$\begin{array}{c} {\rm Topologie} \\ {\rm SoSe} \ 2022 - {\rm Ubungsblatt} \ 3 \end{array}$

Ausgabe 09.05.22Dozent: Prof. Wolfgang SoergelAbgabe 16.05.22Tutorium: Dr. Leonardo Patimo

Aufgabe 3.1: Ist $f: X \to Y$ final mit zusammenhängenden Fasern. Man zeige: Wenn Y zusammenhängend ist, dann ist auch X zusammenhängend. Achtung: Die leere Menge ist nicht zusammenhängend!

(4 Punkte)

Aufgabe 3.2: Sei X ein topologischer Raum. Für eine Teilmenge $A \subset X$ definirien wir eine Äquivalenzrelation $\stackrel{A}{\sim}$ wie folgt:

$$x \stackrel{A}{\sim} y \iff x = y \text{ oder } x, y \in A.$$

Man zeige:

- 1. $\mathbb{R}/\stackrel{[-1,1]}{\sim}$ ist homömorph zu \mathbb{R} .
- 2. $\mathbb{R}/\stackrel{(-1,1)}{\sim}$ ist nicht Hausdorff.
- 3. Sei X Hausdorff und sei K eine kompakte Teilmenge. Dann ist $X/\stackrel{K}{\sim}$ auch Hausdorff.

(4 Punkte)

Erinnerung: Bei uns heißt ein Teilraum diskret, wenn die darauf induzierte Topologie die diskrete Topologie ist.

Eine Untergruppe $N\subset G$ heißt Normalteiler, wenn $gng^{-1}\in N$ für jede $g\in G$ und $n\in N$ gilt.

Aufgabe 3.3: Jeder diskrete Normalteiler einer zusammenhängenden topologischen Gruppe liegt bereits im Zentrum besagter Gruppe.

(4 Punkte)

Aufgabe 3.4: Ist G eine topologische Gruppe und $H \subset G$ eine diskrete Untergruppe, so gibt es eine Umgebung $U \subset G$ des neutralen Elements derart, dass die Multiplikation eine Injektion $H \times U \hookrightarrow G$ induziert.

In einer Hausdorffgruppe ist jede diskrete Untergruppe abgeschlossen.

Hinweis: Man verwende die Ergänzung 2.1.12 aus dem Skript und führe für den zweiten Teil die Annahme $\bar{H} \neq H$ zum Widerspruch.

(4 Punkte)