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Abstract

According to a classical result of E. Kummer, the p-adic valuation vp applied to a binomial
coefficient

(
a+b
a

)
yields the number of carries occurring while adding a and b in basis p. We

show that for all m ∈ N the numbers vp(
(
a
b

)
) build a pattern with triangular symmetry for

0 ≤ b ≤ a ≤ pm − 1. This fact will be compared with the triangular symmetry of the
patterns up(

(
a
b

)
mod p) for 0 ≤ b ≤ a ≤ pm − 1, where up is the sign-reduction: up(x) = x

if 0 ≤ x ≤ p/2 and u(x) = p − x if p/2 < x < p. It is shown that n = 4 is the only one
composite number such that un(

(
a
b

)
mod n) has triangular symmetry. In this special case the

two patterns coincide. It is also shown that the last non-zero digits of the binomial coefficients
written in basis p build a pattern with triangular symmetry. A combined pattern unifies all
proven features.
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1 Introduction

Let p be a prime. According to a classical result of Ernst Kummer, if pc |
(
a+b
a

)
but pc+1 6 |

(
a+b
a

)
,

then the number of carries that occur during the digital addition of a with b in basis p is c. If k ∈ Z
and pc | k but pc+1 6 | k, one says that vp(k) = c. The function vp is called p-adic valuation. One
takes by convention vp(0) = ∞. Three general properties of the general notion of valuation will
be used here. A valuation is a homomorphism, i. e. vp(ab) = vp(a) + vp(b), satisfying triangle’s
inequality for ultra-metrics, i.e. vp(a + b) ≥ min(vp(a), vp(b)). Moreover, if vp(a) 6= vp(b), then
vp(a+ b) = min(vp(a), vp(b)).

A direct consequence of Kummer’s Theorem about carries is the following:

Corollary 1.1 If 0 ≤ v ≤ u ≤ pm − 1, then 0 ≤ vp(
(
u
v

)
) ≤ m − 1. Both bounds are taken as

values over the given set.

Kummer’s Theorem can be seen as a result concerning the complexity of addition. It corresponds
to the usual human experience that an instance of addition, that needs more carries produces the
sensation of being more difficult. If the values vp(

(
s
a

)
) are written down in a triangular lattice, in

the same way as
(
s
a

)
, this lattice can be seen as a map of the difficulty to add numbers written in

basis p. The numbers on row s express the difficulty to get the sum s from summands a and s−a.

The first goal of this note is to show that for all m ∈ N, the first pm rows of Pascal’s Triangle,
which are numbered from 0 to pm−1, build a pattern with triangular symmetry. This fact implies
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that every Pascal’s Triangle modulo pk is the union of an ascendant chains of symmetric triangular
blocks of edge pm, where m ∈ N. This is done in Section 3.

In Section 4 this symmetry is compared with another symmetry occurring when the binomial
coefficients are projected onto a finite set in connection with a prime number. To reach the second
symmetry, the binomial coefficients modulo p are projected onto the set {0, . . . , (p − 1)/2} by a
function up, defined such that up(x) = x if 0 ≤ x ≤ (p−1)/2 and u(x) = p−x if (p−1)/2 < x < p.
We call the function up sign-reduction and we observe that it is a kind of absolute value. From a
philosophical point of view absolute values and valuations are related. Unhappily, for the moment
we cannot give more deep evidence of a relation between the two symmetries.

In [9] the author described the square dihedral symmetry of the sequences a(i, j) mod p for
a(i, j) = (a(i, j − 1) + ma(i − 1, j − 1) + a(i − 1, j)) mod p with constant initial conditions and
m 6= 0. This symmetry was also bazed on sign-reduction. The reader will observe that Lemmas
5.3 and 5.4 in [9] are related with Lemma 4.2 in the present article. The triangular dihedral
symmetry for the case m = 0 (i. e.

(
i+j
i

)
mod p) was not noticed by the author because it did

not match in the square grid used in [9]. In Section 4 this gap is filled. The triangular symmetry
was empirically observed by other authors, at least for the fundamental block given by the first p
rows - see [3], where some images and comments are displayed.

Section 5 contains a more or less coincidential interference between both symmetries in a limit
case. It is shown that the number n = 4 is the only one composite number such that the triangle
un(
(
u
v

)
mod n) consists of an ascendant chain of symmetric triangles of edge nm, where m ∈ N.

This pattern has been also studied by A. Granville in [5] and [6]. A construction in Section 6
is possible only because one symmetric pattern is active where the other one is not. They are
complementary.

Also, some natural connections with automatic sequences arise during the paper.

2 Prerequisites

Definition 2.1 A triangular lattice Θ is a set of double indexed points P (u, v) of the plane,
u, v ∈ N, 0 ≤ v ≤ u, such that all triangles in the set {P (u, v)P (u+ 1, v)P (u+ 1, v + 1) | 0 ≤ v ≤
u}∪{P (u, v)P (u+1, v+1)P (u, v+1) | 0 ≤ v ≤ u} are disjoint and congruent equilateral triangles.
Up to similarity there is only one triangular lattice, that will be called Θ.

Definition 2.2 Let S be a set. A triangle over S is an application T : Θ→ S. For some n ∈ N,
let Θ(n) be the subset consisting of the first n rows of Θ, indexed from 0 to n − 1. Let T (n) be
the restriction of T to the set Θ(n). The function T (n) will be also called a triangle. The value
T (P (u, v)) will be shortly written down as T (u, v).

Pascal’s Triangle and Pascal’s Triangle modulo n are examples of triangles, with T (u, v) =
(
u
v

)
and T (u, v) =

(
u
v

)
mod n respectively. Both triangles are uniquely determined by the initial

conditions T (u, 0) = T (u, u) = 1 and by the recurrence T (u+ 1, v + 1) = T (u, v) + T (u, v + 1) for
all u, v ∈ N with 0 ≤ v ≤ u. The same recurrence must be considered once over Z and once over
the finite cyclic group Z/nZ.

There is also another way to define Pascal’s Triangles, considering a square lattice N × N and
a recurrent double sequence given by the initial conditions a(i, 0) = a(0, j) = 1 and a(i, j) =
a(i, j−1)+a(i−1, j). In this case a(i, j) =

(
i+j
i

)
or respectively

(
i+j
i

)
mod n, see author’s papers

[9] and [11]. To change the coordinates fron the square lattice coordinates to the triangular lattice
coordinates, observe that:

a(i, j) = T (i+ j, i),

2



T (u, v) = a(v, u− v),

for all 0 ≤ i, j and 0 ≤ v ≤ u.

The square lattice representation of the binomial coefficients has some advantages. As proven in
[9], if m ∈ Fp, if the sequence a(i, j) satisfies the conditions a(i, 0) = a(0, j) = 1 and a(i, j) =
a(i, j− 1) +ma(i− 1, j− 1) + a(i− 1, j), and if for m ∈ N we define the matrix Am = {a(i, j) | 0 ≤
i, j < pm}, then:

Am = A1 ⊗ (A1 ⊗ · · · ⊗A1) = A⊗n
1 .

Here ⊗ means the (Kronnecker-) tensor product of matrice. If S is some multiplicative monoid,
A ∈Mn,m(S) and B ∈Ms,t(S), then the matrix A⊗B belongs to Mns,mt(S) and is the matrix with
block-wise representation (a(i, j)B)0≤i<n,0≤j<m. The ⊗-monomial A⊗n is defined as A⊗A⊗(n−1).
A1 was called fundamental block. If m = 0 the recurrent double sequence a(i, j) is exactly the(
i+j
i

)
as remarked above. The tensor product representation of this double sequence follows also

directly from the classical theorem of Lucas concerning the value of
(
a
b

)
mod p as a function of

their digits in basis p.

At this point should be mentioned that Pascal’s Triangle modulo pk is not a limit of tensor powers
of matrices if k ≥ 2. However, Pascal’s Triangles modulo pk are p-automatic, and consequently
can be produced by matrix substitution and are projections of double sequences produced by
two-dimensional morphisms. See [1] and [2].

Definition 2.3 A triangle T (n) : Θ(n) → S is called symmetric if for all 0 ≤ v ≤ u ≤ n − 1,
T (u, v) = T (u, u− v) and T (u, v) = T (n− 1− u+ v, n− u− 1).

To understand this definition, consider the applications S,R : Θ(n) → Θ(n), given by S(u, v) =
(u, u − v) and R(u, v) = (n − 1 − v, u − v) for all u, v ∈ N with 0 ≤ v ≤ u ≤ n − 1. It is only
pure computation to prove that R3 = S2 = id and that S−1RS = R−1. In fact, S is a reflection
of Θ(n) across a median, R is a rotation with 120◦ of Θ(n) around its center, and the group
generated by S and R is the whole dihedral group D6, the symmetry group of the equilateral
triangle. This group has six elements. Under the action of D6, Θ(n) splits in orbits of length 6,
3 or 1. If n 6= 3k + 1 there is no central element, so no orbit of length 1 does occur. Instead of
T (u, v) = T (n − 1 − u + v, n − u − 1), one can check that T (u, v) = T (n − v − 1, u − v). This is
just the other rotation.

Using the correspondence between triangular and square lattice coordinates, one can adapt this
definition for triangles presented in square lattice coordinates.

Definition 2.4 Let A ∈Mn,n(S) be a square matrix. The set T1(A) = {a(i, j) | 0 ≤ i, j < n ∧ 0 ≤
i+ j ≤ n− 1} is called the first triangle of A. The complemetary set T2(A) = {a(i, j) | 0 ≤ i, j <
n ∧ i+ j > n−1} is the second triangle of A. T1(A) is called symmetric if it satisfies the identities
a(i, j) = a(j, i) and a(i, j) = a(j, n− 1− i− j) for all i, j ≥ 0 with i+ j ≤ n− 1.

Instead of a(i, j) = a(j, n− 1− i− j) one can check that a(i, j) = a(j, n− 1− i− j). This is again
the other rotation.

3 p-Adic valuation

Let p be a prime and vp : Z→ N ∪ {∞} the p-adic valuation.
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Lemma 3.1 For 1 ≤ i ≤ pm and 0 ≤ k ≤ pm − i the following holds:

vp
[(pm − i

k

)]
= vp

[(i− 1 + k

i− 1

)]
.

Proof: By definition,(
pm − i
k

)
=

(pm − i− (k − 1)) · · · (pm − i)
k!

∧
(
i− 1 + k

i− 1

)
=
i · · · (i+ (k − 1))

k!
.

By the group homomorphism property of valuations, it must be shown that vp((p
m − i) · · · (pm −

i − (k − 1))) = vp(i · · · (i + (k − 1))). For, it would be enough that for all i ≤ x ≤ i + (k − 1),
vp(p

m − x) = vp(x). Indeed, x ≤ i+ (pm − i)− 1 = pm − 1 < pm, so vp(x) < vp(p
m) = m. Hence,

vp(p
m − x) = min(vp(p

m), vp(x)) = vp(x). 2

Theorem 3.2 The patterns {vp(
(
u
v

)
) | 0 ≤ v ≤ u < pm} have triangular symmetry for all m ≥ 0.

A possible name for the pattern built by the p-valuation applied to binomial coefficients, i. e.
{vp(

(
u
v

)
) | 0 ≤ v ≤ u}, could be the Pascal - Kummer Triangle. The set with 0 ≤ v ≤ u ≤ pm

contains the values {0, . . . ,m− 1} according to Corollary 1.1. An example is displayed in Figure
1.

Proof: By Lemma 3.1, the pattern is preserved by a rotation with 120◦ around its center. By the
identity

(
u
v

)
=
(
u
u−v
)
, it is preserved by a reflection across its median. According to the definition

2.3 and its consequences, the pattern has triangular symmetry. 2

The next Lemma has been published by I. Tomescu as a problem proposed to the readers of Gazeta
Matematică in [12].

Lemma 3.3 Let p be a prime and n = nkp
k + · · · + n0, with nk, . . . , n0 ∈ {0, . . . , p − 1}. The

number of binomial coefficients
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
that are multiples of p is:

n+ 1− (n0 + 1) · · · (nk + 1).

Proof: Let a = akp
k + · · ·+ a0, with ak, . . . , a0 ∈ {0, . . . , p− 1}. By Kummer’s Theorem, p 6 |

(
n
a

)
if and only if for all i, ni ≥ ai. So for all i, ai can be chosen in ni + 1 ways. 2

The following Lemma provides supplementary information about this pattern and will be also
applied in a later section. It has been given as a problem to be solved during a mathematical
contest in Luxemburg, 1980. For both Lemmas 3.3 and 3.4 and other nice puzzles, see [8].

Lemma 3.4 vp(
(
u
v

)
) = 0 for all v ∈ {0, . . . , u} iff u = zpm − 1, m ≥ 0 and z ∈ {1, . . . , p− 1}.

Proof: By Lemma 3.3, if u = zpm − 1, with m ≥ 0 and z ∈ {1, . . . , p − 1}, then the number of
binomial coefficients in row u that are not divisible with p is zpm−(z−1+1)(p−1+1) · · · (p−1+1) =
0. For the converse, if a number u contains a digit ni < p − 1 in its inner or at the end, one can
produce a carry over in addition by choosing a number v with a bigger digit vi > ni for this
position. So only the first digit might be different from p− 1. 2

By Lemma 3.4 we know exactly which are the constant lines in the Pascal-Kummer Triangle.

The Pascal-Kummer Triangle is not automatic, because the values of vp(
(
u
v

)
) are not bounded.

To surpass this inconvenient, one has to adapt the notion of valuation for rings of classes of
remainders, like Z/pkZ. The resulting notion is not standard, because valuation theory has been
developped for fields, and the rings Z/pkZ are not domains. However, this non-standard notion
is very natural in the present context. We recall that all ideals in Z/pkZ have the form piZ/pkZ
and that they build a descending finite chain of ideals:

Z/pkZ = p0Z/pkZ > pZ/pkZ > · · · > pk−1Z/pkZ > pkZ/pkZ = 0.
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Figure 1: The first 64 rows of the Pascal-Kummer Triangle v2(
(
u
v

)
).

Definition 3.5 For a prime p and for k ≥ 1 we define vp : Z/pkZ→ {0, 1, . . . , k} as:

vp(x) =

{
s x ∈ psZ/pkZ ∧ x /∈ ps+1Z/pkZ ∧ s < k,

k x = 0.

Corollary 3.6 The patterns {vp(
(
u
v

)
mod pk) | 0 ≤ v ≤ u < pm} have triangular symmetry for

all m ≥ 0. Moreover, the two-dimensional sequence {vp(
(
u
v

)
mod pk) | 0 ≤ v ≤ u} is p-automatic.

Proof: The triangular symmetry of the patterns follows directly from Theorem 3.2. The 2-
dimensional sequence is p-automatic because the 2-dimensional sequence (

(
u
v

)
mod pk) is p-

automatic, and that the p-automatic sequences are closed under projections. See the mono-
graph [1] for both properties. However, using Kummer’s Theorem, one can very easily con-
struct an automaton generating the same sequence in square coordinates - i.e. a(i, j) =

(
i+j
j

)
mod pk. The input alphabet is Σ = {0, . . . , p − 1} × {0, . . . , p − 1}. The set of states is
Z = {z0, z1, . . . , zk−1} ∪ {w1, . . . , wk−1} ∪ {f}. For t < k, zt means that t many carries have
been counted so far, but in the moment there is no carry to add. Similarly, wt means that t many
carries have been counted so far and the digit addition done in the last step produced a carry. In
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state f a number of k carries have been already counted. In this case it is no more important
whether in the last step a carry has been produced or not. The digits of the input (i, j) come
in starting with the less significant pair (i0, j0). The output function ω assigns to each state the
number of carries: ω(zt) = ω(wt) = t, ω(f) = k. 2

Corollary 3.7 The patterns {
(
u
v

)
mod 2 | 0 ≤ v ≤ u < 2m} have triangular symmetry for all

m ≥ 0.

Proof: Indeed, for v2 : Z/2Z → {0, 1} hold v2(1) = 0 and v2(0) = 1. So up to a permutation of
values, v2(

(
u
v

)
mod 2) produces the same pattern as

(
u
v

)
mod 2. 2

4 Sign-reduction

In the next definition the elements of the ring Z/nZ are intentionally identified with their canonical
representatives from the set {0, 1, . . . , n−1}. The order used in the definition is the order of natural
numbers.

Definition 4.1 Let n be a natural number. The sign-reduction un : Z/nZ→ Z/nZ is defined as:

un(x) =

{
x 0 ≤ x ≤ n/2,
n− x n/2 < x ≤ n− 1.

Lemma 4.2 Let p be a prime. For 1 ≤ i ≤ p and 0 ≤ k ≤ p− i the following congruence holds:(
p− i
k

)
≡ (−1)k

(
i− 1 + k

i− 1

)
mod p.

Proof: For i = 1 this result is folklore - but maybe not the following proof. The (p + 1)-th row
of Pascal’s Triangle consists of

(
p
k

)
and they are multiples of p for k = 1, . . . , p− 1. The p-th and

(p+ 1)-th rows start in the field Fp as follows:

1 x y z . . .
1 0 0 0 . . .

We apply the recurrence T (u+1, v+1) = T (u, v)+T (u, v+1) and get successively x = −1, y = 1,
z = −1 and so on. So

(
p−1
k

)
≡ (−1)k ≡ (−1)k

(
1−1+k
1−1

)
mod p, as it was to prove.

Now we continue by induction. Suppose that we have already shown that the row p − i consists
of elements respectively congruent with (−1)k

(
i−1+k
i−1

)
mod p for 0 ≤ k ≤ p− i, and suppose that

in the row p− i− 1 we have already shown that
(
p−i−1
k

)
≡ (−1)k

(
i+k
i

)
mod p. The next binomial

coefficient is
(
p−i−1
k+1

)
and has the following position in Pascal’s Triangle:(

p−i−1
k

) (
p−i−1
k+1

)(
p−i
k+1

)
Consequently:(

p− i− 1

k + 1

)
=

(
p− i
k + 1

)
−
(
p− i− 1

k

)
≡ (−1)k+1

(
i− 1 + k + 1

i− 1

)
− (−1)k

(
i+ k

i

)
=

= (−1)k+1
[(i+ 1

i− 1

)
+

(
i+ k

i

)]
= (−1)k+1

(
i+ k + 1

i

)
= (−1)k+1

(
(i+ 1)− 1 + (k + 1)

(i+ 1)− 1

)
mod p.

2
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Figure 2: u11(
(
u
v

)
mod 11) with 0 ≤ v ≤ u ≤ 10 and u13(

(
u
v

)
mod 13) with 0 ≤ v ≤ u ≤ 12.

Lemma 4.3 The pattern T1(A1) = {up(
(
u
v

)
mod p) | 0 ≤ v ≤ u < p} has triangular symmetry.

Proof: Sign-reduction over the identity in Lemma 4.2 yields:
(
p−i
k

)
mod p =

(
i−1+k
i−1

)
mod p.

This means that pattern is preserved by a rotation with 120◦ around its center. By the identity(
u
v

)
=
(
u
u−v
)
, the pattern is preserved by a reflection across its median. According to the definition

2.3 and its consequences, the pattern has triangular symmetry. 2

See Figure 2 for two examples.

Lemma 4.4 In up(
(
u
v

)
mod p) the configuration:

a a
a

is possible only if p ≤ 3 or a = 0. Consequently, the central configurations in T for p ≥ 5 are
described below. Here always 0 6= a 6= b 6= 0:

a a
a b a

a a
if p = 4k + 1,

b a b
a a

b
if p = 4k + 3.

Proof: Verify the eight possible relations (ε1p+(−1)1+ε1a)+(ε2p+(−1)1+ε2a) = (ε3p+(−1)1+ε3a)
for ε1, ε2, ε3 ∈ {0, 1}. The cases 100 and 011 lead to 3a = 0, so a = 0 or p = 3. The cases 000
and 101 lead to a = 0. The other cases lead to ±p = ∓a or 2p = a possible only if p ∈ {2, 3} and
a = 0. The central configurations depend of the triangular symmetry, of the existence of a central
element and of this condition. 2

For the next steps we need the tensor product structure of Pascal’s Triangle mod p as it has
been recalled in the Introduction. Let F×

p = Fp \ {0} be the multiplicative group pf the field Fp.
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We observe that the application:

up : F×
p → {1, 2, . . . , (p− 1)/2} := Hp,

has #u−1
p (a) = 2, for all a ∈ Hp, that u−1

p (1) = {1,−1} and that for all a, b ∈ Hp and for all
x ∈ u−1

p (a), y ∈ u−1
p (b), up(xy) does not depend of the choice of the representatives x and y.

Consequently one can define a new multiplication × over Hp by a × b = up(u
−1
p (a)u−1

p (b)). This
operation induces a structure of group (Hp,×, 1) such that up : F×

p → Hp is a homomorphism of
groups with kernel {1,−1} =< −1 >. This yields:

Hp
∼= F×

p / < −1 > .

If we complete now this multiplication in a natural way with a× 0 = 0× a = 0, we get:

Lemma 4.5 If Am = {up(
(
i+j
i

)
mod p) | 0 ≤ i, j < pm} ∈Mpm,pm(Hp ∪ {0}), then:

Am = A1 ⊗ (A1 ⊗ · · · ⊗A1) = A⊗n
1 ,

where the tensor product is defined according to the multiplication × on Hp ∪ {0} and the tensor
product monomial is inductively defined by A⊗n = A⊗A⊗(n−1).

Lemma 4.6 Let (J,×) be some associative monoid containing an element 0 with the property
that for all x ∈ J , x × 0 = 0 × x = 0. Let A ∈ Mm,m(J) and B ∈ Mn,n(J) two matrices, such
that T1(A), T1(B) have both triangular symmetry and T2(A), T2(B) consist both only of zeros.
(Compare with Definition 2.4). Then for the matrix A ⊗ B ∈ Mmn,mn(J) holds: T1(A ⊗ B) has
triangular symmetry and T2(A⊗B) consists only of zeros.

Proof: Pure computation using Definition 2.4. 2

More interesting than the proof is maybe the fact that if one tries to prove Lemma 4.6 in the
form: if both Ti(A) have triangular symmetry and both Ti(B) have triangular symmetry, then both
Ti(A ⊗ B) have triangular symmetry, it just does not work. Indeed, very easy counterexamples
with m = n = 2 for T2 and with m = 3 and n = 2 for both Ti can be constructed.

Theorem 4.7 The patterns {up(
(
u
v

)
mod p) | 0 ≤ v ≤ u < pm} have triangular symmetry for all

m ≥ 0.

Proof: By induction in m ≥ 0. The case m = 0 is trivial. For the case m = 1 we apply Lemma
4.3. Now we turn to square coordinates and we observe that T1(A1) has triangular symmetry and
that T2(A1) consists only of zeros. Indeed, for 0 < i, j < p with 2p > i + j ≥ p, p |

(
i+j
i

)
. This

means by Lemma 4.5 and by Lemma 4.7 that all Am = A⊗n
1 are such that T1(Am) has triangular

symmetry and T2(Am) consists only of zeros. But the patterns in question are exactly T1(Am). 2

For an example, see Figure 3.

We observe that the tensor product structure confirms Lemma 3.4. Another consequence of the
tensor product structure is that the double sequence up(

(
u
v

)
mod p) is p-automatic. This follows

again by the fact that the p-automatic sequence
(
u
v

)
mod p is projected onto the finite set Hp∪{0}.

In fact we know more: the sequnce is a 2-dimensional morphic sequence, with start-letter 1 and
with substitutions a; a×A1 for all a ∈ Hp ∪{0}, where × is the appropriate multiplication. All
elements of Hp ∪ {0} occur in the pattern, and can be found already in the second diagonal, near
the edge.
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Figure 3: The first 121 rows of u11(
(
u
v

)
mod 11), building T1(A1 ⊗ A1). T1(A1) multiplied with

different group elements from H11 yields new blocks with permuted colors.

5 A property of the number 4

In this section we show that the number n = 4 is the only one composite number with the property
that the triangles {un(

(
u
v

)
mod n) | 0 ≤ v ≤ u ≤ nm} have triangular symmetry for all m ≥ 0.

Lemma 5.1 is folklore. It can be found e.g. in the preprint [7], whose author has got the state-
ment during a night-dream. For statements like Lemma 5.1 and much stronger, see Granville’s
remarkable article [4]. This Lemma is strong enough for our needs.

Lemma 5.1 For all m,n ∈ N and prime p,
(
np
mp

)
≡
(
m
n

)
mod p2.

Proof: (from [7]) In (1 +X)np = [(1 +X)p]n the coefficient of Xmp is:(
np

mp

)
=

∑
0 ≤ ki ≤ p

k1 + · · ·+ kn = mp

∏
i

(
p

ki

)
.
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Modulo p2 contribute only those terms with at least n − 1 many ki equal 0 or p. The sum of ki
being multiple of p, all of them must be 0 or p. So m of n many ki must be p, and the number of
possible choices is

(
n
m

)
. 2

Theorem 5.2 The unique composite n ∈ N such that the patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤

u ≤ nm} have triangular symmetry for all m ∈ N is n = 4. In its case all patterns {u4(
(
u
v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m} have triangular symmetry, and the patterns are the same as those given
by {v2(

(
u
v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m}.

Proof: The proof is structured in a sequence of Claims.

Claim: 1. If all patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤ u < nm} have triangular symmetry, then n

must be a prime-power.

Let n = pn1
1 pn2

2 · · · pns
s be the prime factor decomposition of n. By the Chinese Remainder Theorem

the following rings are isomorphic:

Z/nZ ∼= Z/pn1
1 Z× Z/pn2

2 Z× · · · × Z/pns
s Z,

by x mod n; (x mod pk11 · · · pkss ) and by this isomorphism 1 ∈ Z/nZ corresponds to (1, 1, . . . , 1).

Suppose that the given sets have triangular symmetry. This implies that all
(
nm−1
k

)
= ±1 for

m ∈ N and 0 ≤ k ≤ nm. In particular, vp(
(
nm

k

)
) = 0 for all 0 ≤ k ≤ nm. If we focus on p1 and

apply Lemma 3.4, it follows that there is a sequence (xm) taking values in {1, . . . , p1 − 1} and an
increasing sequence (km) of natural numbers such that for all m ∈ N, xmp

km
1 = pmn1

1 pmn2
2 · · · pmns

s .
The sequence (xm) has a constant subsequence; let x be its constant value. It turns out that x
has not a unique prime factor decomposition, unless p2 = · · · = ps = 1.

Claim: 2. If n = pk such that all patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤ u < nm} have triangular

symmetry and k ≥ 2, then p cannot be an odd prime.

Suppose that n = pk, k ≥ 2 and p is an odd prime. By Lemma 5.1,(
pk

pk−1

)
≡
(
p

1

)
= p mod p2,

so
(
pk

pk−1

)
≡ ap2 + p mod pk. If the row pk − 1 consists only of ±1 mod pk, then ap2 + p mod pk

must belong to the set {±2, 0}, which is the set of possible sums of two elements of row pk − 1.
This is impossible, because p mod p2 must be then ±2, which implies p = 2.

Claim: 3. If n = 2k such that all patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤ u < nm} have triangular

symmetry, then k ≤ 2.

Suppose n = 2k and k ≥ 3. It follows:(
2k − 1

2

)
=

(2k − 1)(2k − 2)

2
= 22k−1 − 2k − 2k−1 + 1 ≡ −2k−1 mod 2k.

For k ≥ 3, −2k−1 mod 2k cannot be ±1 mod 2k.

Claim: 4. All patterns {u4(
(
u
v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m} have triangular symmetry, and are the

same as those given by {v2(
(
u
v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m}.

If we compare the functions v2 : Z/4Z→ {0, 1, 2} with u4 : Z/4Z→ {0, 1, 2} we see that:

v2(x) =


2 x = 0,

0 x = 1 ∨ x = 3,

1 x = 2,

u4(x) =


0 x = 0,

1 x = 1 ∨ x = 3,

2 x = 2.

So up to a permutation of values, v2 and u4 are equal and produce the same pattern. This pattern
is symmetric by the Theorem 3.2. 2
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Figure 4: The first 16 rows of u4(
(
u
v

)
mod 4) or of v2(

(
u
v

)
mod 4).

First 16 lines of this pattern can be seen in Figure 4. The function u4 has been also considered
by Zaphod Beeblebrox in the nice papers [4] and [5] by A. Granville. A little bit in this spirit, we
show now a complete description of the pattern.

Corollary 5.3 The double sequence u4(
(
i+j
i

)
mod 4) consists of the minors:

A1 =

(
1 1
1 2

)
, A2 =

(
1 1
1 0

)
, A3 =

(
2 2
2 0

)
, A4 =

(
0 0
0 0

)
.

Moreover, the whole double sequence can be generated starting with A1 and successively applying
the following substitution rules:

A1 ;

(
A1 A2

A2 A3

)
, A2 ;

(
A1 A2

A2 A3

)
, A3 ;

(
A3 A3

A3 A4

)
, A4 ;

(
A4 A4

A4 A4

)
.

Proof: The author displayed a substitution with eight minors generating the pattern (
(
u
v

)
mod 4)

in [10]. If we apply the function u4 on these eight minors element-wise, two of them yield the
minors called here A3 and A4 (which starting with A3 would generate alone a pattern isomorphic
with

(
u
v

)
mod 2), other two of them reduce to A1 and four of them reduce to A2. The big surprise

comes when one applies u4 also on the rules of substitution. Without any contradiction, they fall
together onto the rules given here, exactly like the minors: one, one, two and four at a time. 2

6 The last non-zero digit symmetry

The functions vp and up are complementary in the sense that one of them is active exactly over the
places where the other one is constant. We can glue them together by considering their values as
natural numbers and building the sum up(x) + vp(x). This function generate symmetric patterns
if applied over

(
u
v

)
with 0 ≤ v ≤ u < pm for all m ∈ N, but has the disadvantage, that values

0, 1, . . . ,min(m − 1, (p − 1)/2) have not a unique interpretation anymore. Another idea is to fix
the value of m and to consider the function f(u, v) = m− 1− vp(

(
u
v

)
) + up(

(
u
v

)
mod p). Now the

two complementary patterns glue well and values have a unique interpretation. Unhappily, up is
not too creative for p ≤ 5 and vp becomes interesting when m ≥ 4.

But one can get much more if one applies up on the last non-zero digit of
(
u
v

)
written in basis p.
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Definition 6.1 Let wp : Z \ {0} → Z, given by wp(x) = x/pvp(x), the p-free part of x.

Lemma 6.2 (Anton - Stickelberger - Hensel) Let p be prime, and m,n ∈ N with n ≥ m. Let
r = n−m. Let n = n0 + n1p+ · · ·+ ndp

d with 0 ≤ ni < p, and similarly for m and n with digits
mi and ri respectively. Finally, let vp(

(
n
m

)
) = k. Then:

wp(

(
n

m

)
) ≡ (−1)k

( n0!

m0!r0!

)( n1!

m1!r1!

)
· · ·
( nd!

md!rd!

)
mod p.

Proof: See [4] for the proof of a stronger identity, modulo pk. 2

Figure 5: u11(w11(
(
u
v

)
) mod 11) + 5v11(

(
u
v

)
) with 0 ≤ v ≤ u ≤ 121.

Theorem 6.3 Let p be a prime. The patterns {up(wp(
(
u
v

)
) mod p) | 0 ≤ v ≤ u ≤ pm} have

triangular symmetry for all m ∈ N.

Proof: Fix some m ∈ N. Like before, it is enough to prove that one rotation conserve the pattern.
We use this time the rotation (u, v) ; (n− 1− v, u− v). It is to show that:

up
(
wp
((n
s

))
mod p

)
= up

(
wp
((pm − 1− s

n− s

))
mod p

)
.
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In order to use Lemma 6.2, let r = n− s, and ni, ri, si their digits in basis p, with 0 ≤ i ≤ m− 1.
We observe that pm − 1 in basis p consists of the repeated digit p − 1 only, and that pm − 1 − s
consists of the digits p− 1− si. Moreover (pm− 1− s)− (n− s) = pm− 1−n, that consists of the
digits p−1−ni. Also recall that up and the projection mod p are multiplicative homomorphisms.
One has to show that:

up
( n0!

r0!s0!
mod p

)
· · ·up

( nm−1!

rm−1!sm−1!
mod p

)
=

= up
( (p− 1− s0)!

r0!(p− 1− n0)!
mod p

)
· · ·up

( (p− 1− sm−1)!

rm−1!(p− 1− nm−1)!
mod p

)
.

Now we focus on some factor up(
(p−1−si)!
ri!(p−1−ni)!

mod p).

up
( (p− 1− si)!

(p− 1− ni)!
mod p

)
= up

( 1 · 2 · · · (p− si − 2)(p− si − 1)

1 · 2 · · · (p− ni − 2)(p− ni − 1)
mod p

)
.

Recall that by definition up(x) = up(p− x). We apply this identity on every factor. One gets:

up
( (p− 1) · (p− 2) · · · (si + 2)(si + 1)

(p− 1) · (p− 2) · · · (ni + 2)(ni + 1)
mod p

)
.

But according to Wilson’s Theorem, (p − 1)! ≡ −1 mod p, so the last term displayed is equal
with:

up
( (−1)/si!

(−1)/ni!
mod p

)
= up

(ni!
si!

mod p
)
.

Now the equality to show follows by equality factor-wise. 2

Corollary 6.4 The patterns {up(wp(
(
u
v

)
) mod p) + vp(

(
u
v

)
)(p − 1)/2 | 0 ≤ v ≤ u ≤ pm} have

triangular symmetry for all m ∈ N.

Proof: This follows directly from Theorem 3.2 and Theorem 6.3. 2

An application of the Corollary 6.4 can be seen in Figure 5. The advantage of this function is that
it does not represent only the last non-zero digit, but also the p-adic valuation. Those patterns
suggest that all sets vp(

(
u
v

)
) = k have a structure of tensor product of matrices, exactly like the

set vp(
(
u
v

)
) = 0. This is a question to study.
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