Lie Groups

SoSe 2023 - Ubungsblatt 6

21.06.2023

Aufgabe 6.1: Recall from the exercise 5.3 the representation $V_{l}:=\mathbb{R}[X, Y, Z]^{l}$ representation of $S O(3, \mathbb{R})$. We have $V_{l+2}=P\left(V_{l}\right) \oplus L(2 l)$, where $L(2 l)$ is the irreducible real representation of $S O(3, \mathbb{R})$ of dimension $2 l+1$ and P is given by multiplication by $\left(X^{2}+Y^{2}+Z^{2}\right)$.
Let $S^{2}=\left\{x^{2}+y^{2}+z^{2}\right\} \subset \mathbb{R}^{3}$. The natural action of $S O(3, \mathbb{R})$ induces a representation of $S O(3, \mathbb{R})$ on the vector space of continuous functions $\mathcal{C}\left(S^{2}, \mathbb{R}\right)$. On $\mathcal{C}\left(S^{2}, \mathbb{R}\right)$ we have a $S O(3, \mathbb{R})$-invariant scalar product given by 1

$$
\langle f, g\rangle=\int_{S^{2}} f \bar{g}
$$

- Show that the evaluation of polynomials gives an embedding of representations $\phi_{l}: V_{l} \subset \mathcal{C}\left(S^{2}, \mathbb{R}\right)$.
- Show that if l and m have different parities, the subspaces $\phi_{l}\left(V_{l}\right)$ and $\phi_{m}\left(V_{m}\right)$ are orthogonal to each other.
- Let \mathcal{H}_{l} be the orthogonal of the image of $P\left(V_{l-2}\right)$. Show that $\mathcal{H}_{l} \cong$ $L(2 l)$ and that

$$
V_{l} \cong \mathcal{H}_{l} \oplus P\left(\mathcal{H}_{l-2}\right) \oplus \ldots P^{\left\lfloor\frac{l}{2}\right\rfloor}\left(\mathcal{H}_{\epsilon}\right),
$$

where ϵ is 0 or 1 depending on the parity of l.
Assume we know by the Stone-Weierstrass theorem that every continuous function on $\mathcal{C}^{2}\left(S^{2}\right)$ can be approximated by polynomial function, i.e. the image of $\mathbb{R}[X, Y, Z]$ is dense in $\mathcal{C}\left(S^{2}, \mathbb{R}\right)$.

- Show that $\bigoplus_{l \geq 0} \mathcal{H}_{l}$ is dense in $\mathcal{C}\left(S^{2}, \mathbb{R}\right)$ and that

$$
\operatorname{dim} \operatorname{Hom}_{S O(3, \mathbb{R})}\left(L(2 l), \mathcal{C}\left(S^{2}, \mathbb{R}\right)\right)=1
$$

for all $l \in \mathbb{N}$.

$$
\begin{aligned}
& { }^{1} \text { Concretely, this can be defined as } \\
& \qquad \int_{0}^{\pi} \int_{0}^{2 \pi} f(\theta, \phi) \overline{g(\theta, \phi)} \sin (\theta) d \theta d \phi,
\end{aligned}
$$

where θ and ϕ are the polar coordinates, i.e. $(x, y, z)=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$.
(One can find nice basis of each \mathcal{H}_{l} by taking the eigenvectors of the subgroup S^{1} of rotations along the z-axis. Since $\mathcal{C}\left(S^{2}\right)$ is dense in $L^{2}\left(S^{2}, \mathbb{R}\right)$ we also get $\hat{\bigoplus}_{l \geq 0} \mathcal{H}_{l} \cong L^{2}\left(S^{2}, \mathbb{R}\right)$. One gets in this way an Hilbert basis of $L^{2}\left(S^{2}\right)$, which is called the basis of spherical harmonics. They are very important in physics to solve equations with spherical symmetry. Here is a picture from Wikipedia.)

Aufgabe 6.2: Show that c is a matrix coefficient for G if and only if $\operatorname{span}\langle c \circ$ $(h \cdot)|h \in G\rangle$ is finite dimensional.
Aufgabe 6.3: Let G be a compact Lie group and let $\rho: G \rightarrow G L(V)$ be a finite dimensional irreducible complex representation of G. Show that the isomorphism $\mathcal{M}(\rho) \cong E n d_{\mathbb{C}}(V)$ is an isomorphism of $G \times G^{o p}$ representations (the action $G \times G^{o p}$ is given on both spaces by $g \cdot f \cdot h(x)=f\left(g^{-1} x h\right)$. In particular, we have that $\mathcal{M}(\rho)$, as a left G-module, is isomorphic to $V^{\operatorname{dim}_{\mathbb{C}} V}$

Aufgabe 6.4: Let V and W be irreducible complex representations of G. Let χ_{V} and χ_{W} denote the trace of $\rho_{V}(g)$ and $\rho_{W}(g)$. Show that χ_{V} and χ_{W} are matrix coefficients and that

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle= \begin{cases}1 & \text { if } V \cong W \\ 0 & \text { if } V \nsupseteq W\end{cases}
$$

