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Abstract. The first part is a survey of Poizat’s theory about fast elimi-
nation of quantifiers and the P = NP question according to the unit-cost
model of computation, as developed along the book [7]. The second part
is a survey of the structure with fast elimination constructed by the
author in [9].

1 Introduction

In [9] a structure with fast elimination is constructed. Here I intend to recall the
whole context of this construction and to explain why it is said that the structure
constructed there satisfies P = NP for the unit-cost model of computation over
algebraic structures. The construction itself will be also shortly presented here,
but I will emphasize exactly the steps which hasn’t been presented with too
much details in the cited paper. With this occasion I shall try to answer to
some frequently asked questions. This extended abstract should be seen as a
complement to [9].

The notation used is the standard notation for mathematical logic. Bold-faced
letters like u denote tuples (u1, u2, . . . , un).

2 Machines, Circuits and Existential Formulas with
Parameters

The unit-cost complexity over algebraic structures was born with the paper of
L. Blum, M. Shub and S. Smale dedicated to unit-cost computations over the
ordered field of the reals. The approach presented here belongs to B. Poizat and
was developed by him along the lines of the book “Les petits cailloux”, [6].

Let L be an abstract finite signature for algebraic structures. L consists in a
set of constant-symbols (ci), a set of relation-symbols (Rj) with arities (nj) and
a set of operation-symbols (fk) with arities (mk). We fix an L-structure S. The
interpretation of L in S shall be done using the same symbols. (We do not make
a notational difference between symbol and interpretation here.)

Definition 1. A Turing machine working over the L-structure S is a multi-tape
Turing machine with finitely many states and the following ideal abilities:
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– The machine works with a possibly infinite alphabet consisting in the ele-
ments of S. In other words, every element of S has a unique name. This name
can be written in one cell of the machine as component of the input or as
result of a computation. During a computation, the name of a given element
may arrise several times in different cells. Equivalently, you can think about
the underlying set of S like about a (possibly infinite) alphabet used by a
Turing machine.

– Let xi ∈ S be the content of a cell of the tape number i which is read
at this moment by the head Hi. Following program lines can occur: stop;
Hi+, Hi− to move a head on a tape; xi := f(xk, xl, . . . , xs), where f is a
function symbol in L or the identity (this means xi := xj); if R(xk, xl, . . . xs)
then continue with state q, else continue with state q′, where R is a relation
symbol in L or the equality; if Hi is reading an empty cell then continue
with state q, else continue with state q′.

– Any such step is performed in a unit of time.

This will be simply called a machine over S.

To say that “a cell is empty” is the same as saying “a cell contains a blank
symbol” — I will not insist here on this. The multi-tape formulation given here
is directly used used by Poizat in order to prove his Theorem 1. One can define
the notion of computability over algebraic functions using only one-tape Turing
machines: if L is finite and all relations (functions) have a finite arity, then there
is a translation of multi-tape Turing machines in one-tape Turing machines, that
does not change the defined class P. Indeed, if k is the number of tapes, consider
the mk + i-th cell of the one-tape machine to be the m-th cell of the i-th tape
(m ∈ ZZ, 0 ≤ i < k), and multiply the number of states with k.

Definition 2. A problem is a subset of S∗ :=
∐

n∈IN
Sn seen as set of finite inputs

which are accepted by a machine over S. For an input x ∈ S∗ let |x| be its
length. Note: the symbol

∐
used here is meant as disjoint union. There are no

identifications between Sn and factors of Sm when n ≤ m.

Definition 3. For an L-structure S we define the complexity class P(S) as
the set of all problems over S accepted by deterministic machines over S in
polynomial time. This means the following: there is a polynomial p(n) with
natural coefficients such that for all inputs x ∈ S∗ the decision is taken in less
that p(|x|) units of time.

Definition 4. A problem B ⊂ S∗ is said to belong to the class NP(S) if and
only if there is a problem A in P(S) and a polynomial q(n) such that for all
x ∈ S∗:

x ∈ B ↔ ∃ y ∈ S∗ | y | = q(|x|) ∧ xy ∈ A.

By xy we mean the concatenation of the strings x and y.

At this point I must make some commentaries about parameters. In the litera-
ture unit-cost Turing machines are allowed to contain a finite tuple of elements
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of the structure, and to use them in the computations. The classical notation for
the complexity classes with allowed parameters is P and NP. For the situation
described here, where a finite signature is fixed and the machines are not allowed
to contain other parameters than the fixed interpretation of the given constants,
the classical notation is P0 and NP0. I like to work with the definitions and the
notations as given here because I consider them more clear and more resonant
with the model-theoretic point of view. It is worth to remark that by writing
down the things in this way, I didn’t really introduce a restriction. As an anony-
mous referee pointed out using the classical notation: if a structure has P0 =
NP0 then it has P = NP, because all tuples in a problem can be completed with
the tuple of suplementary parameters. On the other hand, if the structure has
P = NP, one can expand the structure with a finite number of constants such
that the new one has P0 = NP0: the new constants are the parameters used to
solve some NP-complete problem over the structure. This notion is explained in
the sequel, together with the equivalent of the work of Cook for the classes P
and NP over a an L-structure S.

Definition 5. Suppose from now on that the language L contains at least two
constants, which will be called 0 and 1. An L-circuit is a finite directed graph
without cycles. The vertices of the graph are called gates, and the directed
edges are called arrows. There are input-gates, constant-gates, operation-gates,
relation-gates, selection-gates and output-gates; at least one input-gate and one
output-gate must be present. We call fan-in of a gate the number of arrows go-
ing into the gate. The fan-out is the number of arrows going from the gate
outside. All gates have an unbounded fan-out. The gates input and output
elements of S.

– An input-gate has fan-in 1. It just copies the input element and sends it
along the outgoing arrows.

– A constant-gate has fan-in 0. It sends copies of the corresponding (in S
interpreted) constant along the outgoing arrows.

– Operation-gates and relation-gates have a fan-in equal to the arity of the
corresponding operation (relation). The operation-gate for f computes the
value f(x1, . . . , xs) ∈ S. The relation-gate checks if the relation R(x1, . . . , xs)
is true and outputs the constant 1 then, else it outputs the constant 0.

– The selection-gate has fan-in 3 and computes the function s(x, y, z), where
s(0, y, z) = y, s(1, y, z) = z and s(x, y, z) = x if x �= 0 and x �= 1.

– In the case of the so-called decision circuits there is only one output gate
that outputs 0 or 1.

The complexity-measure of a circuit C is its number of gates |C|.

Considering the circuits to be compressed first-order formulas, they are a good
instrument for making concepts like problem or complexity class independent of
a special type of computing device.

Theorem 1. Let M be a machine with k tapes over S, working in a bounded
time ≤ t(n), where t(n) ≥ n is a function of the length |x|. Then there is a
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recursive sequence (Cn(x1, . . . , xn)) with |Cn| ≤ t(n)k+1, such that Cn(x) gives
for input x of length n the same result as the machine M , and Cn are uniformly
constructed by a classical Turing machine in polynomial time p(n).

Definition 6. The satisfiability problem for L-circuits with parameters in S:
Given a string wa ∈ S∗, such that the subword w is a binary word made up by
the special boolean constants 0, 1 ∈ S and encoding a decision L-circuit C(x, y);
It is asked if there is b ∈ S∗ of appropriate length, such that

(S, a, b) |= C(a, b) = 1.

Don’t wonder about our use of the symbol “models” (|=) in this context. As
already said, circuits are first-order formulas written down compactly.

It follows directly from the theorem that the satisfiability problem for L-circuits
with parameters in S is NP(S)-complete. This problem belongs to P(S) if and
only if S has the property P = NP.

We now come to the most delicate point of the reduction: from the satisfaction
of circuits to the satisfaction of first-order formulae.

Definition 7. The satisfiability problem for quantifier-free L-formulae with pa-
rameters in S:
Given a string wa ∈ S∗, such that the subword w is a binary word made up by
the special boolean constants 0, 1 ∈ S and encoding a quantifier-free L-formula
ϕ(x, y);
It is asked whether there is a b ∈ S∗ of appropriate length, such that

(S, a, b) |= ϕ(a, b).

At first sight there is no big difference between this satisfiability problem and the
satisfiability problem concerning circuits. In fact, there is an important difficulty
here. It is true that every circuit is logically equivalent with a quantifier-free
formula, but the translation might not be possible in polynomial time!

Example. (Poizat) Let S be a structure possessing an associative addition de-
noted by + and let Cn(x, y) be the circuit x ⇒ + ⇒ + . . . ⇒ + →=← y con-
taining n addition-gates and the gate = that checks the equality. Cn(x, y) = 1
is equivalent with the formula x + x + . . . + x = y with 2n − 1 additions.

In the case of this circuit,

C(x, y) = 1 ↔ ∃ z z1 = x + x ∧ z2 = z1 + z1 ∧ . . . ∧ y = zn + zn.

This existential formula has a length which is linear in n. Even if we use more
symbols for the indices in order to write them using some finite alphabet, it will
have at most a quadratic length. If we forget the quantifiers and we look at the
quantifier-free conjunction with parameters x and y, this quantifier-free formula
is satisfied if and only if the circuit was satisfied by x and y.

Following this idea, we modify the definition for the satisfiability problem
for quantifier-free formulae with parameters in S. This is just an equivalent
definition, and not a new problem.
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Definition 8. The satisfiability problem for quantifier-free L-formulae with pa-
rameters in S:
Given a string wa ∈ S∗, such that the subword w is a binary word made up by
the special boolean constants 0, 1 ∈ S and encoding a quantifier-free L-formula
ϕ(x, y);
It is asked whether

(S, a) |= ∃ y ϕ(a, y).

The satisfaction of quantifier-free formulae with parameters in S is the same
thing as the truth of existential formulae with parameters in S.

Theorem 2. The satisfiability problem for quantifier-free formulae with para-
meters in S is complete for the class NP(S). Consequently, this problem belongs
to P(S) if and only if S has the property P = NP.

Proof. The problem is evidently in NP by guess and check. To prove the NP-com-
pleteness, we interpret the satisfiability problem of L-circuits with parameters in
S in the satisfiability problem for formulae. Let (C(x, y), a) be an instance for
the circuit-problem. For each gate in C which is not an input-gate, a constant-
gate or the output-gate, consider a new variable zgate. The following holds:

∃ y C(a, y) = 1 ↔ ∃ y ∃ zgate1 . . . ∃ zgatek

∧

all gates

zgate = gate(predecessor gates) ∧ output = 1.

This gives a quantifier-free formula of a length which is polynomially bounded
in the length of the circuit and which is satisfiable if and only if the circuit is
satisfiable. �

Definition 9. The structure S is said to allow elimination of quantifiers if for
every formula ϕ(x) with quantifiers and no other free variables as in the tuple
x there is a quantifier-free formula ψ(x) such that:

S |= ∀ x (ϕ(x) ↔ ψ(x)).

For equivalent definitions, we may require this only for formulae that are log-
ically equivalent with prenex existential formulae, or even for formulae that
are logically equivalent with formulae containing only one existential quantifier.
Summing up all results got so far, we conclude:

Theorem 3. The L-structure S has the property P = NP if and only if there
is a polynomial-time machine over S which transforms all formulae ∃ y ϕ(x, y)
in a circuit C(x) such that:

∀ x (∃ y ϕ(x, y) ↔ C(x) = 1).

Proof. The structure has P = NP if and only if the decision problem for existen-
tial formulae with parameters in S is in P(S). Using Poizat’s Theorem 1, there
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is a polynomial-time constructible sequence of circuits (Cn) such that for inputs
wa of length n,

∃ y ϕ(a, y) ↔ Cn(wa) = 1.

and the binary word w encodes the existential formula ∃ y ϕ(x, y). Now fix the
existential formula and let C(x) be the circuit Cn(w, x). This means that the
input gates corresponding to the subword w are replaced with constant-gates
giving the corresponding booleans, and the input gates for the subword a remain
free input gates.

For the other direction, recall that the satifiability of existential formulas
with parameters in the structure is an NP-complete problem for this model of
computation. If this problem lies in P, then P = NP. �

Definition 10. We say that the L-structure S has fast quantifier-elimination if
it satisfies the condition occurring in Theorem 3.

In particular, all structures with P = NP allow quantifier-elimination.

Remarks. There are maybe some points which need a special emphasis:

– The model of computation is very different from the classical one. In partic-
ular, the computational devices are ideal, working with arbitrary structure
elements, as for example real or complex numbers, and the structures are in
general infinite. The property P = NP has to be consequently understood.

– On the other hand, if this theory is applied for some finite structure, one gets
back the familiar classes P and NP from the classical theory of complexity.

– The notion “fast quantifier-elimination” is also slightly different from the
similar notions used in the literature. Peoples tend to understand that the
equivalent quantifier-free formula has to be short. This condition would be
too strong for our purpose. Here the equivalent quantifier-free circuit has to
be small, although the equivalent quantifier-free formula might be long.

– There are several results giving exponential lower bounds for the quantifier-
elimination for the field of complex numbers or for the ordered field of real
numbers. The known results are not sufficient for proving that those struc-
tures satisfy P �= NP! Even the exponential lower bound for purely existen-
tial formulae over the complex numbers is too weak: although the equivalent
quantifier-free formula has exponential length, it is still not proved that there
is no circuit of polynomial length which is equivalent with that formula!

– Last but not least: Theorems 1, 2 and 3 have been proved by Poizat in [6]
at the pages 109, 149 and 156. The reader has observed that I have slightly
modified the statements, because I have deleted all about supplementary
parameters in machines or circuits. For this I have introduced the constant-
gates.

3 A Structure with Fast Quantifier-Elimination

In the past section we shortly presented Poizat’s theory about arbitrary algebraic
structures that satisfy the condition P = NP. In this section we will come in
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contact with the structure with fast quantifier-elimination constructed by the
author in [9], proving that we don’t deal with the empty class.

For a short historical account: in [7] Poizat discussed the possibility of con-
structing a structure with P = NP and proposed some approaches; the most
concrete proposal was to define a consistent truth-predicate over Malcev’s freely
generated tree-algebra. In [6] he produced a truth-predicate over an algebra with
unary operations only, that will be presented below. His predicate V encodes the
truth of existential formulae with only one free variable, in a way that to all for-
mula ∃ y ϕ(x, y) there is a term τϕ(x) such that ∀ x (∃ y ϕ(x, y) ↔ V (τϕ(x))).
Because of the unary functions, we cannot have more than one free variable in
a term. The construction of his predicate is rather difficult. In [4] Hemmerling,
working with a similar underlying algebra, doubled the length of the binary
words satisfying some PSPACE-complete predicate in order to make it sparse
(see definition below). The doubling technic is used also in the approach of
Gaßner, [3]. She doesn’t use the classical properties of PSPACE-complete pred-
icates (to manifest P = NP for computations with oracles) and tried a direct
construction of a structure with P = NP by encoding machine instances. The
machine-oriented approaches look however very difficult; it is always quite hard
to write down all conditions to be checked for a such construction. In [9] the
author combined Poizat’s truth-predicate, the model-theoretic view about effec-
tive quantifier elimination as described above and the doubling technic. In fact
the construction is based on the following rules:

1. As in Poizat’s case, a general Elimination Lemma for unary structures with
generic predicates.

2. By the Elimination Lemma, the satisfaction of ∃ y ϕ(x, y) depends only of
some local information on x, which is encoded by a quantifier-free formula
β(x) of polynomial length.

3. The predicate V will encode the truth value of a special kind of ∀∃-sentences.

3.1 Preliminaries

The Elimination Lemma is used in [9] without proof, so it shall be proved here.
The other lemmas are quoted from [9] with some hints of proof.

Definition 11. Let R be an infinite set of elements called roots. The set M is
the algebra freely generated by R with two independent unary successor oper-
ations, s0 and s1 such that: all elements x ∈ M are terms in some r ∈ R and
two elements x and y are equal if and only if they are the same term of the
same root. The set of elements generated by a given r ∈ R is called a block.
We add a unary predecessor operation p such that p(x) = x defines the set of
all roots and for all x, p(s0(x)) = p(s1(x)) = x. We add also a constant a to be
interpreted by a fixed root and a unary predicate V called also colour, which will
be constructed later. Elements x with V (x) are called black, the other are called
white. Our structure is (M, s0, s1, p, V, a) but shall be refered to as (M, V ).
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Definition 12. A triangle of height n is a conjunctive formula T (x) as follows:
For all 2n+1 − 1 terms (using only the successors s0 and s1) t(x) of length ≤ n
exactly one of the atomic formulas V (t(x)) or ¬V (t(x)) occurs in the conjunction.
No other atomic formula does occur in the conjunction T (x). There are exactly
22n+1−1 possible triangles of height n.

Definition 13. For a tuple z ∈ M we call m-neighborhood of z a conjunction
of the following formulas: the formulas T2m(pm(zi)) with i = 1, . . . , k; and the
formulae p(y) = y, p(y) �= y, y = y′, y �= y′, for all terms y, y′ occurring in
the triangles above, and exactly those equalities and negated equalities that are
realized by the tuple z in M . If the tuple consists of only one element, we speak
about an individual neighborhood.

Definition 14. The predicate V is called generic if it satisfies the following
condition G:

G : if (M, V ) realizes some finite individual neighborhood N (x)

then (M, V ) realizes N (x) infinitely many times.

A structure (M, V ) that is an infinite disjoint union of identically coloured blocks
has always a generic predicate.

Definition 15. Let us use the alphabet of 15 letters ∀, ∃, x, ′, ), (, ¬, ∨, ∧, s0,
s1, p, =, V , a for writing down formulae. Different variables are built by x and
′ like: x, x′, x′′, . . . We denote by |ϕ(x)| the length of a formula ϕ(x) as word
over this alphabet.

Lemma 1. Let (M, V ) be a structure consisting of a disjoint union of (not nec-
essarily identic) blocks such that V is a generic predicate. Consider a formula
ψ(x) which is logically equivalent with a prenex ∃-formula. Let |ψ(x)| = n. Then
there is a quantifier-free formula λ(x) such that M |= ∀ x ψ(x) ↔ λ(x). More-
over, all the terms in x and a occurring in λ(x) have length smaller than 2n, and
the formula λ(x) depends only on the list of all isomorphism-types of individual
2n-neighborhoods occurring in M .

Consequently, in order to decide if a tuple z ∈ M satisfies this ψ(x), we must
know the 2n-neighborhood of the tuple (z, a) and the list of isomorphism-types
of individual 2n-neighborhoods which are realized in M .

Proof. This is Poizat’s “Lemme d’élimination” proved in [7] for one free variable.
Let ψ(z) be logically equivalent with ∃ y ϕ(y, z). The quantifier-free formula ϕ
is put in disjunctive normal form. All conjunctions are shorter than n and the
existential block commutes with the big disjunction. Working with equations,
we write a conjunction in the form:

∃ y ϕ0(z) ∧ ϕ1(z, y) ∧ λ1(y1) ∧ . . . ∧ λk(yk).

Here, ϕ1(z, y) is a conjunction of negated equalities of the form t1(xi) �= t2(yi)
and t1(yi) �= t2(yj), and all terms appearing in the whole formula have lengths
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≤ 2n. Because of the genericity of V we can always satisfy the inequalities,
provided that the formulas λi(yi) are realizable in M . This can be decided if we
know the list of isomorphism-types of individual 2n-neighborhoods realized in
M . The conjuction is then equivalent over M with:

ϕ0(z) ∧ ∃ y1 λ1(y1) ∧ . . . ∧ ∃ yk λk(yk).

In the case that some ∃ ylλl(yl) is not consistent, or just not compatible with
the list of individual 2n-neighborhoods realized in the structure, all the conjuc-
tion disappears. In the contrary case, the whole conjunction is equivalent with
the quantifier free formula ϕ0(z). �

Definition 16. The predicate V is called sparse if it satisfies the following con-
dition:

∀ x [ V (x) → ∃ n ∈ IN ∃ε ∈ {0, 1}n ∃r x = sn
1 s0sε1 . . . sεn(r) ∧ p(r) = r ].

The sparse predicates are very useful: they allow a small list of isomorphism types
of individual neighborhoods and for all elements, the corresponding individual
neighborhood has a succint description.

Lemma 2. Suppose that the predicate V is sparse. For all x ∈ M the following
holds: if x is at distance > 3m from its root, then the individual m-neighborhood
of x contains at most one black point, which is of the form sn

1pm(x) with 0 ≤
n ≤ 2m.

Consequently, there is a unit-cost algorithm such that for input x ∈ M and
m ∈ IN it constructs a quantifier-free formula β(x) which determines the in-
dividual m-neighborhood of x up to isomorphism. The algorithm works in time
O(m).

Proof. A remark on the first part: it is easy to see that if an m-neighborhood
of x contains two black points ore more, then x is at a distance ≤ 3m from the
root.

The algorithm starts by exploring the 3m ancestors of x. If one finds a root,
the formula β(x) gives x as an si-term of the root and the information if this
root is the constant a or not. If one doesn’t find the root and there is no black
point in the m-neighborhood, the algorithm gives x as an si-term of his 3m-th
ancestor, the information that this ancestor is not a root, and a new symbol Σ
meaning “white neighborhood”. If one doesn’t find the root and there is a unique
black point in the m-neighborhood of x, instead of Σ write down the formula
V (b) where the black point b is given as term in x. �

Lemma 3. If V is sparse, there is a unit-cost algorithm such that for input
consisting of a tuple x ∈ M of length k and m ∈ IN it constructs a quantifier-
free formula β(x) which determines the m-neighborhood of x up to isomorphism.
The algorithm works in time O(mk2) and the length of β(x) is O(mk).
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Proof. First one writes down the conjunction of the individual formulae β as
computed in Lemma 2. Then we observe that:

Nm(xi) ∩ Nm(xj) �= ∅ ↔

↔ pm(xi) ∈ {xj , p(xj), . . . , p3m(xj)} ∨ pm(xj) ∈ {xi, p(xi), . . . , p3m(xi)}.

For each pair (i, j) in this situation, write down xi as a minimal term in xj . If
this doesn’t happen, don’t write anything. The new symbol Σ may play the role
of conjunction of all negated equalities which are true instead. �
Lemma 4. The number k of different free variables occurring in the formula
∃ y ϕ(x, y) as a word of length n in the 15-letter alphabet satisfies k(k + 1) <
2n. Consequently, the algorithm given by Lemma 3 for constructing the succint
description β(x) for the neighborhood N2n(u) works in time O(n2). Moreover,
β(x) as a word in the 15-letter alphabet extended with Σ is shorter than 24n2.

3.2 Construction and Main Result

In order to construct the predicate V we extend the 15-letter alphabet with
the symbols Σ and → and we fix a coding of these symbols as binary words
ε1 . . . ε5 ∈ {0, 1}5.

We consider all pairs of formulas (β(x), ψ(x)) in the language (s0, s1, p, a, V )
such that:

– ψ(x) is logically equivalent with an existential formula ∃ y ϕ(x, y) where
ϕ(x, y) is quantifier-free. Let n be the length of ψ(x) in the 15-letter alpha-
bet.

– β(x) is a formula produced by Lemma 3 to describe the 2n-neighborhood
N2n(x) for some tuple x of elements in some structure (M, V ) consisting of
an infinite union of identical blocks, with a root interpreting a and such that
V is sparse.

We consider all ∀∃-sentences θ of the form:

∀ x [β(x) → ∃ y ϕ(x, y)],

together with the existential sentences ∃ y ϕ(y).
Such a sentence θ of length l is encoded by the sequence of letters ε1 . . . ε5l.

We define the code:

[θ] := st+5l
1 ◦ s0 ◦ st

1 ◦ sε5l
◦ . . . ◦ sε1(a).

Here is t is a natural number such that t + 5l = 121n2. (We use 121 because
121 = 24 × 5 + 1.) The elements [θ] defined here form the set of all codes.

The following Lemma follows by applying Lemma 1 two times successively.

Lemma 5. Let (M, V ) be a structure consisting of an infinite union of copies
of a block, so that V is generic and sparse. Consider a sentence θ = ∀ x [β(x) →
∃ y ϕ(x, y)] such that the existential sub-formula has length n. In order to know
if θ is true in M it is enough to know the colour of terms t(a) with | t | < 2n2

and the list of isomorphism-types of individual 4n2-neighborhoods realized in M .
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We construct V inductively. The structure (M, V ) will consist of an infinite
union of identical blocks. We call an element “a black point” if it satisfies
the predicate V as constructed up to the given point; the other elements are
called white. Let M0 be the structure that has the following set of black points:
{ sn

1sn+1
0 (r) | r root }. All this poins are non-codes. M0 is already a structure with

a sparse generic predicate. It ensures the existence of sufficiently many types of
individual neighborhoods, even before the construction starts.

We order the codes in a sequence [θs] according to their length and lexico-
graphically (s ≥ 1).

Construction step: If the structure Ms−1 has been constructed, the structure
Ms is defined in the following way: the code [θs] is painted in black if and only if
Ms−1 |= θs. If this is the case, all the corresponding points in the other blocks
become also black. �

Then M = lim
s→∞ Ms.

Lemma 6. The L-structure (M, V ) constructed here has the following prop-
erties: the predicate V is generic and sparse, and for all encoded ∀∃ formal
L-sentences θ:

(M, V ) |= θ ↔ V ([θ]).

Proof. All structures Ms are generic and sparse, so we can apply Lemma 5 at
every step. Consider some step s. The quantifier-free sentence which is equivalent
with the encoded sentence depends on terms which are strictly shorter than the
code to paint (and so their colour has been already decided). It depends also on
the list of isomorphism-types of individual neighborhoods of a relatively small
radius. This list does not change anymore, either by painting the new code, nor
in the future of the construction. �

Theorem 4. There is a deterministic unit-cost algorithm able to solve the sa-
tisfaction problem for quantifier-free formulae over (M, V ) in uniform polyno-
mial time O(n2) for formulae of length n. Consequently, the structure (M, V )
satisfies P = NP for the unit-cost model of computation and has fast quantifier-
elimination.

Proof. Consider an input of the form ψu with ψ(x) = ∃ y ϕ(x, y) pure existen-
tial formula of length n and u ∈ M a tuple of the same length k as the tuple
of different free variables x. The formula can be encoded using the elements
0 := s0(a) and 1 := s1(a).

Using Lemma 3 we get a quantifier-free formula β(u) that determines up to
isomorphism the 2n-neighborhood of the tuple (u, a). The algorithm takes time
O(n2) according to Lemma 4. Now construct the following sentence θ:

∀ x [β(x) → ∃ y ϕ(x, y)].

Compute the code [θ] in M and check if V ([θ]) does hold. Recall that in
(M, V ) the sentence θ does hold if and only if V ([θ]) holds.
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If θ holds, then ∃ y ϕ(u, y). If θ does not hold, then there cannot be any tuple
x with 2n-neighborhood isomorphic with the corresponding neighborhood of u
that satisfies ∃ y ϕ(x, y). In particular ∃ y ϕ(u, y) doesn’t hold in M . �
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