Topologie SoSe 2022 — Ubungsblatt 6

Ausgabe30.05.22Dozent: Prof. Wolfgang SoergelAbgabe13.06.22Tutorium: Dr. Leonardo Patimo

Aufgabe 6.1: Seien X und Y topologische Räume:

- 1. Ist Y beliebig und X zusammenziehbar, so sind je zwei Abbildungen $f, g: Y \to X$ homotop.
- 2. Ist X zusammenziehbar und Y wegzusammenhängend, so sind auch je zwei Abbildungen $X \to Y$ homotop.

(4 Punkte)

Aufgabe 6.2: Sei X ein wegzusammenhängender topologischer Raum und $p \in X$. Dann ist $\pi_1(X, p)$ trivial genau dann, wenn jede stetige Abbildung $p: S^1 \to X$ läßt sich fortsetzen zu einer stetigen Abbildung

$$\tilde{p}:D=\{z\in\mathbb{R}\mid \|z\|\leq 1\}\to X.$$

(4 Punkte)

Aufgabe 6.3: Sei $h: S^1 \to S^1$ nullhomotop. Dann hat h einen Fixpunkt, und es gibt $x \in S^1$ mit h(x) = -x.

(4 Punkte)

Aufgabe 6.4: Man zeige: Für zwei bepunktete Räume (X, x) und (Y, y) induzieren die beiden Projektionen pr_1 und pr_2 von $X \times Y$ auf X und Y einen Isomorphismus

$$(\pi_1(pr_1), \pi_1(pr_2)) : \pi_1(X \times Y, (x, y)) \xrightarrow{\sim} \pi_1(X, x) \times \pi_1(Y, y)$$

und dessen Inverses wird gegeben durch $\pi_1(id_X, y), \pi_1(x, id_Y)$) mit der Notation (id_X, y) für die Abbildung $X \to X \times Y$ gegeben durch $x \mapsto (x, y)$.

(4 Punkte)

Bonus-Aufgabe 6.5: Man zeige den Fundamentalsatz der Algebra mit topologischen Methoden. Sie sollen also zeigen, dass jedes nichtkonstante Polynom mit komplexen Koeffizienten eine komplexe Nullstelle hat.

Anleitung: Zeigen Sie, ist $P: \mathbb{C} \to \mathbb{C}$ eine Polynom vom Grad n ohne Nullstelle, so ist für alle $\tau \geq 0$ die induzierte Abbildung $P_{\tau}: S^1 \to \mathbb{C}^*, z \mapsto P(\tau z)$ homotop zur konstanten Abbildung. Zeigen Sie außerdem, dass P_{τ} homotop zur Abbildung $S^1 \to \mathbb{C}^*, z \mapsto z^n$ ist. Dies führt dann offensichtlich zu einem Widerspruch.

(4 Punkte)