$\begin{array}{c} {\color{blue} {\rm Lie~Groups}}\\ {\color{blue} {\rm SoSe~2023} \longrightarrow {\rm Ubungsblatt~1}}\\ {\color{blue} {\scriptstyle 26.04.2023}}\end{array}$

1 Topological groups

Aufgabe 1.1: Let G be a topological group and let H be a subgroup. Show that H is a topological group with the subspace topology.

Let N be a normal subgroup. Show that G/N is a topological group with the quotient topology.

Aufgabe 1.2: Let G be a topological group and let H be a subgroup of G.

- 1. Show that H is open if and only if it contains a neighborhood of the identity $e \in G$.
- 2. Show that if H is open, then H is also closed.
- 3. Show that if G is connected and H is open then G = H.

Bonus-Aufgabe 1.3: Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We define $d_5(m, n) = \frac{1}{5^k}$ where k is the maximal integer such that 5^k divides m - n. If m = n let $d_5(m, n) = 0$. Then d_5 defines a metric on \mathbb{Z} called the 5-adic metric (one can do the same for every prime p).

Show that $(\mathbb{Z}, +)$ is a topological group with respect to the topology induced by the metric d_5 .

2 Representation theory of S^1

Recall: Representations of S^1 are assumed to be continuous!

Aufgabe 1.4: For $n, m \in \mathbb{Z}$ let $\rho_{n,m} : S^1 \times S^1 \to GL_1(\mathbb{C}) \cong \mathbb{C}^{\times}$ be the map defined by $\rho_{m,n}(z, z') = z^m (z')^n$.

- 1. Show that $\rho_{m,n}$ defines a complex representation of $S^1 \times S^1$.
- 2. Show that $\rho_{m,n}$ is isomorphic to $\rho_{m',n'}$ (as a representation) if and only if m = m' and n = n'.
- 3. Show that every representation of $S^1 \times S^1$ on \mathbb{C} is isomorphic to $\rho_{n,m}$ for some $n, m \in \mathbb{Z}$.

Aufgabe 1.5: Show that every irreducible real representation of S^1 is either the trivial representation or is a 2-dimensional representation isomorphic to

$$\rho_n : S^1 \to GL_2(\mathbb{R})$$
$$e^{i\theta} \mapsto \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix}.$$

for some $n \ge 1$.