Topologie SoSe 2022 — Ubungsblatt 1

Ausgabe 25.04.22Dozent: Prof. Wolfgang SoergelAbgabe 02.05.22Tutorium: Dr. Leonardo Patimo

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/soergel/ss22top.html

Aufgabe 1.1: Seien X und Y topologische Räume und $f: X \to Y$ eine Abbildung. Zeigen Sie, dass f genau dann stetig ist, wenn $f(\overline{M}) \subseteq \overline{f(M)}$ für alle Teilmengen $M \subseteq X$.

(4 Punkte)

Aufgabe 1.2: Sei X ein topologischer Raum und $M \subset X$ eine beliebige Teilmenge. Zeigen Sie, dass die folgenden Aussagen gleichbedeutend sind.

- 1. Es gibt eine offene Teilmenge $V \subset X$ und eine abgeschlossene Teilmenge $A \subset X$ so dass $M = V \cap A$.
- 2. für alle $x \in M$ existiert eine Umgebung U in X, so dass $M \cap U$ abgeschlossen ist in U.

Zeigen Sie noch: eine Teilmenge $M \subseteq X$ ist abgeschlossen genau dann, wenn für alle $x \in X$ existiert eine Umgebung U in X, so dass $M \cap U$ abgeschlossen ist in U.

(4 Punkte)

Aufgabe 1.3: Gegeben ein topologischer Raum X und eine Menge Y und eine Abbildung $f: X \to Y$ zeige man, dass

$$\{V \subset Y \mid f^{-1}(V) \subset X \text{ offen}\}$$

eine Topologie auf Y ist. Sie heißt die *Finaltopologie* zu f. Weiter zeige man für jeden weiteren topologischen Raum Z, dass eine Abbildung $g:Y\to Z$ genau dann stetig ist, wenn $g\circ f:X\to Z$ stetig ist.

(4 Punkte)

Aufgabe 1.4: Sei $S \subset \mathbb{R}^2$ die Teilmenge definiert durch

$$S := \left\{ (x, \sin(\frac{1}{x})) \in \mathbb{R}^2 \mid x \in (0, 1) \right\} \cup \{0, 0\}$$

Zeigen Sie, dass S zusammenhängend aber nicht weg-zusammenhängend (in der induzierten Topologie) ist.

(4 Punkte)

Bonus-Aufgabe 1.5: Für jede $a, b \in \mathbb{Z}$ sei

$$S(a,b) := \{an + b \mid n \in \mathbb{Z}\}.$$

Wir sagen, dass $U \subset \mathbb{Z}$ offen ist, genau wenn für jede $x \in U$ gibt es $a \in \mathbb{Z} \setminus \{0\}$ mit $S(a,x) \subseteq U$.

- 1. Zeigen Sie, dass dies eine Topologie auf $\mathbb Z$ definiert.
- 2. Zeigen Sie, dass alle die S(a,b) in Bezug auf diese Topologie abgeschlossene Teilmenge sind aber dass $\mathbb{Z} \setminus \{-1,+1\}$ nicht abgeschlossen ist.
- 3. Ableiten Sie daraus, dass es unendlich viele Primzahlen gibt

(4 Punkte)