π−1(Oω) then Lω,i = 0 for every i 6= 0, and Lω,0 ∼= COω (as in Corollary C.3.7).

Shifting, we obtain

Rπ∗CÕω [l(ω)] = Jω ⊕
⊕
ν<ω
i∈Z

Jν ⊗ V i
ν [−i] (3.2)

So we have just shown that

Cs1 · . . . · Csl = h(Jω) +
∑
ν<ω

Pν(q)h(Jν)

where Pν(q) =
∑

i dimV −iν q
i
2 . By induction on the length, we assume that h(Jν) =

Cν for each ν < ω. From the previous equality, applying the involution (·) of the

Hecke Algebra, we get

h(Jω) = Cs1 · . . . · Csl −
∑
ν<ω

Pν(q)Cν = Cs1 · . . . · Csl −
∑
ν<ω

Pν(q
−1)Cν .

CÕω [N + l(ω)] = IC(Õω) is fixed by the Verdier duality DXl+1 . The map π is

proper, so Rπ∗ = Rπ! = DX2Rπ∗DXl+1 and also Rπ∗CÕω [N + l(ω)] is fixed by the

Verdier Duality DX2 . This means that there is a canonical isomorphism

pHi(Rπ∗COω [l(ω) +N ]) ∼= pH−i(Rπ∗COω [l(ω) +N ])∨

which in turn implies that V i
ν
∼= (V −iν )∨ or Pν(q) = Pν(q

−1). Then it follows from

the equation above that h(Jω) = h(Jω).

On the other hand h(Jω) = q−
l(ω)
2

∑
P̃ν,ω(q)Tν . By the support condition

for Intersection Cohomology, if we define h̃ν,ω(q) = q−
1
2

(l(ω)−l(ν)−1)P̃ν,ω(q), we get

h̃ν,ω(q) ∈ Z[q−
1
2 ]. For h(Jω) the two defining conditions of Theorem 2.4.1 hold.

From the uniqueness this yields h(Jω) to be exactly Cω. Furthermore, we obtain

h̃ν,ω = hν,ω, hence P̃ν,ω = Pν,ω
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Summarizing, we have the following important result, conjectured by Kazhdan

and Lusztig in [KL79] and proven, for Weyl groups, shortly after in [KL80]. This

result has been recently generalized to a general Coxeter group [EW14a].

Corollary 3.3.3. We have P̃ν,ω(q) = Pν,ω(q). So the Kazhdan-Lusztig polynomials

P̃ν,ω(q) have non-negative coefficients.

Proof. This is trivial since the coefficient of P̃ν,ω are the dimensions of the stalks of

a certain complex of sheaves.

Remark 3.3.4. We can use this result to compute Kazhdan-Lustig polynomials in

some cases. Let ω0 ∈ W the longest element of a Weyl group. Then Oω0 is an open

dense orbit in X, so Jω0 = CX×X [N ] and

h(Jω0) = q−
N
2 (
∑
ν∈W

Tν)

Thus Pν,ω0(q) = 1 for any ν ∈ W . More in general when Xω is smooth, then

Pν,ω(q) = 1 for any ν < ω.

Corollary 3.3.5. Hi(Jω)ν = Hi(Lω)ν = 0 for all odd i ∈ Z.

Proof. From Theorem 2.4.3 Pν,ω(q) ∈ Z[q] and all coefficient of terms of the kind

q‘fraci2, for an odd i, are zero.

This last corollary implies that all Jω (ω ∈ W ), as well as their shifts, satisfy

the hypothesis of 3.2.2. So the Lemma 3.2.2 holds, in particular, for any A ∈ K.

Proposition 3.3.6. h(Jω ∗ Jω′) = CωCω′ for any ω, ω′ ∈ W .

Proof. We recall the notation from 3.2. Then

Rπ∗CÕω [l(ω)] ∗ Jω′ = Jω ∗ Jω′ +
⊕
ν<ω
i∈Z

(Jν ∗ Jω′)⊗ V i
ν [−i]

Now we can use Lemma 3.2.2 to obtain

Cs1 · . . . · Csl · Cω′ = h(Jω ∗ Jω′) +
∑
ν<ω

Pν(q)h(Jν ∗ Jω)

Then, by induction on l(ω)

h(Jω ∗ Jω′) = Cs1 · . . . · Csl · Cω′ −
∑
ν<ω

Pν(q)CνCω′ = CωCω′

Remark 3.3.7. This does not hold for general complexes in Dc(X × X). For

example, let’s consider j!COs , where j : Os ↪→ X is the embedding. We have

h(j!COs) = Ts but h(j!COs ∗ j!COs) 6= T 2
s = (q − 1)Ts + q, otherwise we would have

h0(j!COs ∗ j!COs)s = dimH0(j!COs ∗ j!COs)(B,sB) = −1
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Proposition 3.3.8. The category K is closed under ∗

Proof. We need only to show that Jω ∗Jω′ ∈ K, for any ω, ω′ ∈ K. We observe that

Jω � Jω′ = IC(Oω ×Oω′)[−2N ]

Now we need to study ∆∗IC(Oω×Oω′)[−2N ]. In general there is no functoriality

for Intersection Cohomology, however our situation is very peculiar.

We recall that p1 : Oω′ → X is a locally trivial fibration with fibers Xω′ while

p2 : Oω → X is a locally trivial fibration with fibers Xω−1 . This means that

locally the inclusion Z = ∆(X3) ∩ (Oω ×Oω′) ↪→ Oω ×Oω′ looks like the inclusion

Xω−1 × U ×Xω′
∆
↪→ Xω−1 × U × U ×Xω′ , where U is an open set in X.

The diagonal ∆(X) ⊆ X2 is a smooth subvariety, so it has a tubular neigh-

borhood in X × X. As a consequence we can find a tubular neighborhood T of

Z = ∆(X3) ∩ (Oω ×Oω′), i.e. T is open in Oω ×Oω′ and there exists a retraction

p : T → Z which is a locally trivial vector bundle with fibers isomorphic to CN .

We call j the inclusion T
j
↪→ Oω ×Oω′ . Then

∆∗(Jω�Jω′)=∆∗j∗
(
IC(Oω ×Oω′)[−2N ]

)
=∆∗ (IC(T )[−2N ]) =IC(∆−1(Z))[−N ]

Now we claim that Rr∗IC(∆−1(Z)) ∈ K. We apply the decomposition theorem

to r and, arguing as in the proof of Proposition 3.3.2, we obtain

Rr∗IC(∆−1(Z)) =
⊕
ν∈W
i∈Z

IC(Oν)⊗ V i
ν [−i]

where V i
ν are finite dimensional vector spaces. Thus it is in K.
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Chapter 4

Soergel Bimodules and the

“Erweiterungssatz”

4.1 The Cohomology of the Flag Variety

Let V a representation of the Weyl group and let’s denote by S the symmetric

algebra Sym(V ) and by Sym+(V ) the ideal of all elements with vanishing constant

term. So the Weyl group action on t, the Lie algebra of T , induces an action on

S = Sym(t) and S+ = Sym+(t).

Definition 4.1.1. C(V ) = S/(S+)WS is called the co-invariant ring of the repre-

sentation V .

Let X = G/B the flag variety. The description of the cohomology ring of X in

terms of the co-invariant ring is a classical result, due to Borel:

Theorem 4.1.2. [Bor53] The cohomology ring H•(X,CX) is isomorphic, as a

graded ring, to the coinvariant ring C = C(t∨). Here t∨ is the dual of t = g0 =

Lie(T ), the maximal toral subalgebra of g, and the symmetric algebra is graded in

such a way that deg(t∨) = 2.

Although we don’t give a complete proof of the theorem, it is useful to have

an insight into it and to understand the maps involved in it. We start with the

exponential exact sequence on X.

0→ Z→ O → O∗ → 0

Here O (resp. O∗) stands for the sheaf of holomorphic functions (resp. nonvanishing

holomorphic functions). The deriving boundary map c1 : Pic(X) = H1(X,O∗) →
H2(X,Z) is known as first Chern class. It is injective, since H1(X,O) ⊆ H1(X,C) =

0. Let’s now prove surjectivity.

The Bruhat decomposition is also a cell decomposition of X. From this we see

that H2(X) is generated by Poincaré dual of fundamental class of cells of codimen-

sion 2, i.e. by the dual of (Xω0s), s ∈ S. The subvariety Xω0s is a divisor and define
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a line bundle O[Xω0s]. The surjectivity follows from c1(O[Xω0s]) = Xω0s [GH p.

141].

Hence c1 : Pic(X) → H2(X,Z) is an isomorphism. Furthermore we know that

every line bundle on X can be linearized [Lur] and that every linearized line bundles

is of the form G×B V , where V is a character of B, hence of T . We obtain X(T ) ∼=
Pic(X) ∼= H2(X,Z). Tensorizing by C we get t∨ ∼= H2(X,C). Since classes of even

degrees commute in cohomology, so in particular H•(X,C) is a commutative ring,

we can extend it to a morphism S(t∨)→ H•(X,C). To conclude one needs to show

that this map is surjective and that the kernel is generated by (S+)W .

4.2 The Module Structure on the Hypercohomol-

ogy

Given two objects F ,G ∈ D(X) we define

Hom•D(X)(F ,G) =
⊕
i∈Z

HomD(X)(F ,G[i])

Moreover, End•(F) = Hom•D(X)(F ,F) has a structure of graded C-algebra.

Let p the map from X to a point. We have, by adjunction,

H•(X,F) = p∗F = Hom•D(pt)(Cpt, p∗F) = Hom•D(X)(CX ,F)

In particular C = H•(X,CX) ∼= End•D(X)(CX) and we get an action of C on

H•(X,F) given by composition on the left.

On the other hand, there exists a canonical isomorphism r : F⊗CX → F and we

get another action of C on F , that is, there is a canonical map C = End•D(X)(CX)→
End•D(X)(F), ∀F ∈ D(X), and by functoriality C acts also on the pushforward p∗F '
H•(F). In other words f ∈ C = EndD(X)(CX) acts on H•(F) = HomD(X)(CX ,F ⊗
CX) as the composition on the right for 1⊗ f .

Let f ∈ HomD(X)(CX ,CX [d]) and g ∈ HomD(X)(CX ,F). The following diagram

is commutative

CX F

CX ⊗ CX F ⊗ CX

CX ⊗ CX [d] F ⊗ CX [d]

CX [d] F [d]

r

g ⊗ Id

g ⊗ f
Id⊗ f

r

Id⊗ ff

g

g ⊗ Id

r[d]

g[d]
r[d]

(In general, the lower square is (−1)d-commutative. However, in our situation, f is

nonzero only if d is even). This means that the C-actions we have described are the

same.
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Thus (hyper)cohomology defines a functor H•(X, ·) : D(X) → C-mod. We will

adopt the notation H instead of H•(X, ·) for the cohomology when we will want to

empasize the C-module structure.

Let α a simple root and Pα be the corresponding minimal parabolic group con-

taining B. Let Yα = G/Pα and πα : X → Yα the projection. We now want to study

the C-module structure of the cohomology of sheaves F which are pullbacks π∗αG of

sheaves G on Yα. Let s = sα. This is a fundamental result in this direction.

Theorem 4.2.1. [BGG73, 5.5] The pullback π∗α : H•(Yα,CYα) → H•(X,CX) is

injective and the image corresponds to Cs ⊆ C, where Cs is the subalgebra of s-

invariants in C.

The map πα : X → Yα is a fiber bundle with fibers isomorphic to P1
C. By the

Leray-Hirsch Theorem [BT82, 5.11] H•(X,CX) is a free module over H•(Yα,CYα)

of rank 2. Thus, in particular, we have the injectivity of π∗α. To deduce the second

statement one has to check that the of the image Poincaré Duals of the fundamental

classes [Pω] of the generalized Schubert cells of Yα, which are a basis of H•(Yα,CYα),

are exactly the classes in H•(X,CX) fixed by s. However, we won’t prove this.

We can define the functor Hα = Hom•D(Yα)(CYα , ·) : D(Yα)→ Cs−mod.

For F ∈ D(Yα) we have a canonical map of C-modules

C ⊗Cs HαF = Hom•D(X) (CX , π
∗
αCYα)⊗EndD(Yα)

Hom•D(Yα) (CYα ,F)

−→ Hom•D(X)(CX , π
∗
αF) = Hπ∗αF

Theorem 4.2.2. The canonical map C ⊗Cs HαF → Hπ∗αF is an isomorphism for

any F ∈ D(Yα).

Proof. The morphism πα is a proper topological submersion, therefore it is a locally

trivial fibration with fibers isomorphic to P1.

We first determine Rπα∗CX locally on Yα. We take U ⊆ Yα an open set which

trivializes the fibration. Let p : P1 → {pt}.

Rπα∗CX |U = Rp1∗CU×P1 = R(Id× p)∗(CU � CP1) = CU �Rp∗CP1 =

= CU � (Cpt ⊕ Cpt[−2]) = CU ⊕ CU [−2]

This implies that H0(Rπα∗CX) and H2(Rπα∗CX) are the only nonzero cohomol-

ogy sheaves of Rπα∗CX . We further notice that these sheaves are local system of

rank 1 which are trivialized: H0(πα∗CX) by the constant 1, and H2(πα∗CX) by the

orientation of the fibres. Thus we have a distinguished truncation triangle

CYα
∼= H0(Rπα∗CX) ∼= τ≤0Rπα∗CX → Rπα∗CX → τ≥1Rπα∗CX

∼= CYα [−2]
+1→ .

The last arrows lives in Hom(CYα [−2],CYα [1]) ∼= H3(Yα,C) = 0 hence the triangle

splits and Rπα∗CX
∼= CYα ⊕ CYα [−2]

Furthermore, there is a canonical isomorphism

Hom•D(X)(CX , π
∗
αF) ∼= Hom•D(X)(CX , π

!
αF [−2]) = Hom•D(X)(πα∗CX [2],F)
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Now we can conclude:

C ⊗Cs HαF = Hom•D(X)

(
CX , π

!
αCYα [−2]

)
⊗EndD(Yα)(CYα ) Hom•D(Yα) (CYα ,F) =

= Hom•D(Yα) (πα∗CX [2],CYα)⊗EndD(Yα)(CYα ) Hom•D(Yα) (CYα ,F) =

=
(
EndD(Yα)(CYα)⊕ EndD(Yα)(CYα)[−2]

)
⊗EndD(Yα)(CYα ) Hom•D(Yα) (CYα ,F) =

= Hom•D(Yα) (CYα ,F)⊕ Hom•D(Yα) (CYα ,F) [−2] = Hπ∗αF

4.3 Bimodules from Hypercohomology

4.3.1 Ringoids

Definition 4.3.1. We call ringoid a set R equipped with two monoid structure

(R,+, 0) and (R, ·, 1) such that, ∀a, b, c ∈ R a+ b = b+a, we have a(b+ c) = ab+ac

and (a+ b)c = ac+ bc

Let C-Mod-C be the set isomorphism classes of C-bimodules. It is a ringoid

with ⊕ and ⊗C .

For any C-category A, the C-functors A → A up to natural equivalences form,

with sum and composition, a ring. We denote it by RA.

The same holds, if A is a [1]-category, for [1]-functors (i.e., functors commuting

with [1]) up to natural [1]-equivalence. We denote it by R•A
The map

C-Mod-C → R•C-Mod B 7−→ B ⊗C (·)

is a homomorphism of ringoids. We recall the following result about functors of

modules. This homomorphism is injective. In fact, the map B⊗C C×C → B⊗C C
defined by (b⊗ x, y) → b⊗ xy defines a right C-module structure on B ⊗C C, and

this makes the canonical map B ⊗C C ∼= B an isomorphism of bimodules. Thus we

can recover the bimodule structure of B relying only on the functor B ⊗C (·).
Let K be the set of isomorphism classes of objects in K. This is a ringoid with ⊕

and ∗. From Prop. 3.3.2 and 3.3.6 the map h : K → H is an injective homomorphism

of ringoids. We observe that no two different objects in K are isomorphic. Otherwise,

if
⊕

i Jωi [si] ∼=
⊕

j Jνj [tj] we would have in H, applying h,
∑

i q
siCωi =

∑
j q

tjCνj ,

but the elements qsiCωi are linearly independent over Z. Thus, we can omit the (·)
over K.

We denote by H+ the image of h. It is the subringoid generated by Cω, ω ∈ W
and q

n
2 , n ∈ Z.

We now consider the subringoid KS of K, generated by Js, with s simple, and

their shifts. The restriction of h to KS is still an injective ringoid homomorphism,

and we denote by H+
S its image, that is the subringoid generated by Cs, with s

simple, and q
n
2 , n ∈ Z.
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Let’s consider the convolution product in the special case X = Y = G/B and

Z = {pt}. Then convolution defines also a ringoid homomorphism

K → R•D(X) J 7−→ J ∗ (·)

and we have the following Lemma:

Lemma 4.3.2. Let s = sα and πα : X → Yα = G/Pα. The following functors

D(X)→ D(X) are naturally equivalent:

1. F 7−→ Js ∗ F

2. F 7−→ π∗αRπα∗F [1]

3. F 7−→ π!
αRπα!F [−1]

Proof. 2 and 3 are clearly equivalent, since πα is proper and smooth. The following

diagram is Cartesian

Os X

X Yα

p1

p2 πα

πα

hence π∗αRπα∗F ∼= Rp1∗p
∗
2F .

Now we consider the commutative diagram

Os Os ×X X

X2 X3

X

∆|Os

i j

p3

∆

r = p1

in which i and j are the obvious closed embeddings. The labeled vertical arrows are

the inclusions and the square is cartesian. This shows that

Js ∗ F = Rr∗∆
∗(COs � F)[1] = Rr∗i∗i

∗∆∗(COs � F)[1] ∼=

∼= Rp1∗
(
∆|Os

)∗
(COs � F)[1] = Rp1∗

(
∆|Os

)∗
p∗3F [1] ∼= Rp1∗p

∗
2F [1]

and the proof is concluded.

We call C the full subcategory of D(X) formed by objects that are direct sum of

CX [n], n ∈ Z.

Lemma 4.3.3. The convolution defines a ringoid homomorphism Φ : KS → R•C
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Proof. It is enough to prove that Js ∗ CX ∈ C, ∀s ∈ S and ∀F ∈ C. This is easy:

Jsα ∗ CX
∼= π∗απα∗CX [1] ∼= π∗α (CYα [1]⊕ CYα [−1]) = CX [1]⊕ CX [−1] ∈ C

The hypercohomology of an object in C is a free graded module over C. Actually,

it is easy to observe that H : C → C-f-Mod, the full subcategory of free graded

modules, is an [1]-equivalence of [1]-categories.

Lemma 4.3.4. There exists a ringoid homomorphism Ê : H+
S → R•C-f-Mod such

that Ê(qn) = C[−n]⊗C (·) and Ê(Cs) = C[1]⊗Cs (·) for any simple reflection s = sα.

Proof. We get the homomorphism by setting Ê = (R•H) ◦ Φ ◦ (h−1) to make the

following diagram of functors commutative

H+
S R•C-f-Mod

KS R•C

Ê

R•H

Φ

h

Now it is easy to verify that (R•H)Φh−1(qn) = (R•H)Φ(Je[−n]) is the functor which

sends HF to H(F [−n]) and therefore E(qn) = C[−n]⊗C (·).
It remains to consider (R•H)Φ(h−1)(Cs) = (R•H)Φ(Js). This is the functor

which sends HF to

H(Js ∗ F) = H(π∗απα∗F [1]) = C ⊗Cs Hα(πα∗F [1]) = C[1]⊗Cs HF

Corollary 4.3.5. There exists a ringoid homomorphism E : H+
S → C-Mod-C such

that E(qn) = C[−n] and E(Cs) = C ⊗Cs C for any simple reflection s

Proof. The image of Ê is a subringoid of R•C-f-Mod, whose generators are in the

image of the homomorphism C-Mod-C → R•C. In fact, C[−n]⊗C(·) and C[1]⊗Cs(·)
are obviously the images of C[−n] and C ⊗Cs C[1]. Thus we can lift Ê to a ringoid

homomorphism E : H+
S → C-Mod-C which satisfies the above conditions.

We now consider the ringoid homomorphism B̂ = E ◦ h : KS → C-Mod-C.

Lemma 4.3.6. Let J ∈ KS. The following functors, from D(X) to C-Mod,

F 7−→ H(J ∗ F) and F 7−→ B̂J ⊗C HF

are equivalent.
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Proof. Firstly we assume J = Js, where s = sα is a simple reflection. It follows

from 4.2.2 that

H(Js ∗ F) = H(π∗απα∗F [1]) = C[1]⊗Cs HF
On the other hand B̂Js = E(Cs) = C ⊗Cs C[1].

In general, an element of KS can be written as a direct sum of (shift of) the

sheaves Js1 ∗ . . . ∗ Jsk . By induction on k we have

H (Js1 ∗ . . . ∗ Jsk ∗ F) ∼= B̂Js1 ⊗C B̂ (Js2 ∗ . . . ∗ Jsk)⊗C HF =

= B̂ (Js1 ∗ . . . ∗ Jsk)⊗C HF

The next step will be to extend this homomorphism to the whole H. In order to

make this possible we need to change slightly our codomain.

4.3.2 The Split Grothendieck Group

Definition 4.3.7. Let A an additive category . We denote by 〈A〉 its split Grothen-

dieck group. It is a free abelian group whose basis is indexed by the objects of A
and subject to the relation

A = A′ + A” if A ∼= A′ ⊕ A”

For an object A ∈ A we denote by [A] its class in 〈A〉.

Lemma 4.3.8. Let A and B two objects in A. We denote by [A] its class in 〈A〉.
Then [A] = [B] if and only if there exists an object C such that A⊕ C ∼= B ⊕ C

Proof. One direction is immediate. So let’s assume that [A]− [B] = 0 in 〈A〉. This

means that, if we denote by A the isomorphism class of A, in the free abelian group

indexed by object of A we have

A−B =
n∑
i=1

(Xi ⊕ Yi −Xi − Yi)−
m∑
j=1

(Wj ⊕ Zj −Wj − Zj)

which we can rewrite as

A+
n∑
i=1

(Xi + Yi) +
m∑
j=1

(Wj ⊕ Zj) = B +
n∑
i=1

(Xi ⊕ Yi) +
m∑
j=1

(Wj + Zj)

Since the isomorphism class are a basis in the free abelian group, we have that the

elements on the left hand side are a permutation of the elements on the right hand

side. Setting C =
⊕

i(Xi ⊕ Yi)⊕
⊕

j(Wj ⊕ Zj) we have the thesis.

Example 4.3.9. Let V ectC the category of C-vector spaces. Then the split Gro-

thendieck group 〈V ectC〉 = 0. In fact, for any two vector spaces A and B, we can

always find a vector space C, whose basis’s cardinality is big enough, such that

A ⊕ C = B ⊕ C. On the other hand, if we consider the category V ectfC of finite

C-vector spaces, we have 〈V ectfC〉 ∼= Z.
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We can consider 〈C-Mod-C〉. Equipped with the operation ⊗C , it becomes a

ring.

At this point the extension follows from a universal property of H.

Definition 4.3.10. Let R+ be a ringoid. The universal ring U(R+) of R+ is a

ring, with a ringoid homomorphism φ : R+ → U(R+) such that, for any ring S and

any ringoid homomorphism ψ : R+ → S there exists a unique ring homomorphism

ψ : U(R+)→ S such that ψ = ψ ∗ φ

R+ S

U(R+)

ψ

φ
ψ

This universal ring always exists. We start with the free product of R+ copies

of Z: ∗
x∈R+

Zex

and we quotient it by the relations exey = exy and ex + ey = ex+y, ∀x, y ∈ R+.

Finally we define φ(x) = ex, ∀x ∈ R+.

If R+ is a subringoid of a ring R, and if R+ generates R as a ring, then U(R+).

In fact, we obviously have a surjective ring homomorphism ψ : U(R+) → R.

ψ(
∑
nxex) =

∑
nxx = 0 =⇒

∑
nx>0 nxx =

∑
nx<0−nxx and this means that∑

nx>0 nxex =
∑

nx<0−nxex =⇒
∑
nxex = 0.

Now we apply this to our situation. H+ is a subringoid of H and it generates

it as a ring: in fact, by induction, it generates Cω since it is defined as Cω =

CωsCs −
∑

ν<ω gν(0)Cν .

Example 4.3.11. 〈K〉, equipped with the convolution product, is a ring. From

Lemma 4.3.8 we obtain that KS is a subringoid of 〈K〉. Moreover, it generates

〈K〉 as a ring, therefore 〈K〉 = U(KS). So we can extend h to a ring isomorphism

h : 〈K〉 → H.

Theorem 4.3.12. There exists a unique ring homomorphism E : H → 〈C-Mod-C〉
such that E(t) = 〈C[−1]〉, E(Cs) = 〈C ⊗Cs C〉[1] for any simple reflection s

Now our wish is to prove that the functor B̂ is just the hypercohomology.

4.3.3 The Cohomology of Schubert Varieties

Definition 4.3.13. Let F ∈ D(X×X). We denote by B(F) the hypercohomology.

B is a functor into C-Mod-C, the category of C-graded bimodules. Here, the left

C-module structure arises from the left copy of X, and the right C-module from the

right copy of X.
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Lemma 4.3.14. For any F ∈ D(X × X), B(F) ∼= H(F ∗ CX) as C-bimodules,

where the right C-action on H(F ∗ CX) comes from the action on CX .

Proof. F ∗ CX = Rr∗∆
∗(p∗12F) = Rr∗F = Rp1∗F , so clearly B(F) ∼= H(F ∗ CX)

as complex of vector spaces. The left C-actions clearly coincide. An element f ∈
EndD(X)(CX), via the right C-action, sends g ∈ HomD(X)(CX ,F ∗ CX) into the

composition

CX
g−→ F ∗ CX

IdF∗f
−−−−−−→ F ∗ CX

where IdF ∗ f = Rr∗∆
∗(IdF � f) = Rr∗(IdF ⊗ (IdCX � f)). This, by adjunction,

corresponds to

CX×X
g−→ F ⊗ CX×X

IdF⊗(IdCX�f)
−−−−−−−−→ F ⊗ CX×X

As in the discussion in §4.2, we can deduce that the two right C-actions coincide.

Proposition 4.3.15. The functors B, B̂ : KS → C-Mod-C are naturally equivalent.

Proof. It suffices to prove that, for any J ∈ KS the functors in R•C-f-Mod

Φ(J ) : C 7−→ H(J ∗ CX) and B(J )⊗C (·) : C 7−→ B(J )⊗C C

are naturally equivalent and, for this, we just need to show that H(J ∗CX) ∼= B(J ),

but this is exactly the statement of Lemma 4.3.14.

Theorem 4.3.16. The group homomorphism B, B̂ : 〈K〉 → 〈C-Mod-C〉 coincide.

In particular B is a ring homomorphism.

Proof. We already know that they coincide on KS. To conclude we just need the

second statement, i.e. that B(J ∗J ′) ∼= B(J )⊗C B(J ′) for any J ,J ′ ∈ K. Clearly

we can assume J = Jω, J ′ = Jω′ .
Firstly we fix ω′ = s′ ∈ S a simple reflection and we show, by induction on l(ω),

that the claim is true for ω. If ω = s is a simple reflection this descends from the

fact that Js ∗ Js′ ∈ KS and B and B̂ coincide on KS.

For a general ω ∈ W , using the Bott-Samelson decomposition

B

Jω ⊕⊕
ν<ω
i∈Z

Jν ⊗ V i
ν [−i]

⊗C B(Js′) = B(Js1 ∗ . . .Jsl)⊗C B(Js′) =

= B(Js1 ∗ . . .Jsl ∗ Js′) = B(Jω ∗ Js′)⊕ B

⊕
ν<ω
i∈Z

Jν ⊗ V i
ν [−i]

⊗C B(Js′)

we obtain B(Jω ∗ Js′) = B(Jω)⊗C B(Js′)
For a general ω′ we have only to use again the Bott-Samelson decomposition,

this time on the second factor, and conclude by induction.
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Thus we can carry on B the properties of B̂, obtaining this fundamental result

that allows us to effectively compute the hypercohomology of complexes in K.

Corollary 4.3.17. Let J ,J ′ ∈ K. Then

i) B(J ∗ J ′) ∼= B(J )⊗C B(J ′) in C-Mod-C.

ii) The functors (D(X) → C-Mod) F 7−→ H(J ∗ F) and F 7−→ B(J ) ⊗C H(F)

are naturally equivalent

iii) B(Js) ∼= C ⊗Cs C[1]

In the other direction, the theorem implies that for any ω ∈ W there exists a

bimodule Bω = B(Jω) ∈ C-Mod-C such that E(Cω) = 〈Bω〉.
The tensor product ⊗C defines an action of 〈C-Mod-C〉 on 〈C-Mod〉. Also H,

through E , acts on 〈C-Mod〉.
We call Dω = Bω−1 ⊗C C ∈ C-Mod. Clearly 〈Dω〉 = Cω−1〈C〉. Now we put the

various pieces together.

Theorem 4.3.18. H(Lω), as a C-module, is isomorphic to Dω.

Proof. We have BJω = B̂Jω = Eh(Jω) = E(Cω) = Bω. Then, from 4.3.17, we get

Dω = Bω−1 ⊗C C = BJω−1 ⊗C C = BJω−1 ⊗C HLe = H(Jω−1 ∗ Le)

Le = CeB is the skyscraper sheaf on {eB}. It remains to show that Jω−1 ∗ Le ∼=
Lω.

Jω−1 ∗ CeB = r∗∆
∗(Jω−1 � CeB) = p1∗(Jω−1|X×{eB}) ∼= Jω−1|X×{eB}

Now the map p2 : Oω−1 → X is locally trivial fibration with fiber isomorphic to

Xω. This means that there exists an open neighborhood U ⊆ X of eB, U ∼= CN ,

such that

Oω−1 ∩ p−1
2 (U) ∼= Xω × U

Calling i and j the inclusions X × {eB} i
↪→ X × U

j
↪→ X ×X we have

Jω−1 ∗ Le ∼= Jω−1|X×{eB} = i∗j∗IC(Oω−1)[−N ] =

= i∗IC(Xω × U)[−N ] = IC(Xω) = Lω

4.3.4 The Bott-Samelson bimodule

Now we can apply the result of this section to compute the cohomology of the

Bott-Samelson variety with the C-module structure induced by X̃ω → Xω ↪→ X.

Corollary 4.3.19. The cohomology of the variety Õ(s1, . . . , sk) = Õω, as a C-

bimodule, is isomorphic to

B(Õω) = H•(Õω,CÕω) = B(π∗CX̃ω
) ∼= C ⊗Cs1 C ⊗Cs2 . . .⊗Csk C
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Proof. This is an immediate consequence of Lemma 3.3.1 and Corollary 4.3.17

The bimodule C ⊗Cs1 C ⊗Cs2 . . .⊗Csk C is called a Bott-Samelson bimodule.

Corollary 4.3.20. The cohomology of the Bott-Samelson variety X̃(s1, . . . , sk) =

X̃ω, as a C-module, is isomorphic to

H(X̃ω) = H•(X̃ω,CX̃ω
) ∼= C ⊗Csl C ⊗Csl−1 . . .⊗Cs1 C ⊗C C

Proof. The variety X̃ω is isomorphic to Oω−1∩(X l×{eB}) through the isomorphism

φ(x1, . . . , xl) = (xl, . . . , x1, eB). Then, the following diagram is Cartesian

X̃ω Õω−1

X × {eB} X ×X

φ

π π

i

Hence, as in the proof of Theorem 4.3.18,

Rπ∗CX̃ω
= i∗Rπ∗CÕω−1

= Jsl ∗ . . .Js1 ∗ Le

and H(π∗CX̃ω
) = B(Jsl)⊗C . . .⊗C B(Js1)⊗C H(Le)

Remark 4.3.21. To compute the cohomology of the Bott-Samelson variety, we

actually don’t need all this machinery. In fact, we have the sequence of locally

trivial fibration

X̃(s1, . . . , sk)→ X̃(s1, . . . , sk−1)→ . . .→ {pt}

all with fibers isomorphic to P1
C = S2. They are all orientable sphere bundles since

they are complex smooth varieties, thus we can apply the Leray-Hirsch theorem and

it follows that

H•(Õ(s1, . . . , sk) = H•(P 1
C)⊗C . . .⊗C H

•(P 1
C) =

C[x1]/(x2
1)⊗C . . .⊗C C[xk]/(x

2
k) = C[x1, . . . , xk]/(x

2
1, . . . , x

2
k)

However this method does not give information on the C-module structure.

We are now finally able to define Soergel bimodules.

Definition 4.3.22. An indecomposable C-bimodule is a Soergel bimodule if it is

a direct summand of a (possibly zero) shift of a Bott-Samelson bimodule. A C-

bimodule is a Soergel bimodule if there exists a decomposition into indecomposable

Soergel bimodules.

We denote by S the full subcategory of Soergel bimodules.

From the decomposition (3.2), the bimodule B(Jω), is a Soergel bimodule for

any ω ∈ W , and the same holds for any object in K.
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Example 4.3.23. If ω ∈ S, then the Bott-Samelson resolution is obviously an

isomorphism. This also happens if l(ω) = 2: if ω = st, we consider the morphism

π : Õ(s, t) → Oω. Then for any (x, y) ∈ Oω the set π−1(x, y) is a single point.

In fact if (x, z, y), (x, z′, y) ∈ π−1(x, y), then ps(z) = ps(x) = ps(z
′) ∈ G/Ps and

pt(z) = pt(y) = pt(z
′) ∈ G/Pt, so z(z′)−1 ∈ Ps ∩ Pt/B = {eB}.

The first nontrivial case is for l(ω) = 3. Let G = SL3(C), so W = S3 and

let S = {s, t}. The longest element is ω0 = sts and Xω0 = X. Even though this

is a smooth variety, the Bott-Samelson map is not an isomorphism. In fact, from

example 2.4.5 we know that Csts = CsCtCs −Cs so we have a decomposition of the

Bott-Samelson bimodule

C ⊗Cs C ⊗Ct C ⊗Cs C[3] = C[3]⊕ C ⊗Cs C[1]

4.4 The “Erweiterungssatz”: Statement of the

Theorem and Consequences

In this section we will prove and discuss the Erweiterungssatz due to Soergel [Soe90].

It states that the functor H = H• : Dc(X) → C-Mod is fully faithful on K, the

subcategory of Dc(X) whose objects are direct sums of shifts of Lω, ω ∈ W . In other

words, morphism between intersection cohomology complexes of Schubert varieties

on X are just morphism between their cohomology C−modules.

For a graded C-module M =
⊕

M i we define its shifted module M [n]i = Mn+i.

Let M and N two graded C-modules, then we define Hom•C-Mod(M,N) by

Homi(M,N) = HomC-Mod(M,N [i])

Theorem 4.4.1 (Erweiterungssatz). The natural map induced by the hypercoho-

mology is an isomorphism of graded vector spaces

Hom•D(X)(Lω,Lν) ∼= Hom•C-Mod(H(Lω),H(Lν)) ∀ω, ν ∈ W

Remark 4.4.2. Since all the objects in K are direct sum of shifted Lω the theorem

can be immediately generalized to an arbitrary object in K

Before discussing the proof of this theorem we point out some of its consequences.

Proposition 4.4.3. H•(Lω) = Dω is an indecomposable C-module.

Proof. One of the main results of the theory of perverse sheaves is that minimal

extension of simple local system are simple objects in the category of perverse

sheaves (Prop B.4.9). Let us assume that Dω decomposes into D1 ⊕ D2, with

D1 and D2 non trivial. Then the inclusion ij : Dj → Dω and the projection

πj : Dω → Dj, j ∈ {1, 2}, are homomorphisms of graded modules (of degree 0).

Therefore, for example, ij ◦ πj : Dω → Dω is a homomorphism of degree 0, too,

and it cannot be invertible. Hence, from the Erweiterungssatz, it would follow that

Hom0(Lω,Lω) ∼= Hom0(Dω, Dω) contains nontrivial non invertible elements. But

this is a contradiction: Lω is simple and every non-zero endomorphism (of degree

0) should be invertible.
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Furthermore, again from the Erweiterungssatz, we can recover the direct sum-

mand H•(Lω) of H•(X̃(s1, . . . , sk)) relying only on its algebraic structure. In other

words, from the C-module structure on H•(X̃(s1, . . . , sk)), that is C ⊗Cs1 . . . ⊗Csk
C ⊗C C, we can already recover H•(Lω) as a submodule.

From 3.2 we have have a decomposition of the cohomology of the Bott-Samelson

module

C⊗Cs1C⊗Cs2 . . .⊗CskC⊗C[l(ω)] = Dω⊕
⊕
ν<ω
i∈Z

(Dν [−i])dimV iν = Dω⊕
⊕
ν<ω
i∈Z

1≤j≤dimV iν

Dν,j[−i]

This is actually unique.

Proposition 4.4.4. The C-module

H•(X̃(s1, . . . , sk)) = C ⊗Cs1 . . .⊗Csk C ⊗C C[l(ω)]

has a unique decomposition into indecomposable objects, so in particular all the

decompositions are isomorphic to Dω ⊕
⊕

(Dν [−i])dimV
i
ν . Moreover, if

C ⊗Cs1 . . .⊗Csk C ⊗C C[l(ω)] =
m⊕
i=1

Di

is another decomposition such that D1 is the submodule containing 1 ' 1⊗ 1⊗ . . . 1,

then D1
∼= Dω.

We need the following general Lemma.

Lemma 4.4.5. Let M be a C-module and M =
⊕n

i=1Ei =
⊕n

j=1 Fj two decomposi-

tions of M into indecomposable objects. If we assume that for any i, HomC-Mod(Ei, Ei)

is a field, then m = n ant there exists a permutation σ such that Ei ∼= Fσ(i) for any

i.

Proof. Let ei : M � Ei and fj : M � Fj the projection. Since
∑

j fj = IdM and

f 2
j = fj we have ∑

j

e1fjfje1|E1 = IdE1

so there exists an index k such that e1fkfke1 is an automorphism of E1. We call γ

its inverse. We have the morphisms E1
fke1−→ Fk

e1fk−→ E1 and γ ◦ e1fk is a section of

fke1. So we have Fk = Im(fke1) ⊕ Ker(e1fk|Fk). But Fk is indecomposable, so we

have that e1fk is injective, hence is an isomorphism Fk ∼= E1.

Furthermore since Ker(e1fk|Fk) = 0 we have that Fk ∩ (E2 ⊕ . . . ⊕ En) = 0, so

M = Fk ⊕ E2 ⊕ . . .⊕ En. Therefore

M/Fk ∼=
n⊕
i=2

Ei ∼=
⊕

j=1,j 6=k

Fj

and we can conclude by induction.
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Proof. (Proposition). The first statement follows immediately from Lemma 4.4.5.

For the second statement firstly we notice that a summand D1 containing 1 always

exists since the degree 0 part of C ⊗Cs1 C ⊗Cs2 . . . ⊗Csk C ⊗ C has dimension 1.

Furthermore we can see that 1 must belong to Dω. In fact,

IH0(Xω) = H−l(ω)(Lω) = H0(H−l(ω)(Lω)) = H0(X) = C

(cfr. Lemma B.5.7) is nonzero. Hence, 1, which spans the −l(ω) degree part of

H(X̃ω), must belong to Dω. Then calling π1 : H(X̃ω) → D1 and iω : Dω → H(X̃ω)

the obvious projection and inclusion. We have that iωπ1π1iω is nonzero since it sends

1 into 1, hence is an automorphism of Dω. Now we can conclude, as in the proof of

the Lemma, that Dω
∼= D1.

Remark 4.4.6. This result holds more generally for any module of finite length M

over a ring R and it is known as Krull-Remak-Schmidt theorem (cfr. [Lan02, 7.5]).

Actually the assumption that HomC−Mod(Ei, Ei) is a field is unnecessary since for

any indecomposable E of finite length HomR-Mod(E,E) is a local ring.

Corollary 4.4.7. Dω is the unique summand of H(X̃ω) which is not a summand of

any other module H(X̃ν), with ν < ω.

Remark 4.4.8. The proof of the Erweiterungssatz works, up to some minor modi-

fications, also on X ×X, i.e. we have

Hom•D(X×X)(Jω,Jν) ∼= Hom•C-Mod-C(B(Jω),B(Jν)) ∀ω, ν ∈ W

The analogue of Prop. 4.4.3 and 4.4.4 hold in this setting, i.e. Bω is an indecom-

posable bimodule and the decomposition of the Bott-Samelson bimodule is unique.

In particular this implies that the functor B : K → S is fully faithful and essentially

surjective, hence it is an equivalence of categories, so we have H ∼= 〈K〉 ∼= 〈S〉. This

result is often referred saying that Soergel bimodules are a categorification of the

Hecke algebra.

Moreover, we notice that for two bimodules B1, B2 ∈ S we have [B1] = [B2] ∈ 〈S〉
if and only if B1

∼= B2. In fact, in view of Lemma 4.3.8 if [B1] = [B2] then there

exists a bimodule B such that B1 ⊕ B ∼= B2 ⊕ B but since the decomposition of

B1 ⊕B into indecomposable is unique we get B1
∼= B2

4.5 The “Erweiterungssatz”: Proof of the Theo-

rem

We will follow the proof given by Ginsburg [Gin91] which is easier and less technical

than Soergel’s original proof. Both these proofs rely substantially on Saito’s weight

theory.

We have a filtration of the flag variety by closed subvarieties

{B} = X0 ⊆ X1 ⊆ . . . ⊆ XN = X
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where Xn =
⊔
l(ω)≤nBωB/B. However we can refine this filtration adding only one

Schubert cell at time. In this way Un = Xn/Xn−1 is a single stratum BωnB/B and

it is isomorphic to the affine space Cl(ωn).

Let’s denote by vn and in the closed embeddings and by un the open embedding

Xn−1
vn
↪−→ Xn

un←−↩ Un Xn
in
↪−→ X

We fix an element ω ∈ W and we define Ln = i∗nLω. We have the following

distinguished triangles in Dc(Xn)

un!u
!
nLn → Ln → vn∗v

∗
nLn

+1→ vn!v
!
nLn → Ln → Run∗u

∗
nLn

+1→

Thus we can obtain the long exact sequences in cohomology. From the first

triangle we get:

0→H0(Xn, un!u
!
nLn)→ H0(Xn, Ln)→ H0(Xn, vn∗v

∗
nLn)→ H1(Xn, un!u

!
nLn)→ . . .

Since H•(Xn, un!u
!
nLn) = H•c (Un, u

!
nLn) and H•(Xn, vn∗v

∗
nLn) = H•(Xn−1, v

∗
nLn) =

H•(Xn−1, Ln−1) we can rewrite it as

0→ H0
c (Un, u

!
nLn)→ H0(Xn, Ln)→ H0(Xn−1, Ln−1)→ H1

c (Un, u
!
nLn)→ . . .

Similarly, from the second triangle we get the long exact sequence

0→ H0(Xn−1, v
!
nLn)→ H0(Xn, Ln)→ H0(Un, u

∗
nLn)→ H1(Xn−1, v

!
nLn)→ . . .

We claim that in these sequences all the connecting morphisms vanish, so they

split into the short sequences

0→ H•c (Un, u
!
nLn)→ H•(Xn, Ln)→ H•(Xn−1, Ln−1)→ 0

0→ H•(Xn−1, v
!
nLn)→ H•(Xn, Ln)→ H•(Un, u

∗
nLn)→ 0

We need now some preparatory work before starting the proof of our claim.

4.5.1 C∗-actions on the Flag Variety

Let T ⊆ B ⊆ G a maximal torus of the reductive group G. T acts naturally on

the flag variety X = G/B and, since W = NG(T )/T , the points ωB ∈ X, ω ∈ W
are fixed by T . On the other hand, all the fixed points for this action are of this

form. In fact if gB is a fixed point we have tgB = gB for any t ∈ T , so g−1Tg ⊆ B.

But all the maximal torus in B are conjugate, hence there exists b ∈ B such that

b−1g−1Tgb = T and gb ∈ NG(T ). This means that gB = ωB for some ω ∈ W .

Lemma 4.5.1. For any ω ∈ W there exists an open neighborhood V of ωB in X and

a one parameter subgroup Tω in T such that Tω contracts V to ωB as the parameter

goes to 0
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Proof. The statement can be rewritten as follows: there exists a group homomor-

phism χ : C∗ → T , (a cocharacter of T ) such that for any v ∈ V

lim
z→0

χ(z)(v) = ωB.

We can take ωU−B/B as the neighborhood V of ωB. Each point u ∈ U can be

written in an unique way as u = uα1(y1)uα2(y2) · . . . ·uαN (yN) where {α1, . . . , αN} =

−R+ is the set of negative roots.

χ(z)(ωuB/B) = ω(ω−1 · χ)(z)uα1(y1)uα2(y2) · . . . · uαN (yN)B/B =

= ω · uα1(α1(ω · χ)(z)y1) · . . . · uαN (αN(ω · χ)(z)yN)(ω−1 · χ)(z)B/B =

= ω · uα1(z
〈α1,ω−1·χ〉y1) · . . . · uαN (z〈αN ,ω

−1·χ〉yN)B/B

where (ω−1 · χ)(z) = ω−1χ(x)ω and 〈·, ·〉 is the non-degenerate pairing between

characters and cocharacter. Thus the limit, when z → 0, is ωB for any u ∈ U− if

and only if 〈α, ω−1 · χ〉 = 〈ω · α, χ〉 ≥ 0 for any negative root α. Equivalently, if

〈ω · α, χ〉 ≤ 0 for α ∈ R+. But it is enough to check that 〈ω · α, χ〉 ≤ 0 for any

simple root α. By the non-degeneracy of the pairing 〈·, ·〉 we can always find such a

cocharacter χ .

The property that every point x has a neighborhood V contracted to x by some

C∗-action has the following consequence for sheaves.

Lemma 4.5.2. Let V and x as above and let F a C∗-equivariant complex of sheaves

in Dc(V ). Then, H•(V,F) ∼= H•(Fx)

Proof. Firstly we notice that we can assume that Fx = 0. Otherwise, we denote

by i : {x} ↪→ V the inclusion and F ′ = Ker(F → i∗i
∗F). So we have the exact

sequence 0→ F ′ → F → i∗i
∗F → 0 and in cohomology

0→ H0(F ′)→ H0(F)→ H0(Fx)→ H1(F ′)→ H1(F)→ H1(Fx)→ . . .

and H•(F ′) = 0 clearly implies the thesis.

By Lemma 4.5.1 above, and the algebraic version of Hartogs’ theorem, the action

map C∗ × V → V extends to a morphism µ : A1
C × V → V

We call p1 : A1 × V → A1 and p2 : A1 × V → V respectively the first and the

second projection. We also define the morphism τ :

τ : A1 × V → A1 × V τ(z, v) = (z, µ(z, v))

Clearly p1 ◦ τ = p1.

The assumption that F is a C∗-equivariant complex means that there exists an

isomorphism between p∗2F|C∗×V and τ ∗p∗2F|C∗×V . Besides, τ ∗p∗2F|{0}×V = 0 because

Fx = 0 and p2 ◦ τ({0} × V ) = {x}. Hence

τ ∗p∗2F ∼= j!j
!τ ∗p∗2F ∼= j!(τ

∗p∗2F|C∗×V ) ∼= j!j
!p∗2F
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(j : C∗×V ↪→ A1×V is the inclusion) and there is canonical morphism τ ∗p∗2F → p∗2F
arising from the adjunction morphism j!j

! → Id. Finally, applying Rp1∗ we obtain

a morphism

α : Rp1∗τ
∗p∗2F → Rp1∗p

∗
2F

On the other hand, from the commutative diagram

A1 × V A1 × V

A1 A1

τ

p1 p1

Id

we obtain canonically a morphism β : Rp1∗(p
∗
2F) = Id∗Rp1∗(π

∗
2F) → Rp1∗τ

∗(π∗2F)

and composing we obtain a morphism

α ◦ β : Rp1∗p
∗
2F → Rp1∗p

∗
2F

From the following Cartesian diagram

A1 × V V

A1 {pt}

p2

p1 q

p

by smooth base change Rp1∗p
∗
2F ∼= p∗Rq∗F is a locally constant complex of sheaves

on A1. Since

(Rp1∗τ
∗p∗2F)0 = H•({0} × V, τ ∗p∗2F) = H•({0} × V, 0) = 0

we get that β is the 0 morphism on the stalk of 0 ∈ A1, and so is α ◦ β. Thus ,

by the connectedness of A1 it should be 0 everywhere. On the other hand α is an

isomorphism on the complement of 0 ∈ A1. Furthermore in 1 ∈ A1 also β is an

isomorphism since

(Rp1∗τ
∗p∗2F)1 = H•({1} × V, τ ∗p∗2F)

and τ is the identity on {1} × V . This forces Rp1∗p
∗
2F to be 0.

Finally, 0 = Rp1∗p
∗
2F = p∗q∗F = p∗H•(V,F) and so H•(V,F) = 0.

4.5.2 Arguments from Weight Theory

In this section we will use results from Appendix C. We are allowed to do so: indeed,

all the complexes we will consider have an additional natural structure as mixed

Hodge modules and the morphisms we deal with respect this additional structure.

For a fixed ω ∈ W we can take a neighborhood V and a one parameter subgroup

Tω as in Lemma 4.5.1 . Now, for any ν ∈ W , Lν |V satisfies the hypothesis of the

lemma 4.5.2 because it is locally constant on the Schubert cells, which are clearly

Tω-stable. From Prop. C.3.4 we know that Lν is a pure complex of weight l(ν). Let

jω : {ωB} ↪→ X be the inclusion.
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Remark 4.5.3. We have that DXLν ∼= Lν as perverse sheaves. This is not true

when we look to Lν as a mixed Hodge module, however we have DXLν ∼= Lν(−dl(ν))

where (−dl(ν)) is the Tate twist (cfr. [Sai90], [PS08]), and it is pure of weight −l(ν).

While the general theory would only ensure that j∗ωLν is mixed with weights

≤ l(ν), the C∗-action on a neighborhood of ωB gives us a stronger result.

Proposition 4.5.4. The complex j∗ωLν is pure of weight l(ν).

Proof. On one hand we have H•(V,Lν) = Rp∗i
∗
VLν = Rp∗i

!
VLν and both the func-

tors Rp∗ and i!V increase the weights. On the other hand the functor j∗ω decreases

the weights. This means that H•(V,Lν) = j∗ωLν should have weights ≥ l(ν) and

≤ l(ν), so it must be pure of weight l(ν).

Corollary 4.5.5. The complex j!
ωLν is pure of weight l(ν).

Proof. This is just the dual statement of Prop. 4.5.4. In fact:

j!
ωLν ∼= Dptj

∗
ωDXLν ∼= DptRp∗i

∗
VDXLν ∼= Rp!i

∗
VLν ∼= H•c (V,Lν)

Theorem 4.5.6. The following short sequence

0→ H•c (u!
nLn)→ H•(Ln)→ H•(Ln−1)→ 0 (4.1)

is exact.

Proof. We need to show that in the distinguished triangle

un!u
!
nLn → Ln → vn∗Ln−1

+1→

the boundary maps in cohomology vanish. Let pn be the map from Xn to a point.

We first of all claim that the term of the long exact sequence is pure:

H•(un!u
!
nLn) = pn∗un!u

!
nLn = (pn ◦ un)!(un ◦ in)∗Lν

There exists a one parameter subgroup of T which contracts the Schubert cell

Un to its fixed point ωn and (un ◦ in)∗Lν satisfies the hypothesis of Lemma 4.5.2 for

V = Un, so H•(Un, Ln) = j∗ωnLν is pure of weight l(ν).

The complex u∗nLn = (un ◦ in)∗Lν on Un ∼= Al(ωn)
C has constant cohomology

sheaves and these are zero in even (or odd) degree. Hence,

u∗nLn
∼=
⊕
j∈Z

Hj(u∗nLn)[−j]

Each Hj(u∗nLn)[−j] is a shifted constant sheaf on Un and it is pure of pure of

weight l(ω) since this holds punctually, therefore u∗nLn is also pure of weight l(ν).

We have

H•c (u∗nLn) ∼= DptH
•(DUnu

∗
nLn)
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and it follows that H•c (u∗nLn) is also pure of weight l(ν).

Now, by induction, we can assume that also Rpn−1∗Ln−1 = H•(Ln−1) is pure of

weight l(ν), the case n = 0 being once again essentially the Lemma 4.5.4. Hence,

by Lemma C.2.5, it follows that Rpn∗Ln is pure and that all connecting morphism

in the long exact sequence vanish.

Theorem 4.5.7. The following short sequence

0→ H•(v!
nLn)→ H•(Ln)→ H•(u∗nLn)→ 0

is exact.

Proof. It suffices to show that the natural restriction morphism H•(Ln)→ H•(u∗Ln)

is surjective. Let ωn the element of the Weyl group in Un and be the V the open

neighborhood of ωn in X as in 4.5.1. If we denote by ε : X \ V ↪→ X, j : V ↪→ X

the inclusions, from the distinguished triangle

ε!ε
!Lν → Lν → Rj∗j

∗Lν
+1→

we obtain the long exact sequence

. . .→ H i(ε!Lν)→ H i(X,Lν)→ H i(V,Lν)→ H i+1(ε!Lν)→ . . .

Now we have already shown that H i(V,Lν) is pure of weight l(ν)+i while H i+1(ε!Lν)
is mixed of weights ≥ l(ν) + i + 1, thus it can not exists a nonzero homomorphism

H i(V,Lν) → H i+1(ε!Lν). This implies that H•(X,Lν) → H•(V,Lν) is surjective.

We have two different ways to restrict to the point {ωB}

H•(V,Lν)

H•(X,Lν) j∗ωLν

H•(Xn, Ln) H•(Un, Ln)

α

γ
δ

β

We have just proved that α is surjective and by Lemma 4.5.2 β is an isomorphism.

We can also apply Lemma 4.5.2 to the open Un ⊆ Xn in order to obtain that also δ

is an isomorphism. This yields the surjectivity of γ, hence the theorem.

Now we choose another µ ∈ W and, for any n, we set Mn = i!nDXLµ. We notice

that j!
ωMn = Dpt(j

∗
ωLµ), hence it is pure of weight −l(µ) Furthermore, dualizing the

statement of Theorems 4.5.6 and 4.5.7 we could see that also the following sequences

are exact

0→ H•c (u∗nMn)→ H•(Mn)→ H•(v∗nMn)→ 0

0→ H•(Mn−1)→ H•(Mn)→ H•(u∗nMn)→ 0

By reverse induction, from this we could show that H•(u∗nMn) is pure of weight l(µ).

Proposition 4.5.8. For any n ≥ 0
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i) Hom•(Ln,Mn) is a pure complex of modules, i.e. it is a pure Hodge structure.

ii) There is a natural short exact sequence of complex of modules

0→ Hom•(Ln−1,Mn−1)→ Hom•(Ln,Mn)→ Hom•(u∗nLn, u
∗
nMn)→ 0

Proof. For n = 0 it is immediate since L0 = i∗0Lν = j∗eL and M0 = i!0Lµ = D(j∗eLµ)

are pure of weight l(ν) and l(µ), so Hom•(L0,M0) is pure of weight −l(ν)− l(µ).

So we can assume n > 0. Using the distinguished triangle vn!v
!
nMn → Mn →

un∗u
∗
nMn

+1→, and apply the cohomological functor Hom(Ln, ·) we obtain the long

exact sequence

. . .→ Exti(Ln, vn!Mn−1)→ Exti(Ln,Mn)→ Exti(Ln, un∗u
∗
nMn)→ . . . (4.2)

Now we can rewrite the term Hom•(Ln, un∗u
∗
nMn) as Hom•(u∗nLn, u

∗
nMn), by ad-

junction. We can apply Lemma 4.5.2 to the open neighborhood Un ⊆ Xn of ω = ωn.

Hom•(u∗nLn, u
∗
nMn) ∼= H•(u∗nRHom•(Ln,Mn)) ∼= j∗ωRHom•(Ln,Mn) ∼=

∼= Hom(j∗ωLn, j
∗
ωMn) ∼= Hom(H•(u∗nLn), H•(u∗nMn))

hence, it is pure of weight −l(ν)− l(µ).

We can also consider the distinguished triangle un!u
!
nLn → Ln → vn∗Ln−1

+1→
and applying the (contravariant) cohomological functor Hom(·, vn!Mn−1). In the

resulting exact sequence appears the term

Hom•(un!u
!
nLn, vn!Mn−1) = Hom•(u!

nLn, u
!
nvn!Mn−1) = 0

because u!
nvn! = u∗nvn! is the 0 functor. Thus it follows that

Hom•(Ln, vn!Mn−1) ∼= Hom•(vn∗Ln−1, vn!Mn−1)

and since vn is a closed embedding

Hom•(vn∗Ln−1, vn!Mn−1) = Hom•(v∗nvn∗Ln−1,Mn−1) = Hom•(Ln−1,Mn−1)

By induction, we can assume that this is pure of weight −l(ν)− l(µ). Immediately

follows, looking at (4.2), that also Hom•(Ln,Mn) is pure. In addition, we have also

seen that we can rewrite (4.2) as

. . .→ Exti−1(u∗nLn, u
∗
nMn)→ Exti(Ln−1,Mn−1)→ Exti(Ln,Mn)→

→ Exti(u∗nLn, u
∗
nMn)→ Exti+1(Ln−1,Mn−1)→ . . .

All terms appearing here are pure, so checking the weights we see that the connecting

maps must vanish and we obtain the exact sequence of ii).
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Here we can use the results and notations of section 1.5, so let’s Yω = ω0Xωω0 .

Let ωB = ωnB be the fixed point in Xn \Xn−1 = Un. The fundamental class [Yω]

of the subvariety Yω defines an element in the homology H•(X,C) ∼= H•(X,C)∨

and, through Poincaré Duality, this corresponds to an element cn ∈ H•c (X,C) =

H•(X,C) = C. So we have that

cn([Xn]) = 〈[Yω], [Xω0 ] + . . .+ [Xωn ]〉 = 〈[Yω], [Xω]〉 = 1

(〈·, ·〉 is the intersection pairing on H•(X)) and moreover cn annihilates any cycle

supported in Xn−1. From this we can deduce what is the the action of cn on H•(Ln).

We consider the following commutative diagram

H•(Ln) H•(u∗nLn) 0

0 H•(Ln−1) H•(Ln) H•c (u∗nLn) 0

cncn

in which the rows are exact. Now cn is the fundamental class of Un and multiplying

by cn gives Poincaré Duality H•(Un) → H•c (Un). This works in the same way for

u∗nLn, since u∗nLn is a complex of constant sheaves, hence

u∗nLn =
⊕
i

Hi(u∗nLn)[−i] ∼=
⊕
i

Cki
Un

[−i]

for some ki ∈ N. Now it is clear that multiplication by cn gives an isomorphism on

each summand.

In a dual way, we get a commutative diagram for Mn

0 H•(Mn−1) H•(Mn) H•(u∗nMn) 0

H•(Mn) H•c (u∗nMn) 0

cncn

and, again, the rows are exact and the right-hand vertical arrow is an isomorphism.

These diagrams provide the following identifications:

• Coker(cn : H•(Ln)→ H•(Ln)) ∼= H•(Ln)/H•c (u∗nLn) ∼= H•(Ln−1)

• H•(Ln)/Ker(cn : H•(Ln)→ H•(Ln)) ∼= H•(u∗nLn)

• Ker(cn : H•(Mn)→ H•(Mn)) ∼= H•(Mn−1)

• H•(Mn)/Ker(cn : H•(Mn)→ H•(Mn)) ∼= H•(u∗nMn)
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4.5.3 Conclusion

Now we have all the tools to prove at last the main theorem of this chapter

Theorem 4.5.9 (Erweiterungssatz). The canonical morphism

Hom•D(Xn)(Ln,Mn)→ Hom•H•(X)(H
•(Ln), H•(Mn))

is an isomorphism for every n.

Proof. This is trivial for n = 0. So we can assume n > 0.

Let φ ∈ Hom•H•(X)(H
•(Ln), H•(Mn)). Since φ commutes with cn ∈ H•(X), it

must send Ker(cn : H•(Ln)→ H•(Ln)) into Ker(cn : H•(Mn)→ H•(Mn)). Thus, it

induces a morphism

H•(Ln)

Ker(cn : H•(Ln)→ H•(Ln))
→ H•(Mn)

Ker(cn : H•(Mn)→ H•(Mn))

In this way we get a map

Hom•H•(X)(H
•(Ln), H•(Mn))

π−→ Hom•H•(X)(H
•(u∗nLn), H•(u∗nMn))

Furthermore the projection H•(Ln) � H•(Ln−1) together with the dual injection

H•(Mn−1) ↪→ H•(Mn) give rise to an injective map

Hom•H•(X)(H
•(Ln−1), H•(Mn−1)) ↪→ Hom•H•(X)(H

•(Ln), H•(Mn))

We can fit these maps in the following commutative diagram

0 0

Hom•D(Xn−1)(Ln−1,Mn−1) Hom•H•(X)(H
•(Ln−1), H•(Mn−1))

Hom•D(Xn)(Ln,Mn) Hom•H•(X)(H
•(Ln), H•(Mn))

Hom•D(Un)(u
∗
nLn, u

∗
nMn) Hom•H•(X)(H

•(u∗nLn), H•(u∗nMn))

0

π

ψn

ψn−1

ψ̃n

We already know that the left column is exact and by induction we can assume that

ψn−1 is an isomorphism.

ψ̃n is also an isomorphism: repeatedly using Lemma 4.5.2 we get

Hom•D(Un)(u
∗
nLn, u

∗
nMn) ∼= H0(u∗nHom(Ln,Mn)) ∼= j∗ωHom(Ln,Mn) ∼=

∼= Hom(j∗ωLn, j
∗
ωMn) ∼= Hom(H•(u∗nLn), H•(u∗nMn))

Notice that to say that a homomorphism is of H•(X)-modules for objects on Un
is exactly as to say that it is C-linear, since the action factorizes through H•(X)→
H•(Un) ∼= C.
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The thesis will now follow by applying the Snake Lemma. So it remains just

to show that the right-hand column is exact on the middle term. So let us pick

φ ∈ Hom•(H•(Ln), H•(Mn)) such that π(φ) = 0, i.e. such that the composite map

H•(Ln)
φ→ H•(Mn)→ H•(u∗nMn) = H•(Mn)/H•(Mn−1)

is 0. Therefore the image of φ is contained in H•(Mn−1) = Ker(cn : H•(Mn) →
H•(Mn)). But φ commutes with cn, so φ is 0 on Im(cn : H•(Ln) → H•(Ln)) =

H•c (u∗nLn). This finally means that φ comes from a morphism in Hom•(Ln−1,Mn−1).
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Appendix A

Functors on Derived Category of

Sheaves

Let X be a complex algebraic variety of dimension d. X is naturally endowed with

two different topologies, the Zariski topology and the complex topology. We will

usually consider it a topological space using the latter, unless otherwise specified.

Let Sh(CX) the category of sheaves of CX-modules on X. We denote it by

D\(CX) or D\(X) its derived category (here \ stands for b,+,− or ∅ meaning, re-

spectively, the bounded, bounded-below, bounded-above or unbounded derived cat-

egory). A fairly complete introduction to derived category of sheaves could be found

in the first two chapter of [KS94].

A.1 The Direct and Inverse Image Functors

Let f : X → Y a morphism of complex algebraic varieties. This induces a pullback

functor f ∗ : Sh(CY )→ Sh(CX). This is an exact functor, hence it induces a functor,

also denoted by f ∗, f ∗ : D\(X)→ D\(X).

The direct image functor f∗ : Sh(CX)→ Sh(CX) is left exact. Thus, it admits a

right derived functors Rf∗ : D+(X) → D+(X). If there is no risk of confusion, we

will usually write f∗ in place of Rf∗.

Any bounded-below complex of sheaves F • admits a injective resolution 0 →
F • → J•: J• is a complex of injective sheaves and the induced map between the co-

homology sheaves Hi(F •)→ Hi(J•) is an isomorphism for any i (when this happens

for a general map of complexes, the map is said to be a quasi-isomorphism). Further-

more, J• is unique up to homotopy. To compute Rf∗(F
•), where F • is a bounded-

below complex of sheaves on X, one chooses an injective resolution 0 → F • → J•,

and sets Rf∗(F
•) := f∗(J

•). This construction is possible more generally for any

left-exact functor.

Furthermore, each sheaf F on X admits an injective resolution 0→ F → J• such

that Jm = 0 for any m > n. This means that every bounded complex of sheaves

has an injective resolution which is still bounded. Thus, we can also consider the

functor Rf∗ : Db(X)→ Db(Y ).
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For example if F is a single sheaf on X (which we can think of as a complex of

sheaves concentrated in degree 0) and p : X → {pt} then Rp∗(F ) = RΓ(F ) and we

have an isomorphism RΓ(F ) ∼= ⊕iH i(F )[−i], which we use to identify RΓ(F ) with

H•(F ). One can abbreviate Rif∗ for H i ◦Rf∗.
The functors (f∗, f

∗) are a pair of adjoint functors: for any F ∈ Sh(CX) and

G ∈ Sh(CX)

HomSh(CX)(G, f∗F ) ∼= HomSh(CX)(f
∗G,F )

.

There is also a derived version of this fact:

Proposition A.1.1. Let F ∈ D(X) and G ∈ D+(Y ). Then,

RHomCY (G,Rf∗F ) = RHomCX (f ∗F,G)

Here Hom•(·, ·) is the bifunctor on complex of sheaves defined as

Homn(X•, Y •) =
∏
k

HomCX -Mod(Xk, Y n+k)

(dnf)k = dn+k
Y ◦ fk + (−1)n+1fk+1 ◦ dkX ∈ HomCX -Mod(Xk, Y n+k+1)

and RHom : D−(X)op × D+(X) → D+(C-Mod) is the derived functor of Hom.

RHom(X•, Y •) can be computed using an injective resolution 0→ Y • → J•

RHomn(X•, Y •) = Homn(X•, J•) =
∏
k

HomCX -Mod(Xk, Jn+k)

Proof. If F is an injective sheaf, f∗F is also injective. Hence RHomCY (G,Rf∗(·)) is

the derived functor of HomCY (G, f∗(·)). On the other hand RHomCX (f ∗G, ·) is the

derived functor HomCX (f ∗G, ·) and we can conclude from the underived case.

There is also a local statement of the adjointness of f∗ and f ∗ for F ∈ Sh(CX)

and G ∈ Sh(CY ),

HomSh(CY )(G, f∗F ) ∼= HomSh(CX)(f
∗G,F ).

With a similar argument we can get also a derived version of this:

RHomCY (G,Rf∗F ) = Rf∗RHomCX (f ∗F,G)

One can notice that H0(Hom•(F •, G•)) is exactly the group of morphisms of

complex of sheaves F • → G• up to algebraic homotopy, in other words is the group

of morphism HomK(X)(F
•, G•) in the homotopy category.

Proposition A.1.2. Let F,G ∈ D+(X). Then,

H0(RHom•(F •, G•)) = HomD+(X)(F
•, G•)

In particular Rf∗ : D+(X)→ D+(Y ) and f ∗ : D+(Y )→ D+(x) are adjoint functors.
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Proof. Let 0 → G• → J• an injective resolution. We have H0(RHom•(F •, G•)) =

H0(Hom•(F •, J•)) = Hom•K+(X)(F
•, J•). Since J is injective, the canonical map

Hom•K+(X)(F
•, J•) → Hom•D+(X)(F

•, J•) ∼= Hom•D+(X)(F
•, G•) is an isomorphism

(cfr. [KS06, 13.4.1]).

In general we have Hn(RHom•(F •, G•)) ∼= HomD+(X)(F
•, G•[n]). This group is

often denoted as Extn(F •, G•).

A.2 The Direct Image with Compact Support

Although the results stated in this and the following sections hold under much more

general hypotheses, we will state them only for complex algebraic varieties and

algebraic maps between them.

Definition A.2.1. Let f : X → Y be a morphism of complex algebraic varieties.

The direct image functor with compact support f! : Sh(CX)→ Sh(CY ) is the functor

which to a sheaf F ∈ Sh(CX) associates the sheaf f!F ∈ Sh(CY ) defined as

f!F (V ) =
{
s ∈ F (f−1(V )) | f |supp(s) : supp(s)→ V is proper

}
for any open V ⊆ Y

Example A.2.2. If f : X → Y is a proper morphism, then clearly f∗ = f!

f! is a left-exact functor, so we can defined its right-derived functor

Rf! : D+(X)→ D+(Y )

Example A.2.3. If p : X → {pt}, the functor p! is equivalent to the functor

of global sections with global support Γc. Deriving this functor we recover the

cohomology with compact support

Rqp!F = Hq
c (X,F )

Theorem A.2.4 (Proper Base Change). Let f : X → Y a morphism of complex

algebraic varieties. Then

i) For any y ∈ Y we have (f!F )y ∼= Γc(f
−1(y), F |f−1(y)) and, ∀q ∈ N, (Rqf!F )y ∼=

Hn
c (f−1(y), F |f−1(y)),

ii) If i : Z ↪→ X is the inclusion of a locally closed subvariety, then the functor i!
is exact and (i!F )x = 0 for any x 6∈ Z.

iii) If the diagram

X ′ X

Y ′ Y

g

f ′ f

g′

is cartesian, then (g′)∗ ◦ f!
∼= (f ′)! ◦ g∗

Proof. See [KS94, 2.5.3, 2.5.4, 2.5.11]
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A.3 The Adjunction Triangles

From the adjointness of the pair (Rf∗, f
∗) we get a canonical morphism F →

Rf∗f
∗F , called the adjunction morphism. This is the image of Id ∈ Hom(f ∗F, f ∗F )

via the adjunction isomorphism.

Let now i : Z ↪→ X be the inclusion of a closed subvariety. We set U = X \ Z
and we denote by j : U ↪→ X the open embedding.

For a closed subvariety Z ⊆ X we can define ΓZ(X,F ) = Ker(F (X) → F (X \
Z)). More generally, for a locally closed subvariety Z ⊆ X, we can define ΓZ(X,F )

as ΓZ(U, F ), where U ⊆ X is any open subset such that Z is closed in U . This does

not depend on the choice of U .

In this way we can define the sheaf of sections of F supported on Z.

ΓZ(F )(U) = ΓZ∩U(U, F )

Proposition A.3.1. Let i : Z ↪→ X be the inclusion of a closed subvariety. Then

the functor i∗ ◦ ΓZ(·) is right-adjoint to the functor i!

Hom(F, i∗ ◦ ΓZ(G)) ∼= Hom(i!F,G)

i∗ ◦ΓZ(·) is a left-exact functor. We denote its right-derived functor R(i∗ ◦ΓZ(·))
by i!.

For any sheaf F on X, the sequence

0→ ΓZ(F )→ F → j∗j
∗F

is exact by definition. Moreover ΓZ(F ) ∼= i∗i
∗ΓZ(F ) for any sheaf F (this can be

easily checked on the stalk). So we can rewrite it by

0→ i!i
∗ΓZ(F )→ F → j∗j

∗F

Furthermore, if F is injective we can add a 0 on the right because injective sheaves

are flabby, so F (V )→ F (V ∩ U) is surjective for any open V .

”Deriving” this sequence does not change anything for injective complexes J•:

we have the following exact sequence of complex of sheaves:

0→ i!i
!J• → J• → j∗j

∗J• → 0

We can apply the general fact that any exact sequence gives a distinguished

triangle. Hence have the following distinguished triangle in D+(X) = D+(I) (I is

the subcategory of injective sheaves)

→ i!i
!F • → F • → Rj∗j

∗F •
+1→

For a sheaf F we can also consider the sequence

0→ j!j
∗F → F → i∗i

∗F → 0
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This is an exact sequence: for any point x ∈ X we have

(j!j
∗F )x =

{
0 if x ∈ Z
Fx if x 6∈ Z

(i∗i
∗F )x =

{
Fx if x ∈ Z
0 if x 6∈ Z

This sequence gives the distinguished triangle

→ j!j
∗F • → F • → i∗i

∗F •
+1→

A.4 Poincaré-Verdier duality

Let f : X → Y a morphism of complex algebraic varieties. One can define a functor

f ! : D+(Y )→ D+(X) [KS94, §3] that is the right-adjoint of Rf!.

Theorem A.4.1 (Verdier Duality). There exists an additive functor of triangulated

categories f ! : D+(Y )→ D+(X), called exceptional inverse image such that

RHom•(Rf!F
•, G•) ∼= RHom•(F •, f !G•)

for any F ∈ D+(X), G ∈ D+(Y ).

The local version

RHom•(Rf!F
•, G•) ∼= Rf∗RHom•(F •, f !G•)

holds if we assume F ∈ D−(X).

The construction of f ! is quite demanding and technical in general. However, we

can give explicit description in some special cases.

Proposition A.4.2. Let j : Z → X a locally closed immersion, j! coincides with

the functor defined in A.3, that is

j!(F •) ∼= j∗RΓZ(F •)

In particular for an open embedding j of an open U ⊆ X, we get j! = j∗. This

follows from ΓU = j∗j
∗ (so RΓU = Rj∗j

∗) and Id = j∗j∗ (so Id = j∗Rj∗).

The exceptional inverse image well-behaves with respect to composition: (f ◦
g)! = g! ◦ f !. Besides, since f ! ◦ Rg∗ is the right-adjoint of g∗ ◦ Rf! and Rg∗ ◦ f ! is

the right-adjoint of Rf! ◦ g∗, for a cartesian diagram as in A.2.4 we have

f ! ◦Rg′∗ ∼= Rg∗ ◦ (f ′)!

Another useful formula [KS94, 3.1.13] is the following:

f !RHom(F •, G•) ∼= RHom(f ∗F •, f !G•) (A.1)

for any F • ∈ Db(X) and G• ∈ D+(X).
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Definition A.4.3. Let pX : X → {pt}. Then the complex p!
X(C) ∈ Db(X) is called

the dualizing complex and it is denoted by ωX . For a general morphism f : X → Y ,

we define ωX/Y = f !(CY ) the relative dualizing complex of f .

Example A.4.4. If X is a topological manifold of real dimension d, then Hm(ωX)

is 0 for m 6= −d while H−d(ωX) is a local system of rank one. If X is a complex

d-dimensional manifold, then it is orientable and ωX = CX [2d].

A topological submersion is a map f : X → Y that locally on a open U ⊆ Y is

topologically equivalent to the projection p1 : U × Rd → U

Theorem A.4.5. Let f : X → Y be a topological submersion of complex algebraic

varieties with fiber of complex dimension d. Then

i) Hm(ωX/Y ) = 0 for any m 6= −2d and H−2d(ωX/Y ) = CX , so ωX/Y = CX [2d].

ii) For any F • ∈ D+(X) there exists a canonical isomorphism f ∗(F •)[2d] ∼= f !(F •).

We can recover the Poincaré Duality for complex manifolds as a special case of

the Verdier Duality

Theorem A.4.6 (Poincaré Duality). Let X a complex manifold of dimension d.

Then there is a natural isomorphism

Hm(X,CX) ∼= H2d−m
c (X,CX)∨

Proof. For a complex manifold ωX [−2d] ∼= CX . It follows that

Hm(X,CX) ∼= Hm(X,ωX [−2d]) ∼= H0(X,ωX [m− 2d]) ∼=

∼= H0(RΓ(X,ωX [m− 2d]) ∼= H0(RHom•(CX , ωX [m− 2d]) ∼=

HomDb(X)(CX , ωX [m− 2d]) ∼= HomDb(X)(CX , p
!
XCpt[m− 2d])

and, using the adjunction formula for p!
X ,

HomDb(X)(CX , p
!
XCpt[m− 2d]) ∼= HomDb(pt)(pX!CX [2d−m],Cpt)

HomDb(pt)(RΓc(X,CX)[2d−m],Cpt) ∼= HomDb(pt)(H
•+2d−m
c (X,CX),Cpt)

As an immediate consequence of the Universal Coefficient Theorem we get

HomDb(pt)(H
•+2d−m
c (X,CX),Cpt) ∼= H0(Hom•(H•+2d−m

c (X,CX),Cpt)) ∼=

H2d−m(Hom•(H•c (X,CX),Cpt)) ∼= Hom(H2d−m
c (X,CX ,Cpt) ∼= H2d−m

c (X,CX)∨

Definition A.4.7. For a complex F • ∈ Db(X) we define the Verdier dual DXF
• ∈

Db(X) to be the complex of sheaves RHom•(F •, ωX).
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The functor D is a (contravariant) functor of triangulated categories: if A →
B → C

+1→ is a distinguished triangle in Db(X), then also DXC → DXB → DXA
+1→

is distinguished. Obviously, DX(F •[n]) = DX(F •)[−n]

Proposition A.4.8. Let f : X → Y a morphism of complex algebraic varieties.

Then

i) f !(DY F
•) ∼= DX(f ∗F •) for any F • ∈ Db(Y )

ii) Rf∗(DXF
•) ∼= DY (Rf!F

•) for any F • ∈ Db(X)

Proof. i) From the definition we have f !ωY = ωX . Using A.1 we get

f !(DY F
•) = f !(RHom•(F •, ωY ) ∼= RHom•(f ∗F •, ωX) ∼= DX(f ∗F •)

ii)Using the local form of Poincaré Verdier Duality we get

Rf∗(DXF
•) ∼= Rf∗(RHom•(F •, f !ωY )) ∼= RHom•(Rf!F

•, ωY ) ∼= DY (Rf!F
•)

If X is a complex manifold of dimension d, then ωX ∼= CX [2d], so DXF
• is just

RHom(F •,CX)[2d]. In particular, if F is a local system, then DXF
• = F∨[2d], a

shift of the dual local system F∨.

In the case in which Y = {pt} and G• = Cpt, using the Poincaré-Verdier Duality

we get a natural isomorphism

RΓ(X,DXF
•) ∼= DptRΓc(X,F

•) ∼= RΓc(X,F
•)∨

or, equivalently,

Hm(X,DXF
•) ∼= H−mc (X,F •)∨
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Appendix B

Cohomologically Constructible

Sheaves

B.1 Whitney Stratification

Let X be a complex algebraic variety of dimension d.

Definition B.1.1. A stratification for X is a locally finite partition X =
⊔
α∈AXα

which satisfies the following conditions:

• For any α ∈ A, Xα is a locally closed smooth subvariety

• For any α ∈ A, the boundary ∂Sα = Sα \ Sα is union of some Sβ.

Each Sα is called a stratum of the stratification.

Whitney suggested also an additional condition for stratifications.

Definition B.1.2. A stratification X = tα∈AXα is called a Whitney Stratification

if the following conditions are satisfied:

• Let xi ∈ Sα a sequence of points converging to a point x ∈ Xβ. If the limit of

the tangent spaces TxiXα exists, then we have Tx(Xβ) ⊆ limi Txi(Xα)

• Let xi ∈ Xα and yi ∈ Xβ be two sequences of points converging to the same

point y ∈ Xβ and let li be the line connecting xi and yi. If the limit of

the tangent spaces TxiXα and the limit of the lines li exist, then we have

limi li ⊆ limi Txi(Xα)

These additional conditions correspond, intuitively, to requiring that the normal

structure along the strata is ”locally constant”. The following example illustrates

this property.

Example B.1.3 (Whitney’s umbrella). Let X the variety defined by the equation

y2 = zx2 in the affine space A3
C. The set of singular points of X is the line x = y = 0.

Thus, X1 = {(x, y, z) ∈ X | x = y = 0}, X2 = X \X1 is a stratification of X.
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However, if we consider the sequence of points xi = (1
i
, 0, 0) ∈ X2, for i ∈ N it is

clear that limi TxiX2 does not contain T(0,0,0)X1.

The stratification Y1 = {(0, 0, 0)}, Y2 = X1 \ {(0, 0, 0)}, Y3 = X2 is a refinement

which is a Whitney stratification.

In general any complex quasi-projective variety of pure dimension admits a Whit-

ney stratification. Moreover, any stratification can be refined to satisfy Whitney

conditions. The following is an important consequence of the Whitney condition

Theorem B.1.4. Let X =
⊔
α∈AXα be a Whitney stratified space of dimension d

and let x be a point in the k-dimensional stratum Xβ. Then x admits a fundamental

system of neighborhoods {Wx} homeomorphic, through a stratum-preserving home-

omorphism, to the product of an Euclidean space (with a single stratum) and a real

cone over a stratified space of smaller dimension L

Wx
∼= R2k × CR(L)

Here L is the link of y and it is a stratified space of real dimension 2d− 2k − 1.

B.2 Constructible Sheaves

Definition B.2.1. Let X a complex algebraic variety. A sheaf F is said to be

constructible if there exists an algebraic stratification X =
⊔
α∈AXα such that, for

every α ∈ A, the restriction F |Xα is a local system on Xα. A complex of sheaves F •

is said constructible if all its cohomology sheaves Hi(F •) are constructible sheaves.

Remark B.2.2. By algebraic stratification we mean that the strata Xα are required

to be locally closed subvariety of X, i.e. locally closed in the Zariski topology.

We define Dbc(X) the full subcategory of Db(X) consisting of bounded con-

structible complexes of sheaves with respect to an algebraic stratification.

An important feature of this new category it is that it is preserved by the most

common functors:

Theorem B.2.3 (Di, 4.1.5). Let f : X → Y a morphism of complex algebraic

varieties. Then:

i) If F • ∈ Dbc(Y ), then f ∗F • ∈ Dbc(X) and f !F • ∈ Dbc(X)

ii) If F • ∈ Dbc(X), then Rf∗F
• ∈ Dbc(X) and Rf!F

• ∈ Dbc(X)

iii) If F •, G• ∈ Dbc(X), then F •
L
⊗G• ∈ Dbc(X) and RHom(F •, G•) ∈ Dbc(X)

The main result relating duality and constructibility is the following

Theorem B.2.4 (Di, 4.1.16). i) Let F • ∈ Db(X). Then F • is in Dbc(X) if and

only if its dual DXF
• is in Dbc(X).
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ii) Let F • ∈ Dbc(X). Then there exists a natural isomorphism F • ∼= DX(DXF
•).

In particular the dualizing complex ωX = DXCX is constructible.

The constructible sheaves, which we may think as complex concentrated in degree

zero, obviously form an abelian subcategory of Dbc(X). Besides this, Dbc(X) admits

another abelian subcategory, of the so-called perverse sheaves.

Definition B.2.5. A complex of sheaves F • ∈ Dbc(X) is called a perverse sheaf if

dim(supp(Hj(F •)) ≤ −j and dim(supp(Hj(DXF
•)) ≤ −j

for any j ∈ Z. We denote by Perv(CX) the subcategory of perverse sheaves.

B.3 Perverse Sheaves

We have just defined the subcategory of perverse sheaves. We introduce two more

full subcategories of Dbc(X)

• pD≤0
c (X) is the subcategory of Dbc(X) whose objects are the F • ∈ Dbc(X) such

that dim(suppHj(F •)) ≤ −j for any j ∈ Z.

• pD≥0
c (X) is the subcategory of Dbc(X) whose objects are the F • ∈ Dbc(X) such

that dim(suppHj(DXF
•)) ≤ −j for any j ∈ Z.

Thus

Perv(CX) = pD≤0
c (X) ∩ pD≥0

c (X)

Since DXDXF
• ∼= F • for any F • ∈ Dbc(X), the Verdier duality functor DX exchanges

pD≤0
c (X) with pD≥0

c (X), so it leaves Perv(CX) fixed.

Lemma B.3.1. Let F • ∈ Dbc(X). Then,

suppHj(DXF
•) = {x ∈ X | H−j(i{x}F •) 6= 0}

for any j ∈ Z, where i{x} : {x} ↪→ X is the inclusion.

Proof. For any x ∈ X, i{x}F
• ∼= i{x}DXDXF

• ∼= D{x}i∗{x}(DXF
•), so H−j(i{x}F •) ∼=

Hj(DXF
•)∨x

We can use this Lemma to restate to perversity condition.

Proposition B.3.2. Let F • ∈ Dbc(X) and let X =
⊔
α∈AXα be a stratification

consisting in connected strata such that all the restriction F •|Xα and DXF
•|Xα (or

i!XαF
•) are locally constant for any α ∈ A (this always exists since both F • and

DXF
• are constructible). Then

i) F • ∈ pD≤0
c (X) if and only if Hj(F •|Xα) = Hj(i∗XαF

•) = 0 for any α ∈ A and

j > −dimXα;

ii) F • ∈ pD≥0
c (X) if and only if Hj(i!XαF

•) = 0 for any α ∈ A and j < −dimXα.
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Proof. i) is trivial since, using the fact that F • is locally constant on Xα, we have

that for x ∈ Xα Hj(F •)x 6= 0 if and only if Hj(F •|Xα) 6= 0

ii) We have an isomorphism

i!{x}F
• ∼= i!{x}i

!
XαF

• ∼= D{x}i∗{x}DXαi
!
XαF

•

Since Hj(i!XαF
•) is a local system on Xα, D{x}i∗{x}DXαi

!
Xα
F • ∼= i∗{x}i

!
Xα
F •[−2dXα ]

Furthermore Hj(i!XαF
•) is locally constant and we have that H−j(i!{x}F •) is 0 every-

where on Xα or 6= 0 everywhere on Xα, that is the intersection Xα∩ suppHj(DXF
•)

is ∅ or Xα. If F • ∈ pD≥0
c (X), this intersection must be ∅ if dimXα > −j and this

happens if and only if Hj(i!XαF
•) = 0 for any j < −dimXα.

In particular, if X is a complex manifold and F • ∈ Dbc(X) is a complex such

that all the cohomology sheaves are locally constant on X, then

• F • ∈ pD≤0
c (X) if and only if Hj(F •) = 0 for any j > −dimX

• F • ∈ pD≥0
c (X) if and only if Hj(F •) = 0 for any j < −dimX

• F • ∈ Perv(CX) if and only if F • ∼= H−dimX(F •)[dimX], i.e. if and only if it is

the shift of a local system.

B.3.1 t-structures

In order to prove that the Perverse Sheaves on a complex algebraic variety form an

abelian variety one can show that the pair (pD≤0
c (X), pD≥0

c (X)) is a t-structure on

Dbc(X).

Definition B.3.3. Let D a triangulated category. Let D≤0 and D≥0 full subcate-

gories and we set D≤n = D≤0[−n], D≥n = D≥0[−n]. We say that (D≤0,D≥0) form

a t-structure if the following conditions are satisfied:

(t1) D≤−1 ⊆ D≤0 and D≥1 ⊆ D≥0

(t2) HomD(X, Y ) for any X ∈ D≤0 and X ∈ D≥1

(t3) For any X ∈ D there exists a distinguished triangle X0 → X → X1
+1→ such

that X0 ∈ D≤0 and X1 ∈ D≥1

Example B.3.4. Let C an abelian category and D(C) its derived category. Then

the pair (D≤0,D≥0), defined by

D≤0 ={F • ∈ D(C) | Hj(F •) = 0 ∀j > 0} D≥0 ={F • ∈ D(C) | Hj(F •) = 0 ∀j < 0}

form a ”standard” t-structure on D. Similarly we can see that Dbc(X) admits a

”standard” t-structure.

Definition B.3.5. Let D a triangulated category and (D≤0,D≥0) a t-structure.

Then we call the full subcategory D≤0 ∩ D≥0 the core of the t-structure.
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In the example above, the core of the standard t-structure on the derived category

of an abelian category C is equivalent to category C itself.

We summarize the main general property of t-structure in the following theorem

Theorem B.3.6 ([HTT08], §8.1.). Let D a triangulated category and (D≤0,D≥0) a

t-structure of D

i) For any n ∈ Z there exists a functor τ≤n : D → D≤n right-adjoint of the

inclusion D≤n ↪→ D, i.e.

HomD≤n(Y, τ≤nX) ∼= HomD(Y,X) (B.1)

for any Y ∈ D≤n and X ∈ D.

ii) For any n ∈ Z there exists a functor τ≥n : D → D≥n left-adjoint of the inclusion

D≥n ↪→ D, i.e.

HomD≥n(τ≥nX, Y ) ∼= HomD(X, Y ) (B.2)

for any Y ∈ D≥n and X ∈ D.

iii) The triangle

τ≤n(X)→ X → τ≥n+1(X)
+1→

in which the morphism are the canonical ones coming from the adjunctions B.1

and B.2, is distinguished. In particular if X0 → X → X1
+1→ is the triangle as

in (t3), then X0
∼= τ≤0X and X1

∼= τ≥1X

iv) the core C = D≤0 ∩ D≥0 is an abelian category

v) Every exact sequence

0→ A→ B → C → 0

in C gives rise to a distinguished triangle

A→ B → C
+1→

in D.

In the Example B.3.4 the functors τ≤n and τ≥n are called truncation functors.

These are defined by

τ≤nX = . . .→ Xn−2 → Xn−1 → Ker(dn)→ 0→ 0→ . . .

τ≥nX = . . .→ 0→ 0→ Coker(dn)→ Xn+1 → Xn+2 → . . .

Definition B.3.7. We can define a functor tH0 : D → C = D≤0 ∩ D≥0 by tH0 =

τ≥0τ≤0(X) ∼= τ≤0τ≥0(X). Furthermore we define tHn(X) = tH0(X[n]).
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Proposition B.3.8. The functor tH0 is a cohomological functor, that is, for any

distinguished triangle

X → Y → Z
+1→

there is a long exact sequence in C

. . .→ tH i(X)→ tH i(Y )→ tH i(Z)→ tH i+1(X)→ . . .

Definition B.3.9. Let D1 and D2 be two triangulated categories endowed with

t-structures (D≤0
i ,D≥0

i ) (i = 1, 2) and let F : D1 → D2 be a functor of triangulated

categories. We say that F is left t-exact is F (D≤0
1 ) ⊆ D≤0

2 , that it is right t-exact is

F (D≥0
1 ) ⊆ D≥0

2 and that is it t-exact if it is both left and right t-exact.

Besides, we define tF = tH ◦F . This is a functor from the core C1 of D1 into the

core C2 of D2.

Proposition B.3.10 ([KS94], 10.1.14.,10.1.18). Let D1,D2 as above and let F :

D1 → D2 a functor of triangulated categories. Then

i) If F is left (resp. right) t-exact, then tH0(F (X)) ∼= tF (tH0(X)) for any X ∈
D≥0

1 (resp. for any X ∈ D≤0
1 );

ii) If F is left (resp. right) t-exact, then tF is a left (resp. right) exact;

iii) If F is t-exact, then F induces a functor F : C2 → C2 which is naturally

isomorphic to tF . Moreover F (tHn(X)) ∼= tHn(F (X)) for any n and X;

iv) If F is left adjoint to G : D2 → D1, then F is right t-exact if and only if G is

left t-exact.

This general machinery can be used in our situation in view of the following

Theorem B.3.11. The pair (pD≤0
c (X), pD≥0

c (X)) defines a t-structure on Dbc(X),

called the perverse t-structure,

In particular we have the perverse truncation functors pτ≤0 : Dbc(X)→ pD≤0
c (X),

pτ≥0 : Dbc(X) → pD≥0
c (X) and pHn : Dbc(X) → Perv(CX), called the nth perverse

cohomology. For any functor of triangulated category F : Dbc(X) → Dbc(Y ) we can

define pF : Perv(CX) → Perv(CY ) by pF = PH0 ◦ F ◦ i, where i : Perv(CX) →
Dbc(X) is the inclusion. For instance, for a morphism of complex algebraic varieties

f : X → Y we can define the functors pRf∗,
pRf! : Perv(CX) → Perv(CY ) and

pf ∗, pf ! : Perv(CY ) → Perv(CY ). To shorten the notation we will usually use pf∗
and pf! in place of pRf∗ and pRf!.

The following proposition, in view of Prop. B.3.10 is important to investigate

the functors considered above for a locally closed embedding.

Proposition B.3.12 ([HTT08], 8.1.41-43). Let Z be locally closed subvariety of X

and let i : Z → X the inclusion. Then the functors i∗ and i! are right t-exact while

i! and Ri∗ are left t-exact, with respect to the perverse t-structures.
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B.4 Minimal Extension Functor

Let X be an irreducible projective variety of dimension dX . The Intersection Coho-

mology Complex is a special example of a perverse sheaf on X. Roughly, Intersection

Cohomology may be thought as an homology theory which “works well’ for singular

spaces, that is a setting in which we can generalize property typical of smooth spaces,

such as the Poincaré Duality. The minimal extension functor is a tool necessary to

define Intersection Cohomology from the sheaf-theoretic viewpoint.

Let U be a Zariski open dense set of X and let F • ∈ Dbc(U). We say that a

stratification X =
⊔
α∈AXα is compatible with F • if there exists a subset B ⊆ A such

that U =
⊔
α∈BXα and both F •|Xα and DUF

•|Xα have locally constant cohomology

sheaves for any α ∈ B. Such a stratification always exists.

Let j : U ↪→ X the inclusion. Let X =
⊔
α∈AXα a stratification compatible with

F • ∈ Dbc(U). Up to a refinement, we can assume that it is a Whitney stratification.

With this assumption we have that both Rj∗F
•|Xα and j!F

•|Xα (j! is exact for a

locally closed embedding, so we can forget the R) have locally constant cohomology

sheaves.

We have a canonical morphism j! → j∗ that gives rise to a morphism between

derived functors j! = Rj! → Rj∗. Now, by composing with the functor pH0, we get

a canonical morphism pj! → pRj∗ in Perv(CX).

Definition B.4.1. For a perverse sheaf F • on U , we say that the image of the

canonical morphism pj!F
• → pj∗F

• is the minimal extension of F • and we denote

it by pj!∗F
•.

Remark B.4.2. Sometimes pj!∗F
• is called intermediate extension since it is an

extension ”between” pj!F
• and pRj∗F

•. We prefer the term minimal since it is a

quotient of pRj!F
• and a subobject of pRj∗F

•, so it is ”smaller” than both of them.

Also, pj!∗ is minimal amongst extension of F • in a sense that will be clearer later.

Lemma B.4.3. For any F • ∈ Perv(CU), we have DX(pj!∗F
•) ∼= pj!∗(DUF

•)

Proof. The functor DX sends distinguished triangles into distinguished triangles.

Since it is t-exact, it is also an exact functor on Perv(CX). Let’s prove this. If

0→ A→ B → C → 0 is exact on Perv(CX), then A→ B → C
+1→ is distinguished

and so is DXC → DXB → DXA
+1→. In the deriving long exact sequence

. . . pH−1(DXA)→ pH0(DXC)→ pH0(DXB)→ pH0(DXA)→ pH1(DXC)→ . . .

is actually a short exact sequence, since all the terms pH i(F •) are 0 for any i 6= 0

if F • ∈ Perv(CX). In this case we have also pH0(F •) ∼= F •, so we obtain that the

sequence 0→ DXC → DXB → DXA→ 0 is exact.

Thus, DX(pj!∗F
•)→ DX(pj!F

•) is injective since pj!F
• → pj!∗F

• is surjective and

DX(pRj∗F
•)→ DX(pj!∗F

•) is injective since pj!∗F
• → pRj∗F

• is injective.

Furthermore, we have pτ≤0DX
∼= pτ≥0DX and pτ≥0DX

∼= pτ≤0DX . In fact, for

any A ∈ Dbc(X), B ∈ pD≤0
c ,

HomDbc(X)(B,A) ∼= HompD≤0
c (X)

(B, pτ≤0A) =⇒
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=⇒ HomDbc(X)(DXA,DXB) ∼= HompD≥0
c (X)

(DX
pτ≤0A,DXB)

since DX is an equivalence of categories. This means that DX
pτ≤0DX is the left-

adjoint of the inclusion D≥0
c (X) ↪→ Dbc(X), so DX

pτ≤0DX
∼= pτ≥0. The other isomor-

phism is analogous. This yields to pH0DX = pτ≤0pτ≥0DX
∼= DX

pτ≥0pτ≤0 ∼= DX
pH0

Hence we have

DX(pRj∗F
•) = DX(pH0(Rj∗F

•)) ∼= pH0DX(Rj∗F
•) ∼= pH0j!DU(F •) ∼= pj!DU(F •)

DX(pj!F
•) = DX(pH0(j!F

•)) ∼= pH0DX(j!F
•) ∼= pH0Rj∗DU(F •) ∼= pRj∗DU(F •)

Therefore, we have a surjective morphism pj!DU(F •) → DX(pj!∗F
•) and an

injective morphism DX(pj!∗F
•) → pj!DU(F •) and this shows that DX(pj!∗F

•) ∼=
pj!∗(DUF

•).

Lemma B.4.4. Let U ′ a Zariski open subset of X containing U and let j1 : U ↪→ U ′

and j2 : U ′ ↪→ X the inclusions. Then we have pj!∗F
• ∼= pj2!∗

pj1!∗F
•

Proof. Since Rj1∗ and Rj2∗ are left t-exact, we have pj∗F
• ∼= pH0(Rj2∗Rj1∗F

•) ∼=
pj2∗

pj1∗F
•. Similarly we have pj!F

• ∼= pj2!
pj1!F

•. The composition morphism

pj!F
• = pj2!

pj1!F
• → pj2!

pj1!∗F
• → pj2!∗

pj1!∗F
•

because pj! is right exact while

pj2!∗
pj1!∗F

• → pj2!∗
pj1∗F

• → pj2∗
pj1∗F

• ∼= pj∗F
•

because pj∗ is left exact. Thus we obtain pj2!∗
pj1!∗F

• ∼= Im(pj!F
• → pj∗F

•) =
pj!∗F

•.

The next theorem will provide a useful characterization of the minimal extension.

We denote by i : Z = X \ U ↪→ X the inclusion.

Theorem B.4.5. The minimal extension G• = pj!∗F
• of F • ∈ Perv(CX) is the

unique perverse sheaf on X satisfying the following conditions:

i) G•|U ∼= F •

ii) i∗G• ∈ pD≤−1
c (Z)

iii) i!G• ∈ pD≥1
c (Z)

Proof. The first step is to show that the minimal extension G• satisfies the above

conditions. Since j! = j∗ it commutes with pH0 (cfr. [KS94, 5.1.9.]. Then i) follows

from

G•|U = pj!∗F
•|U ∼= j∗Im (pj!F

• → pRj∗F
•) ∼= Im (j∗pj!F

• → j∗pRj∗F
•) ∼=

∼= Im
(
pH0(j∗j!F

•)→ pH0(j∗Rj∗F
•) ∼= Im

(
pH0F • → pH0F •

) ∼= F •
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We recall the adjunction triangle

j!j
∗G• → G• → i∗i

∗G•
+1→

which gives rise to the exact sequence

pH0(j!j
∗G•)→ pH0(G•)→ pH0(i∗i

∗G•)→ pH1(j!j
∗G•)

Clearly pH0(G•) ∼= G•. From the first point, pH0(j!j
∗G•) = pj!F

• and pH1(j!j
∗G•) =

pH1(j!F
•) = 0 since j!F

• ∈ pD≤0
c . Thus we obtain the exact sequence

pj!F
• → pj!∗F

• → pH0(i∗i
∗G•)→ 0

and this proves pH0(i∗i
∗G•) = 0 because the canonical morphism pj!F

• → pj!∗F
•

is surjective. But i∗ = i! is t-exact, so pH0(i∗G•) = 0, while i∗ is right t-exact, so

i∗G• ∈ pD≤0
c (Z), hence i∗G• ∈ pD≤−1

c (Z).

Similarly, for the condition iii) we can use the distinguished triangle i∗i
!G• →

G• → Rj∗j
∗G•

+1→ in order to obtain the exact sequence

0→ pH0(i∗i
!G•)→ j!∗F

• → pRj∗F
•

and since the canonical morphism j!∗F
• → pRj∗F

• we have pH0(i∗i
!G•) = 0, hence

pH0(i!G•) = 0. Since i! is left t-exact we have finally i!G• ∈ pD≥1
c (Z).

Viceversa we have to show that if G• ∈ Perv(CX) satisfies the three listed con-

ditions, then G• ∼= pj!∗F
• canonically.

j∗ is left-adjoint to Rj∗ and, since j! = j∗, it is also right-adjoint to j!. Thus

we obtain canonical morphisms j!F
• → G•, G• → Rj∗F

• from the isomorphisms

F • → j∗G• and j∗G• → F •. Applying pH0, we get pj!F
• → G• and G• → pRj∗F

•.

To conclude it suffices to show that the former morphism is surjective, while the

latter is injective. The cokernel of pj!F
• → G• is supported on Z, so there exists an

exact sequence
pj!F

• → G• → i∗E
• → 0

for some E• ∈ Perv(CZ). i∗ is right t-exact and this implies that pi∗ is right exact.
pi∗G• → pi∗i∗E

• is surjective and pi∗i∗E
• = pH0i∗i∗E

• ∼= pH0(E•) = E•. But, the

condition ii) assures that pi∗G• = 0, so E• = 0.

Similarly, the kernel of G• → pRj∗F
• is supported on Z so we have an exact

sequence

0→ i∗E
• → G• → pRj∗F

•

for some E• ∈ Perv(CZ). i! is left t-exact, so we get an injective morphism pi!i∗E
• →

pi!G•. By the condition iii) pi!G• = 0, hence

0 = pi!i∗E
• ∼= pH0i∗RΓZi∗E

• ∼= pH0i∗i∗E
• ∼= E•

.

Corollary B.4.6. If X is a smooth variety of dimension d, U a Zariski open subset

of X, then for every local system L on X we have L[d] ∼= pj!∗(L|U [d])
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Proof. We have to show that the three conditions of Theorem B.4.5 are satisfied. i)

clearly holds. Let Z =
⊔
α∈A Zα a stratification of Z. Each i∗ZαL is a local system on

Zα, so Hj(i∗ZαL[d]) = Hj+d(i∗ZαL) = 0 for any j > −d, and since d > dimZα we can

use Proposition B.3.2 to deduce i∗L[d] ∈ pD≤−1
c (Z). Furthermore, we have i!L[d] =

DZi
∗DX(L[d]). As before, i∗DX(L[d]) ∈ pD≤−1

c (Z), hence i!L[d] ∈ pD≥1
c (X)

Proposition B.4.7. Let F • ∈ Perv(CU). Then pj!∗F
• is the unique perverse sheaf

such that it has neither a non-trivial subobject nor a non-trivial quotient object

supported in Z.

Proof. We want to show that pRj∗F
• has no non-trivial subobject supported in Z

and that pj!F
• has no non-trivial quotient supported in Z. Then the thesis will

follow as an immediate corollary, using the definition of minimal extension.

Let’s assume that there exists a subobject G• ⊆ pRj∗F
• such that supp(G•) ⊆ Z.

Then i!G• = i∗RΓZG
• ∼= i∗G• is perverse on Z, thus pi!G• ∼= i!G•. pi! is left-exact

so pi!G• is a subobject of pi!pRj∗F
•. But pi!pj∗F

• ∼= pH0(i!Rj∗F
•) ∼= 0. Then G• is

0 since G• ∼= i∗i
∗G• ∼= i∗

pi!G•.

Similarly, if pj!F
• → G• → 0 is exact and supp(G•) ⊆ Z, then using the right-

exact functor pi∗, we have pi∗G = 0 and we can conclude that G• = 0 as before.

We prove now the uniqueness statement. Let M a perverse sheaf that satisfies

the hypothesis. From the adjunction triangle for M we get the following exact

sequences

0→ i∗
pH0(i!M)→M → pj∗(j

∗M)→ i∗
pH1(i!M)→ 0

0→ i∗
pH−1(i∗M)→ pj!(j

∗M)→M → i∗
pH0(i∗M)→ 0

Then pH0(i!M) and pH0(i∗M) must be 0. Since we already know that i!M ∈ pD≤0,

we get iM ∈ pD≤−1. Similarly we also get i∗M ∈ pD≥1. Now the thesis follows from

Theorem B.4.5.

The minimal extension functor is not exact. However the following holds

Proposition B.4.8. The minimal extension functor pj!∗ preserves injective and

surjective morphisms.

Proof. Let 0 → F • → G• exact in Perv(CU). Then pj!∗F
• → pj!∗F

• is an isomor-

phism, so the kernel must be supported on Z. Since pj!∗ can not have non trivial

subobject supported in Z, this kernel must be 0. Similarly, if F • → G• → 0 is exact

in Perv(CU), then the cokernel of F • → G• should be supported in Z, hence it is

0.

Proposition B.4.9. The minimal extension functor pj!∗ sends simple objects into

simple objects.

Proof. Let F • be a simple object in Perv(CU) and let’s assume that there exists an

exact sequence 0→ G• → pj!∗F
• → H• → 0 in Perv(CX) such that G• and H• are

both non-trivial. Then we can apply the exact functor j∗ ∼= pj∗ and we obtain the

exact sequence 0 → j∗G• → F • → j∗H• → 0. From the simplicity of F •, j∗G• or

j∗H• is 0, hence G• or H• is supported in Z. Now we can conclude by Proposition

B.4.7
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Now let’s assume that U is a smooth open subvariety of X and L a local system

on U . In view of B.4.6 we can assume that U is maximal, i.e. U is the regular part

Xreg ⊆ X. We can also choose a Whitney stratification X =
⊔
α∈AXα such that U

is the unique open stratum of the stratification. We set Xk =
⊔

dimXα≤kXα and we

obtain the filtration of X = Xd ⊇ Xd−1 ⊇ . . . ⊇ X0 ⊇ ∅. In a dual way, we have the

following chain of inclusions of opens subset

U = Ud
jd
↪→ Ud−1

jd−1

↪→ . . .
j2
↪→ U1

j1
↪→ U0 = X

where Uk = X \Xk−1.

Proposition B.4.10. In this situation we have

pj!∗(L[d]) ∼=
(
τ≤−1Rj1∗

)
◦ . . . ◦

(
τ−≤dRjd∗

)
(L[d])

Proof. Since the minimal extensions of a composition is the composition of minimal

extensions, it suffices to prove it for a single inclusion, i.e. it suffices to prove that,

for any k,
pjk!∗F

• ∼= τ≤−kRjk∗(F
•)

where F is a perverse sheaf such that each restriction to the strata Xα has locally

constant cohomology sheaves. So we need to show that the three conditions of

Theorem B.4.5 are satisfied by G• = τ≤−kRjk∗(F
•).

Uk is union of strata having dimension at least k. This, in view of B.3.2, means

that Hr(F •) = 0 for r > −k. Thus j∗kτ
≤−kRjk∗(F

•) ∼= τ≤−kj∗kRjk∗(F
•) ∼= τ≤−kF • ∼=

F • and the condition i) holds.

Now we set Z = Uk−1 \ Uk =
⊔

dimXα=k−1Xα and i : Z ↪→ Uk−1 the embedding.

i∗G•, has locally constant cohomology sheaves on the (k − 1)-dimensional strata of

Z, and from the definition of G• we have that Hr(i∗G•) = 0 for r > −k. So we can

apply B.3.2 to deduce that i∗G• ∈ pD≤−1
c .

Let’s now proof that condition iii) holds. In Dc(Uk−1) we have the following

distinguished triangle,

G• = τ−kRjk∗F
• → Rjk∗F

• → τ≥−k+1Rjk∗F
• +1→

This triangle comes from a short exact sequence of complexes of sheaves. i! = i∗RΓZ
is exact on injective sheaves, so it give rises to the triangle

i!G• → i!Rjk∗F
• → i!τ≥−k+1Rjk∗F

• +1→

But i!Rjk∗F
• = 0, hence i!G• ∼= i!τ≥−k+1Rjk∗F

•[−1]. In particular this means that

Hr(i!G•) = 0 for r ≤ −k+ 1 and that i!G• has locally constant cohomology sheaves

on each Xα. Thus we can apply Proposition B.3.2 to obtain i!G• ∈ pD≥1
c (Z)
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B.5 Intersection Cohomology

Definition B.5.1. Let X an irreducible complex algebraic variety of dimension d.

We define the Intersection Cohomology Complex IC(X) ∈ Perv(CX) as

IC(X) = pj!∗(CXreg [d])

where Xreg is the regular part of X. We also define

IH i(X) = H i(IC(X)[−d]) = RiΓ(X, IC(X)[−d])

the ith Intersection Cohomology Group of X and IH i
c(X) = Hi

c(IC(X)[−d]) =

RiΓc(X, IC(X)[−d]) the ith Intersection Cohomology Group with compact supports

of X.

More generally, for a local system L on Xreg we define

ICX(L) = pj!∗(L[d])

and call it a Twisted Intersection Cohomology Complex of X.

Theorem B.5.2 (Poincaré Duality for Intersection Cohomology). Let X an irre-

ducible complex algebraic variety of dimension d. Then we have

IH i(X) ∼=
(
IH2d−i

c (X)
)∨

for any 0 ≤ i ≤ 2d,

Proof. First we notice that DX(IC(X)) ∼= IC(X). In fact, this is an immediate

consequence of Lemma B.4.3, since

DX(pj!∗(CXreg))
∼= pj!∗(DXreg(CXreg))

∼= pj!∗(C∨Xreg
) ∼= pj!∗(CXreg)

Let pX : X → {pt}. By the Poincaré-Verdier Duality we get an isomorphism

RHom(RpX!IC(X),C) ∼= RpX∗RHom(IC(X), ωX) =

= RpX∗DX(IC(X)) ∼= RpX∗(IC(X))

This gives an isomorphism

(RΓc(X, IC(X)))∨ ∼= RΓ(X, IC(X))

and by taking the (i− d)th cohomology groups of both sides we get the thesis

Remark B.5.3. For IC(X) we have stricter support condition than a general per-

verse sheaf.

Let U = Xreg and Z = X \ U . As a consequence of Theorem B.4.5, for j 6= −d,

H−j(IC(X)) is supported on Z. Since i∗IC(X) ∈ pD≤−1
c (Z), we have

dim(suppH−j(IC(X)) < j ∀j 6= −d
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We know, from Prop. B.4.9, that if L[d] is a simple object in Perv(CXreg), than

ICX(L) is simple as a perverse sheaf. Conversely, since pj!∗ preserves monomorphism

and epimorphism, we see that ICX(L) is simple only if L[d] is simple. Actually, any

simple perverse sheaf is of this kind.

Proposition B.5.4. Every perverse sheaf has a finite composition series made of

twisted intersection cohomology complexes ICY (L), where Y is an irreducible closed

subvariety of X and L is an irreducible local system on the smooth part of Y .

In particular, the simple object in Perv(CX) are exactly the objects ICY (L).

Proof. Let F ∈Perv(CX). We can assume, by induction on the dimension of the

support of F , that supp(F ) = X. There exists a Zariski open smooth dense set U

such that F has locally constant cohomology sheaves on U , hence F |U ∼= L[d], for a

local system L on U . Let j : U ↪→ X and i : Z = X \ U the embeddings. From the

adjunction triangles we get the following exact sequences:

0→ i∗
pH0(i!F )→ F → pj∗(j

∗F )→ i∗
pH1(i!F )→ 0 (B.3)

0→ i∗
pH−1(i∗F )→ pj!(j

∗F )→ F → i∗
pH0(i∗F )→ 0 (B.4)

If F is simple and supported on X then pH0(i!F ) and pH0(i∗F ) have to be

0. This means that the canonical functor pj!(j
∗F ) → pj∗(j

∗F ) factorize through
pj!(j

∗F ) � F ↪→ pj∗(j
∗F ), so F ∼= pj!∗(j

∗F ) = pj!∗(L[d]).

Now we claim that L[d] is simple, as a perverse sheaf on U , if and only if L is

an irreducible. This will imply the second statement. One direction is obvious. Let

assume that L is irreducible and let 0→ G→ L[d]→ H → 0 be an exact sequence

in Perv(CU). We can find a Zariski open set V ⊆ U such that G|U ∼= M [d] and

HU
∼= N [d], where M and N are local system on V . Let’s denote by j : V ↪→ U the

inclusion. Since M ⊆ L|V , j∗M is still a local system of the same rank of M . From

the irreducibility of L we get that j∗M is 0 or L. This is equivalent to say that M

is 0 or N is 0. But if M is 0 then G is supported on U \ V , but L[d] ∼= j!∗(L|V [d])

has no subobject supported on Z. Similarly if N = 0. This proves our claim.

Let’s now conclude the proof of the proposition. From B.3 and the induction

hypothesis, F has finite length (i.e. has a finite composition series) if and only if
pj∗(L[d]) does. L[d] has of finite length, since clearly each local system has finite

length. The functor pj∗ is left exact, so we can assume that L is simple. Otherwise

we have an exact sequence 0 → L1 → L → L2 → 0, thence pj∗L1 → pj∗L → pj∗L2

and we could conclude by induction on the lenght. Finally, if L is simple, from the

adjunction triangle for Rj∗L[d] we obtain the exact sequence

0→ j!∗L[d]→ pj∗L[d]→ i∗
pH0(i∗Rj∗L[d])→ 0

from which pj∗L[d] has finite length.

Corollary B.5.5. The category of perverse sheaves is artinian and noetherian.
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B.5.1 Examples

Clearly, the Intersection Cohomology coincides with the Singular Cohomology for

smooth variety. In the simples non-trivial case we have the following

Proposition B.5.6. Let X be a projective variety with isolated singular points.

Then

IH i(X) =


H i(Xreg) if 0 ≤ i < d

Im(Hd(X)→ Hd(Xreg)) if i = d

H i(Xreg) if d < i ≤ 2d

However, we need a Lemma to be able to prove this

Lemma B.5.7. There exist canonical morphisms

CX → IC(X)[−d]→ ωX [−2d]

Proof. We use the description given by Prop. B.4.10. We notice that, since Rj∗ is

left exact, for a complex F • ∈ D≥0
c we have τ≤0 ◦ Rj∗F • ∼= j∗ ◦ τ≤0F •, where j∗

means that we are just applying the functor j∗ to the single sheaf τ≤0F • ∼= H0(F •)

and regarding the result as a complex concentrated in degree 0. In this way we

obtain

τ−≤dpj!∗(L[d]) ∼= (j1∗ ◦ j2∗ ◦ . . . ◦ jd∗)(L)[d] ∼= (j∗L)[d] (B.5)

This means that τ−≤dIC(X) ∼= (j∗CXreg)[d] ∼= CX [d] and clearly we get a canonical

morphism CX → IC(X)[−d]. Taking the Verdier dual we obtain the the morphism

IC(X)[−d]→ ωX [−2d].

Proof of the Proposition. Let U = Xreg and j : U ↪→ X. We call p1, . . . , pk the

singular points of X. Then X = Ut{p1}t. . .t{pk} is a Whitney stratification of X.

From Prop. B.4.10 we obtain IC(X)[d] ∼= τ≤d−1Rj∗CU . This gives a distinguished

triangle

IC(X)[−d]→ Rj∗CU → τ≥d(Rj∗CU)
+1→

whence IH i(X) ∼= H i(U) for any 0 ≤ i < d while for i = d we have that the

canonical morphism IHd(X)→ H(U) is injective. Furthermore, we can embed the

canonical morphism CX → IC(X)[−d] into the distinguished triangle

CX → IC(X)[−d]→ F •
+1→

where F • ∼= τ≥1τ≤d−1(Rj∗CU) ∼= τ≤d−1τ≥1(Rj∗CU). The triangle

CX = τ≤0(Rj∗CU)→ (Rj∗CU)→ τ≥1(Rj∗CU)
+1→

is isomorphic to the adjunction triangle

CX → Rj∗(j
∗CX)→ i!i

!CX [1]
+1→

hence F • ∼= τ≤d−1(i!i
!CX [1]) is supported on the singular points ofX andH i(F •) = 0

for any i ≥ d. This implies that H i(X) ∼= IH i(X) for any i < d and that the map

Hd(X)→ IHd(X) is surjective. This completes the proof.
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Example B.5.8. We will now give a counterexample for the exactness of the min-

imal extension functor. Let X = C and U = C∗. We can consider on U the local

system E of rank 2 defined by the monodromy matrix around the origin(
1 0

1 1

)
So we have the short exact sequence of local systems on U

0→ CU → E → CU → 0

Clearly we have j!∗CU [1] = IC(C) = CX [1]. However

j!∗E[1] = ICX(E) = τ≤−1Rj∗E[1] = (j∗E)[1]

and the stalk in 0 is given by monodromy invariant section in a neighborhood, so it

has dimension 1. This shows that the sequence 0→ IC(X)→ ICX(E)→ IC(X)→
0 is not exact in 0.
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Appendix C

A Brief Introduction to Mixed

Hodge Module

C.1 Pure Hodge Structures

Let V a finite dimensional real vector space and let VC = V ⊗R C be its complexifi-

cation

Definition C.1.1. A real Hodge structure on V is a direct sum decomposition

VC =
⊕
p,q∈Z

V p,q

such that V p,q = V q,p. This decomposition is called the Hodge decomposition. A

morphism of Hodge structures is a real linear map f : V → W such that its com-

plexification fC preserves types, i.e. fC(V p,q) ⊆ W p,q.

The numbers hp,q =dimV p,q are called Hodge numbers of the decomposition.

Let V a Hodge structure. We say that the weight k part V (k) of V is the real

vector space
⊕

p+q=k V
p,q If V = V (k) we say that V has a Hodge structure of weight

k.

Example C.1.2. Let X a Kähler compact manifold. The Hodge Theorem holds for

X [GH94, §0.7], and we have a the classical Hodge decomposition of the cohomology

of X.

Hk(X,CX) = Hk
DR(X)⊗R C =

⊕
p,q

Hp,q(X) with Hp,q = Hq,p

Hence H•(X,CX) has a Hodge structure and the kth cohomology group has a Hodge

structure of weight k. A morphism f : X → Y of Kähler compact manifolds induces

a morphism of Hodge structures f : H•(Y )→ H•(X).

We can give an equivalent and more convenient definition of Hodge structure in

terms of a filtration of real vector spaces.
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Definition C.1.3. A Hodge structure of weight k on V is a decreasing filtration of

VC
VC = F 0(V ) ⊇ F 1(V ) ⊇ F 2(V ) ⊇ . . .

such that F p(V ) ∩ F q(V ) = 0 and F p(V ) ⊕ F q(V ) = 0 when p + q ≥ k + 1. The

filtration is called the Hodge filtration.

f : V → W is a morphism of Hodge structures if and only if f(F p(V )) ⊆ F p(W )

for any p ∈ N.

Hodge filtrations and the Hodge decompositions are linked as follows

F p(V ) =
⊕
r≥p

V r,s V p,q = F p(V ) ∩ F q(V )

So it’s easy to pass from one definition of Hodge structure to the other.

Example C.1.4. Let V and W be real vector space with Hodge structure respec-

tively of weight k and l. We can define a Hodge filtration, hence a Hodge structure,

on V ⊗W and on Hom(V,W ) by

F p(V ⊗W ) =
∑
s

Fm(V )⊗R F
p−m(W )

F pHom(V,W ) = {f : VC → WC | f(F s(V )) ⊆ F n+p(W ) ∀s}

This gives a Hodge structure of weight k + l on V ⊗ W and of weight k − l on

Hom(V,W ).

Definition C.1.5. A Hodge structure V of weight k is said to be polarizable if there

exists a real bilinear form Q : VC × VC → C such that

• Q(u, v) = (−1)kQ(v, u) ∀u, v ∈ VC;

• Q(V p,q, V p′q′) = 0 if (p, q) 6= (q′, p′) (or, equivalently, Q(F p(V ), F k+1−p(V )) =

0 for any p);

• The hermitean form ip−qQ(u, v) is positive definite on V p,q.

Such a form Q is called a polarization.

For example, if X is compact Kähler manifold the Hodge-Riemann bilinear re-

lations (cfr. [GH94, §0.7] give a polarization of each cohomology group Hk(X).

C.2 Mixed Hodge Structures

Definition C.2.1. Let V a finite dimensional real vector space. A Mixed Hodge

Structure on V is consists of two filtrations

• An increasing filtration of V , called the Weight filtration W•
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• A decreasing filtration of VC, called the Hodge filtration F •

such that the F • induces on GrWk (V ) = Wk(V )/Wk−1(V ) a pure Hodge structure of

weight k.

If each GrWk (V ) is a polarizable Hodge structure, we say that V has a polarizable

mixed Hodge structure.

A morphism of mixed Hodge structure is a morphism f : V → W compatible

with the two filtrations. For every k ∈ Z it induces a morphism of pure weight

structures GrWk (f) : GrWk (V )→ GrWk (W ).

Example C.2.2. If V and W are mixed Hodge structures, then V ⊗ W and

Hom(V,W ) have natural mixed Hodge structures. Both the filtrations on these

spaces are defined as in the pure case.

We have the following fundamental lemmas about mixed structures.

Lemma C.2.3. Let f : V → W a morphism of mixed Hodge modules. If f is

an isomorphism as a vector space, than f is also an isomorphism as mixed Hodge

structures.

Lemma C.2.4. Let V ↪→ W be an injective morphism of mixed Hodge structures.

Then there exists an unique mixed Hodge structure on the quotient vector space W/V

such that the quotient map W → W/V is a morphism of mixed Hodge structures.

Furthermore, the category of mixed Hodge structures is abelian.

Lemma C.2.5. Let V → W → Z an exact sequence of mixed Hodge structures.

Then the sequences

GrWk (V )→ GrWk (W )→ GrWk (Z)

GrFk (V )→ GrFk (W )→ GrFk (Z)

GrFl GrWk (V )→ GrFl GrWk (W )→ GrFl GrWk (Z)

are also exact, for any k, l

Example C.2.6 (PS, 5.33). Let X a complex algebraic variety, not necessarily

neither smooth nor compact. Then we can construct a mixed Hodge structure

on the cohomology of X. This construction is functorial: if f : X → Y is a

morphism of complex algebraic varieties, then the induced morphism on cohomology

is a morphism of mixed Hodge structures.

The numbers

hp,q = dimCGrpFGrWp+q(VC)

are the Hodge numbers of the mixed Hodge structures. We have some restrictions

on the hodge numbers of a complex algebraic variety.

Proposition C.2.7 (PS, 5.39). Let X a complex algebraic variety of dimension n.

We assume that the Hodge number hp,q of Hk(X) is nonzero. Then

i) 0 ≤ p, q ≤ k
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ii) If k > n, then k − n ≤ p, q ≤ n

iii) If X is smooth, then p+ q ≥ k

iv) If X is compact, then p+ q ≤ k

Definition C.2.8. Let (V,W, F ) be a mixed Hodge structure. We say that the

weight m occurs in the structure if GrWm 6= 0. We say that it is pure of weight m if

m is the only occurring weight.

In the language of weights, the last proposition means that

• all the weights are ≤ 2k

• If k > n, then all the weights are ≥ 2k − 2n

• If X is smooth, then all the weights are ≤ k

• If X is compact, then all the weights are ≥ k

C.3 Mixed Hodge Modules: an Axiomatic Ap-

proach

In his paper [Sai90] Saito introduced mixed Hodge modules. The definition of mixed

Hodge modules is very hard and difficult to use. Discussing it is beyond the purposes

of this thesis. However some results in Chapter 3 and 4 lie on the theory of mixed

Hodge modules. So we will follow a pragmatic approach, stating the axioms that

mixed Hodge modules respect and from which we can recover the required properties.

Axiom 1. For any complex algebraic variety X there exists an abelian category

MHM(X), called the category of mixed Hodge modules on X such that

there exists a faithful functor

rat : DbMHM(X) −→ Dbc(X)

Under this functor the subcategory MHM(X) corresponds to Perv(X).

For M ∈MHM(X), rat(M) is the underlying perverse sheaf of M .

We denote byHj(M•), j ∈ Z the cohomology groups of an objectM• ∈ DbMHM(X).

Since MHM(X) is an abelian category the cohomology groups are still in MHM(X).

We notice that this first axiom implies

rat(Hq(M)) = pHq(rat(M)) ∀q ∈ Z

Axiom 2. If X is a single point, then the category of mixed Hodge modules is the

category of polarizable mixed Hodge structures. In this case, for a mixed

Hodge structure M , rat(M) is the underlying vector space.
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Axiom 3. Every object M ∈MHM(X) has a weight filtration W such that

• each morphism of mixed Hodge modules preserve the weight filtra-

tion strictly

• GrWk (M) is semisimple in MHM(X) for any k

• If X is a single points, then the weight filtration is the weight filtra-

tion for mixed Hodge structures

A morphism of filtered mixed Hodge modules f is strict means the induced mor-

phism Coim(f)→Im(f) is an isomorphism of filtered mixed Hodge modules. From

strictness we can deduce that the functors Hj and GrWi commute (cfr. [PS08, A.34],

i.e.

GrWi Hj(M•) = HjGrWi (M•) ∀i, j ∈ Z ∀M• ∈ DbMHM(X)

We say that M ∈ Db(X) has weights ≤ n if GrWi Hj(M•) = 0 for any i > j + n. We

say that it has weights ≥ n if GrWi Hj(M•) = 0 for any i < j + n. We say that M•

is pure of weight n if it has both weights ≥ n and ≤ n.

Axiom 4. There exists a duality functor DX which lifts the Verdier duality from

Dbc(X) to DbMHM(X), i.e. DX ◦ rat = rat ◦ DX .

Axiom 5. For any morphism of complex algebraic varieties f : X → Y there exist

functors

Rf∗, Rf! : DbMHM(X)→ DbMHM(Y )

f ∗, f ! : DbMHM(Y )→ DbMHM(X)

which lift the analogous functors between constructible complexes of shea-

ves. Furthermore they are interchanged under DX , that is

Rf∗ ◦ DX = DX ◦ f! f! ◦ DX = DX ◦ f !

Axiom 6. The functors Rf! and f ∗ decrease the weights, that is if M• has weights

≤ n, the same holds for Rf!M
• and f ∗M• in

The functors Rf∗ and f ! decrease the weights, that is if M• has weights

≤ n, the same holds for Rf∗M
• and f !M•.

Axiom 7. If M• ∈ DbMHM(X) has weights ≥ n, then DXM
• has weights ≤ −n.

C.3.1 Homomorphisms between Mixed Hodge Modules

Lemma C.3.1. Let M• is a bounded complex of objects in MHM(X) which has

weights ≥ 0. Then there exists another bounded complex M
•

and a surjective quasi-

isomorphism M• →M
•

such that GrWp M
q

= 0 for q > p.

Analogously, if M• is a bounded complex of objects in MHM(X) which has weights

≤ 0 there exists a bounded complex M
•

and an injective quasi-isomorphism M• →
M
•

such that GrWp M
q

= 0 for q < p.
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Proof. We will prove only the first part, the second being similar. Firstly we notice

that the cohomology of GrWp (M•) vanish in degrees > p. Further we know that

GrWp (Mp) is semisimple, so there exists a decomposition GrWp (Mp) = Zq ⊕ Cp,

where Zp = Ker(d : GrWp (Mp)→ GrWp (Mp+1)). We can define the complex C•p as:

Cq
p =


0 if q < p

Cp if q = p

GrWp (M q) if q > p

C•p is an acyclic complex. Let p0 the smallest integer such that Wp0M
• 6= 0. In this

case Cp0 is a subcomplex of Wp0M
•/Wp0−1M

• = Wp0M
•, hence of M•. We can take

the quotient M•/Cp0 and from now on we will call it M•. By construction we have

that Wp0M
q = 0 for q > p0.

Now we consider the subcomplex C•p0+1 of GrWp0+1M
•. Cq

p0+1 is nonzero only for

q ≥ p0 + 1 and in this case we have GrWp0+1M
q = Wp0M

q. Therefore we can regard

C•p0+1 as a subcomplex of M•. We can again take the quotient M•/C•p0+1 to obtain

a complex, which we rename M•, such that GrWp0+1M
q = 0 for q > p0 ∗ 1. We can

reiterate this procedure until we get a complex M
•

with the property GrWp M
q

= 0

for q > p.

Proposition C.3.2. Let M•, N• ∈ DbMHM(X) and n ∈ Z such that M• has

weights ≤ n and N• has weights ≥ n+ p+ 1. Then

ExtpDbMHM(X)
(M•, N•) = HomDbMHM(X)(M

•, N•[p]) = 0

Proof. By shifting, we can easily reduce to the case p = 0, n = −1. Let assume

that M• and N• are representatives in the derived category such that there exists a

nontrivial morphism (of complexes) f : M• → N•. We can now apply the Lemma

C.3.1 taking M
•

and N
•

(more precisely M
•

= M•[1][−1]). f induces the morphism

f

M
• i
↪→M• f→ N•

π
� N

•
f = π ◦ f ◦ i

If we show that f = 0, we would get a contradiction.

We have GrWp M [1]
q

= 0 for any p > q, hence

WqM [1]
q

= Wq+1M [1]
q

= . . . = M [1]
q

or, equivalently,

Wq−1M
q

= WqM
q

= . . . = M
q

On the other hand we have GrWp N
q

= 0 for any p < q, hence

Wq−1N
q

= Wq−2N
q

= . . . = 0

The morphism f must factorize through M
q

= Wq−1M
q → Wq−1N

q
↪→ N

•
, so it is

0.
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Corollary C.3.3. If M• is pure of weight n, there is a non-canonical isomorphism

M• ∼=
⊕
i∈Z

Hp(M•)[−p]

Proof. If M• is pure of weight n, then τ≤pM• and Hp(M•)[−p] are pure of weight

n as well. Thus τ≤p−1M•[1] is of weight n+ 1 and, applying Prop. C.3.2, we get

Ext1(Hp(M•)[−p], τ≤p−1M•) = 0

On the other hand we have

τ≤pM•/τ≤p−1M• =
[
. . . 0→Mp−1/Ker(dp−1)→ Ker(dp−1)→ 0→ . . .

]
and this is quasi-isomorphic to Hp(M•)[−p]. This means that the exact sequence

0→ τ≤p−1M• → τ≤pM• → Hp(M•)[−p]→ 0

splits as τ≤pM• ∼= τ≤p−1M• ⊕Hp(M•)[−p]. Now we can easily conclude.

C.3.2 Purity of Intersection Cohomology and Decomposi-

tion Theorem

We need an Hodge theoretic version of Intersection Cohomology. We start by defin-

ing CH ∈MHM(pt) as the pure Hodge structure of type (0, 0) on the point. In

general we define

CH
X = p∗XCH

where pX is the unique map sending X to a point.

Similarly to the complexes of sheaves situation, we can define, for an open em-

bedding j : U ↪→ X of complex algebraic varieties, the minimal extension functor

j!∗.

j!∗M
• = Im(H0Rj!M

• → H0Rj∗M
•)

Thus we define the Hodge theoretic version of Intersection Cohomology as

ICH(X) = j!∗(CH
Xreg)[dimX]

where Xreg is the smooth part of X and j is the embedding. We have rat(ICH(X)) =

IC(X) and it restricts to CXreg [dimX] on Xreg.

Proposition C.3.4 (Sa, Pag. 325). We have

GrWd Hd(CH
X) = ICH(X)

where d is the dimension of X. In particular ICH(X) is a pure mixed Hodge module

of weight d.
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Proof. We can see that there is an isomorphism restricting on U = Xreg. To show

that it is an isomorphism we will prove that GrWd Hd(CH
X) is the unique object in

MHM(X) such that its restriction to U is CH
U [d] and which has no trivial subobject or

subquotient supported on Z = X \U . Using Axiom 3 we know that it is semisimple,

thus it suffices to show that it has no nontrivial quotient supported on Z.

Let M ∈MHM(X) supported on Z and let i : Z ↪→ X the inclusion. We have

Hom(Hn(CH
X),M) = Hom(Hn(CH

X), i∗i
∗M) = Hom(Hn(CH

Z ), i∗M)

We have that pHk(CX [d]) = 0 for k > 0 and, since rat is faithful, we have also that

Hk(CX) = 0 for k > n. In the same way, since n > dimZ, we get Hn(CH
Z ) = 0,

hence Hom(Hn(CH
X),M) = 0

Furthermore CH
X = p∗XCH has weights≤ 0 and this yields GrWk Hn(CH

X) to be 0 for

k > n. Thus GrWn Hn(CH
X) is a quotient of Hn(CH

X), so also Hom(GrWn Hn(CH
X),M)

is 0 for any M supported on Z.

Corollary C.3.5. Let X a compact complex algebraic variety. Then the intersection

cohomology group IHk(X) has a pure Hodge structure of weight k

Proof. In this case the functor RpX! = RpX∗ both increases and decreases the

weights. So it sends pure complexes into pure Hodge structures.

Theorem C.3.6 (Decomposition Theorem). Let f : X → Y be a proper morphism

of complex algebraic varieties. Then

Rf∗IC(X) ∼=
⊕
i∈Z

pH i(Rf∗IC(X))[−i]

Furthermore each summand pH i(Rf∗IC(X))[−i] is semisimple and there is a finite

collection of pairs (Sβ, Lβ), where Sβ is a locally closed subvariety of Y and Lβ is a

semisimple local system on Sβ, such that

pH i(Rf∗IC(X))[−i] ∼=
⊕
β

ICSβ(Lβ)

Putting together these two parts we have

Rf∗IC(X) ∼=
⊕
β,i

ICSβ,i(Lβ,i)[−i] (C.1)

Proof. Since f is proper and ICH(X) is pure, the first part follows immediately

from Corollary C.3.3 after applying rat to both sides.

Furthermore Hi(Rf∗IC
H(X))[−i] is a pure mixed Hodge module, so it is semi-

simple from Axiom 3. Applying the functor rat we obtain pH i(Rf∗IC(X))[−i]
which is still semisimple (as a perverse sheaf) and we can conclude using the fact

that Intersection Cohomology of simple local system are the unique simple object

in the category of perverse sheaves.
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Corollary C.3.7. Let f : X̃ → X be a proper resolution of singularities of a

projective variety X. Then IH i(X) is a direct summand of H i(X̃) for any i ∈ Z.

Proof. We can restrict the decomposition C.1 to the regular part U = Xreg of X.

Rf∗IC(X̃)|U = Rf∗CX̃ [d]|U ∼= CU [d] is a simple object in Perv(CU). Thus only

one term of the right hand side of decomposition can survive and this has to be

CU = IC(X)|U .

Hence the summand IC(X) appears in the decomposition. We obtain the desired

result by taking the (global) cohomology of both sides.
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