Lie Groups

SoSe 2023 - Ubungsblatt 2
 03.05.2023

Matrix groups and exponential

Aufgabe 2.1: Let $S O_{2}(\mathbb{R})=O_{2}(\mathbb{R}) \cap S L_{2}(\mathbb{R})=\left\{A \in \operatorname{Mat}_{2}(\mathbb{R}) \mid A A^{t}=I d\right.$ and $\operatorname{det}(A)=1\}$. Show that $S O_{2}(\mathbb{R})$ is a connected component of $O_{2}(\mathbb{R})$ and that the map

$$
\begin{gathered}
S^{1} \rightarrow S O_{2}(\mathbb{R}) \\
e^{i \theta} \mapsto\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
\end{gathered}
$$

is an isomorphism of Lie groups.
Aufgabe 2.2: Let I_{p} denote the identity matrix in $M a t_{p}(\mathbb{R})$ and, for $p, q \in$ \mathbb{N}, let

$$
I_{p, q}=\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right) \in \operatorname{Mat}_{n}(\mathbb{R})
$$

where $n=p+q$.
The indefinite orthogonal group $O_{p, q}(\mathbb{R})$ is the set of transformation of \mathbb{R}^{n} preserving the bilinear form defined by $I_{p, q}$, i.e.

$$
O_{p, q}(\mathbb{R}):=\left\{A \in M a t_{n}(\mathbb{R}) \mid A^{t} I_{p, q} A=I_{p, q}\right\} .
$$

1. Show that $O_{p, q}(\mathbb{R})$ is a closed subgroup of $G L_{n}(\mathbb{R})$.
2. Show that if $p, q \geq 1$ then $O_{p, q}(\mathbb{R})$ is not compact.

Hint for (2): Enough to show it for $O_{1,1}(\mathbb{R})$ (Why?).
Notice that $\left(\begin{array}{cc}\cosh t & \sinh t \\ \sinh t & \cosh t\end{array}\right) \in O(1,1)$, so it cannot be bounded!
Aufgabe 2.3: Show that the exponential gives an isomorphism between the vector space of upper triangular matrix with 0 on the diagonal and the group of upper triangular matrix with 1 on the diagonal. Hint: The power series of the logarithm gives a well-defined inverse.
Achtung: This is a very special case In general the exponential map is neither surjective nor injective!
Aufgabe 2.4: The goal of the exercise is to compute $T_{I d} S L_{n}(\mathbb{R})$.

1. Show that for $A \in G L_{n}(\mathbb{C})$ and $B \in M a t_{n}(\mathbb{C})$ we have

$$
e^{A B A^{-1}}=A e^{B} A^{-1} .
$$

2. Show that for every $B \in \operatorname{Mat}_{n}(\mathbb{C})$ we have

$$
e^{T r(B)}=\operatorname{det}\left(e^{B}\right)
$$

Hint: First show it for B upper triangular, then use (1) for the general case.
3. Let $\mathfrak{s l}_{n}(\mathbb{R}):=\left\{B \in \operatorname{Mat}_{n}(\mathbb{R}) \mid \operatorname{Tr}(B)=0\right\}$. Show that $\mathfrak{s l}_{n}(\mathbb{R})=$ $T_{I d} S L_{n}(\mathbb{R})$.
Hint: Use (2) to show that inclusion $\mathfrak{s l}_{n}(\mathbb{R}) \subset T_{I d} S L_{n}(\mathbb{R})$. The space $T_{I d} S L_{n}(\mathbb{R})$ cannot be larger than $\mathfrak{s l}_{n}(\mathbb{R})$ because...

