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Abstract

A problem naturally arizing in the unit-cost complexity class NP over the field C of complex numbers
consists in deciding if an input of length 2n belongs to a special absolutely irreducible hypersurface of
the affine space C2". Consequently, the decision problem is substituted by a computation problem.

1 Introduction

The P vs. NP problem put in the Blum - Shub - Smale (B. S. S.) computation model over
algebraic structures deals with one of the oldest issues in algorithmic algebra and logic, the
efficiency of quantifier elimination methods. This has been also a constant interest of Volker
Weispfenning.

One of the most intriguing open questions in the area is the P vs. NP problem for the field
C of the complex numbers. Our goal is to present a possible approach to this problem. This
approach focusses on a family of irreducible polynomials, which will be called subset-sum
polynomials. Their definition is related with problems from the classical Theory of Com-
plexity (see [3] and [1]) like Knapsack and Subset-Sum. The author doesn’t know if these
polynomials have been intensively studied so far. This paper can be understood as a manifest
for doing so.

In the B. S. S. computation model (see [1] and [7]) deterministic machines working over
algebraic structures proceed signature operations and verify signature relations in units of
time. Nondeterminism arises in two different forms. One of them is the boolean nondeter-
minism, produced by states of random branching in the computation path. This is equivalent
with guessing in a set with two elements. The other is the existential nondeterminism, by
guessing elements in the whole structure. A problem over a structure S is a set of strings of
elements of S decided (non-deterministically recognized) by a machine. For a structure S we
denote by P(S) the class of problems which can be deterministically decided in polynomial
time in the number of elements of the string. This complexity measure is called unit-cost.
NBP(S) is the class of problems which are recognized by branching non-deterministic ma-
chines in polynomial time according to the unit-cost. NP(S) is the class of problems which
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are recognized in polynomial time by existential non-deterministic machines. It always holds
P(S) € NBP(S) C NP(S).

For results concerning P # NP over some others algebraic structures see [2], [4], [5], [8],
[9], [10], [11].

A deterministic machine working in polynomial time p(n) can be seen as a recursive
sequence of circuits (Cp), such that every Cy, has at most p(n) gates. P(C) = NP(C) if and
only if there is an algorithm that can find in polynomial time for every existential formula
with free variables an equivalent decision circuit. If such an algorithm exists then the number
of gates of the corresponding circuit shall be bounded by a polynomial in the length of the
given existential formula. In this sense, P(C) = NP (C) means the existence of a procedure of
polynomial-time quantifier elimination from formulas with an existential quantifier block to
equivalent decision circuits. This question is open, but like for the classical P vs. NP problem
the answer is suposed to be negative.

In the monograph [1] the unit-cost problem Knapsack is introduced as a possible candi-
date for a problem in NBP (C) but not in P (C). The problems discussed here are related with
Knapsack, but are given as sequences of varieties defined by absolutely irreducible polynomi-
als. The absolute irreducibility permits us to replace the decision circuits by computation cir-
cuits, without equality tests: if C had P = NP with unit-cost, then multiples of the subset-sum
polynomials are computable by short straight-line programs. In the last section we complete
this heuristic by considering the corresponding bit-problems.

2 Knapsack and subset-sum problems

The elementary symmetric polynomial g, (X;, .., Xn) is defined as:

0, (X1,---,%n) = z ij.
=k Je

The function &(X) := (0,(X),...,0n(X)) is computable in quadratic time with respect to
the unit-cost by iterating the rule:

Ok nt1 = Xnt1%—1n 1 Ok

Definition 1 Knapsack Kn, Subset-sum SS, Subset k-Sum SS, (for k fixed), Symmetric
Subset-sum SSS, and the special problems SS (n,2n) and SSS (n,2n) are defined as follows:

Kn:={(Xs,---,Xn,0)|n €N, T g,...60 € {0,1}, #{g =1} > 0andb =3 gx; }.

SS :={(Xy,...,xn)[N€EN, Jg,...60 € {0,1}, #{g =1} > 0and J gx; = 0}.

SS, == {(Xg5----Xn) [N >k, Jg;,... 60 € {0,1}, #{g =1} =kand y gx; =0}.

SS (n,2n) := {(Xy,...,%X,,) |n € Nand X € SSp}.

SSS :={(ay,...,0n) | IX € SSwith & = F(X)}.

SSS (n,2n) :={(0y,...,0,,) | 3X € SS (n,2n) with & = &(X)}.
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We see that SS, is in P(C) and that Kn like SS and SS (n, 2n) are in NBP(C). The fun-
damebtal symmetric polynomials are computable in polynomial time, so SSS and SSS (n, 2n)
are in NP(C).

There is the following connection between Kn and SS:

(X,b) eKn & Jke {1,...,n} (kx;—b,...,kxn—b) € SS,.

So there is a polynomial time decision procedure for Kn finding also the cardinality of all
solutions if and only if there is a uniform decision algorithm for the problems SS, (k =
1,...,n) in a uniform polynomial time depending only of n.

3 Subset-sum polynomials

The subset-sum polynomials X, ,(Xy,...,%n) are defined as:

X n(X) = i)
k,n( ) \Jl\jk(%xl)

The subset-sum polynomials verify the following identity:

Xn

Xn
Xk,n(xla AN 7Xn) = Xk—l,n—l(xl + m7 - Xn1 + k — 1) : Xk7n—1(X17 T JXn—l)'
This leads to a parallel computation procedure of depth n in the language with division.

Lemma 2 Letu,(X),...,us(X) € C[X] be symmetric polynomials and U € C[u] some polyno-
mial such that the following identity holds:

VX Xk’n(X) =U(T(x)).
Then the polynomial U is absolutely irreducible, seen as polynomial in the new variables u;.

The subset-sum polynomials Xy are symmetric homogenous polynomials of degree (E)
with coefficients in Z, so they can be expressed as polynomials in any basis of the ring of
symmetric polynomials in n variables. There exist and are uniquely determined polynomials
Zyn € Z[0oy,..., 0n] such that for all X hold X, ,(X) = %, ,(5(X)).

Hence polynomials Z, ,(5) are in particular absolutely irreducible. For other bases of
symmetric polynomials, see [6] and [12]. It is not clear if other bases would be better to use
if one tries to prove P (C) # NP (C) using symmetric subset-sum problems like SSS (n, 2n).

At this point | remark that this polynomials Zyncan be symbolically computed by Maple
using the function si npl i f y but this works only for small values of n.
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4 Eliminating equality tests

We focus on the problem SSS (n, 2n) over C. Suppose that there is a machine over C solving
this decision problem in polynomial time. An input & consisting in algebraically independent
elements o; defines a computation path where all tests p(d) = 0 are answered negatively
and the final result is a rejection. This is the so called generic path. Give now an input &(X)
produced by 2n — 1 algebraically independent elements x; and the only one relation x; 4--- 4
xn = 0. The first positive test occurs on the generic path. The corresponding polynomial must
be already divisible with % ,, because %, ,, is irreducible. By exploring the computation
path starting here it follows that:
Theorem 3 If SSS (n,2n) belongs to P(C) then there is a polynomial p(n) and a sequence of
test-free circuits (Cp) with < p(n) many gates in +, —, - such that for all n there are polyno-
mials A,,...,Ay € C[0y,...,0,,] and positive natural numbers e; (i = 1,...,d) such that:

e Cygetsaninput (ay,...,0,,) and outputs the values of the following d polynomials:

PLo= A,
€
P = Ag Zn(,jZn

e The algebraic setV (A,,...,A,) = 0.

Indeed, %, ,,(6) = 0 if and only if p,(G) = --- = py(F) = 0. In order to be tested, these
values have to be computed.

This situation is delicate in the following sense. If we only look at the equations, one
can ask: why did he write down this system? Isn’t it, that it was enough to compute and test
Y on(0) =07 Yes, it is, but our machine doesn’t make symbolic computation. The machine
juét works with complex numbers and tests equalities, but cannot perform any elimination.
On the other hand is possible that the given polynomial multiples of 2, on @re easy to compute,
but Z, ,,, itself not. It is also not known if the polynomials A; or some divisors of them are
easy to compute. So all that we can say about a computation path is that it should look like
this, but this is really more as one could say if the polynomials 2, wouldn’t have been
irreducible.

In particular, for all n there must be a sequence of polynomial multiples of Znon which
is evaluated by a uniform family of straight-line programs with < p(n) many lines. Using a
notion introduced in [1] for the problem Twenty Questions, if SSS (n,2n) belongs to P(C)
then the polynomials >, are ultimately easy to compute by straight-line programs.

n,2n

n,2n

5 The corresponding bit-cost problems

Consider the following bit-cost problems SSS (n, 2n)(C) and SSS (n, 2n)(Z):
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Input: A character-string of length m over the alphabet {0, 1,...,9,5,—}. We interpret f as
a separator and — as minus. Inputs making sense are the sequences of decimal representations
of some 2n < m many integers z,, ...,Z,,.

Question SSS (n,2n)(C): Does the vector Z belong to the irreducible set zn,zn(7) =0?

Question SSS (n,2n)(Z): Are there X4,...,%,, € Z with X € SS (n,2n) and z; = ¢;(X) for
alli=1,...,n?

Are there algorithms able to solve these problems in a polynomial time p(m)?

Theorem 4 SSS (n,2n)(C) is NP-hard. SSS (n,2n)(Z) is NP-complete.

NP-hardness: We interpret the problem 3SAT in Kn and get an instance of Kn where the
input elements are natural numbers and have decimal representations of the same length. Now
we observe that:

(X45---5%n,0) € KN & (nx; —b,...,nxn —b,—=D,...,—b) € SS (n,2n).

Finally we observe that the number of digits of () depends polynomially in the number of
digits of ¥ and we get a polynomial computation time for the bit representation of G (y).

6 Conclusions

e P = NP with unit-cost is equivalent to the existence of a polynomial time procedure of
quantifier elimination from existential formulas to deterministic decision circuits.

e The unit-cost problem Symmetric Subset-Sum is defined by polynomials having short
implicit definitions but which are probably hard to compute (evaluate).

e These polynomials are absolutely irreducible. Consequently, a decision problem is re-
duced to a computation problem.

e The corresponding bit-cost problems are NP-hard.
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