$\begin{array}{c} {\color{blue}{ Lie Groups}}\\ {\color{blue}{ SoSe 2023 } - Ubungsblatt 6}\\ {\color{blue}{ 21.06.2023 }} \end{array}$

Aufgabe 6.1: Recall from the exercise 5.3 the representation $V_l := \mathbb{R}[X, Y, Z]^l$ representation of $SO(3, \mathbb{R})$. We have $V_{l+2} = P(V_l) \oplus L(2l)$, where L(2l) is the irreducible real representation of $SO(3, \mathbb{R})$ of dimension 2l + 1 and P is given by multiplication by $(X^2 + Y^2 + Z^2)$.

Let $S^2 = \{x^2 + y^2 + z^2\} \subset \mathbb{R}^3$. The natural action of $SO(3, \mathbb{R})$ induces a representation of $SO(3, \mathbb{R})$ on the vector space of continuous functions $\mathcal{C}(S^2, \mathbb{R})$. On $\mathcal{C}(S^2, \mathbb{R})$ we have a $SO(3, \mathbb{R})$ -invariant scalar product given by

$$\langle f,g\rangle = \int_{S^2} f\bar{g}$$

- Show that the evaluation of polynomials gives an embedding of representations $\phi_l : V_l \subset \mathcal{C}(S^2, \mathbb{R})$.
- Show that if l and m have different parities, the subspaces $\phi_l(V_l)$ and $\phi_m(V_m)$ are orthogonal to each other.
- Let \mathcal{H}_l be the orthogonal of the image of $P(V_{l-2})$. Show that $\mathcal{H}_l \cong L(2l)$ and that

$$V_l \cong \mathcal{H}_l \oplus P(\mathcal{H}_{l-2}) \oplus \ldots P^{\lfloor \frac{i}{2} \rfloor}(\mathcal{H}_{\epsilon}),$$

where ϵ is 0 or 1 depending on the parity of l.

Assume we know by the Stone–Weierstrass theorem that every continuous function on $\mathcal{C}^2(S^2)$ can be approximated by polynomial function, i.e. the image of $\mathbb{R}[X, Y, Z]$ is dense in $\mathcal{C}(S^2, \mathbb{R})$.

• Show that $\bigoplus_{l>0} \mathcal{H}_l$ is dense in $\mathcal{C}(S^2, \mathbb{R})$ and that

$$\dim \operatorname{Hom}_{SO(3,\mathbb{R})}(L(2l), \mathcal{C}(S^2, \mathbb{R})) = 1$$

for all $l \in \mathbb{N}$.

¹Concretely, this can be defined as

$$\int_0^{\pi} \int_0^{2\pi} f(\theta, \phi) \overline{g(\theta, \phi)} \sin(\theta) d\theta d\phi$$

where θ and ϕ are the polar coordinates, i.e. $(x, y, z) = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$.

(One can find nice basis of each \mathcal{H}_l by taking the eigenvectors of the subgroup S^1 of rotations along the z-axis. Since $\mathcal{C}(S^2)$ is dense in $L^2(S^2, \mathbb{R})$ we also get $\bigoplus_{l\geq 0} \mathcal{H}_l \cong L^2(S^2, \mathbb{R})$. One gets in this way an Hilbert basis of $L^2(S^2)$, which is called the basis of *spherical harmonics*. They are very important in physics to solve equations with spherical symmetry. Here is a picture from Wikipedia.)

Aufgabe 6.2: Show that c is a matrix coefficient for G if and only if span $\langle c \circ (h \cdot) | h \in G \rangle$ is finite dimensional.

Aufgabe 6.3: Let G be a compact Lie group and let $\rho: G \to GL(V)$ be a finite dimensional irreducible complex representation of G. Show that the isomorphism $\mathcal{M}(\rho) \cong End_{\mathbb{C}}(V)$ is an isomorphism of $G \times G^{op}$ representations (the action $G \times G^{op}$ is given on both spaces by $g \cdot f \cdot h(x) = f(g^{-1}xh)$. In particular, we have that $\mathcal{M}(\rho)$, as a left G-module, is isomorphic to $V^{\dim_{\mathbb{C}} V}$

Aufgabe 6.4: Let V and W be irreducible complex representations of G. Let χ_V and χ_W denote the trace of $\rho_V(g)$ and $\rho_W(g)$. Show that χ_V and χ_W are matrix coefficients and that

$$\langle \chi_V, \chi_W \rangle = \begin{cases} 1 & \text{if } V \cong W \\ 0 & \text{if } V \not\cong W. \end{cases}$$