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Abstract

We prove that all infinite Boolean rings (algebras) have the property P 6= NP according
to the digital (binary) nondeterminism.
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1 Introduction

Given a ring R, we call input over R a finite non-empty sequence of elements of R. Let R∞ be
the set of all inputs. A problem P over R is any set of inputs (P ⊂ R∞). An R-machine is a
computation system given by a finite description and able to work out inputs of arbitrary length
according to a program. Finitely many fixed constants in the ring may occur in the program as
machine’s parameters. If excepting 0 and 1 no other parameter occurs, we say that the machine
is parameter-free. The length of an input is the measure of its (algebraic) complexity. By
polynomial time we mean that the time of computation has at most a polynomial increment
rate in the length of the input.

In the binary (called also boolean -, ramification -, or digital -) nondeterminism are allowed situ-
ations in which the machine can continue its computation in two different ways, and the decision
is taken arbitrarily. The second kind of nondeterministic machines have guess instructions, as-
signing to some register any value picked up arbitrarily from the ring. If one algebraic structure
contains at least two elements and possess equality one can simulate any binary nondeterministic
machine using a guess-nondeterministic one.

If we interpret the structure above as a model of computation, we can define the class PR of
problems decided by deterministic machines in polynomial time and the classes NBPR and NPR

of problems recognized by the eventually halting of digital nondeterministic machines, respectively
guess-nondeterministic machines, in polynomial time. As we have seen, PR ⊆ NBPR ⊆ NPR, so
P 6= NBP implies P 6= NP over R.

This approach to algebraic complexity for rings has been started by Blum, Shub and Smale in [3]
and continued in [2]. Goode put in [6] the bases of a general theory of computation over algebraic
structures compatible with [3] and introduced the class NBP . Poizat continued this work in his
book [8]. His examples concern mainly the class NBP .

It is quite easy to find rings with P 6= NP : choose a ring which has not quantifier elimination in
the given language. However, it is more difficult to prove that a ring has the property P 6= NBP
or even to show that a ring admitting quantifier elimination has P 6= NP .

The unique example of ring known before by the author to have P 6= NBP occurred in the
literature in a somehow hidden way. Poizat proved in [8] that all atomless Boolean algebras have
this property, but he didn’t emphasize that this automatically gives an example for rings too,
every Boolean algebra being a Boolean ring. In spite of this fact it continued to be widely believed
that no example of ring with P 6= NBP is known.

The aim of this paper is to generalize Poizat’s result to all infinite Boolean algebras.
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2 Boolean rings

In this Section we present general things about Boolean algebras and rings. For more information,
see [1], [5], [7], [9] or every specialized monograph.

A Boolean ring is an associative ring with 1 that models the supplementary axiom ∀x x2 = x.

Definition: Let S be a set. The power-set 2S is a Boolean ring with the operations A + B :=
(A∩ B̄)∪(Ā∩B), AB := A∩B, 0 = ∅, 1 = S. We call any sub-ring of 2S a ring of sets. All rings
of sets are Boolean. The reciprocal is true according to the following Representation Theorem.

Theorem 2.1 Let R be a Boolean ring. There is a set S and a sub-ring R ⊆ 2S such that R ' R.

Proof: Immediate consequences of the axioms are: R is commutative, has characteristic 2 and 1
is the only one unit (invertible element) in R. Let m be some maximal ideal of R. R/m is a field
of characteristic 2 which models ∀x x2 = x, and the unique such field is F2. Let S be the set of
all maximal ideals of R. Consider the canonical homomorphism of rings:

Φ : R −→
∏
m∈S

R/m '
∏
S

F2.

The kern of Φ is the Jacobson radical J(R) and consists of all a ∈ R such that 1 + a is a unit.
But 1 is the only one unit so Φ is an embedding of R into 2S . 2

The partial order ⊆ does not depend of representation because it is definable by a ⊆ b iff ab = a.
One gets back the set-theoretic operations by a∩b := ab, a∪b := a+b+ab, ā := 1+a. This shows
that the abstract Boolean algebras, the abstract Boolean rings, the rings of sets and the Boolean
algebras of sets are the same objects. If we add de Morgan’s Rule a ∪ b = (ā ∩ b̄), we conclude
that: {+, ·} - circuits, {∪,∩,¯} - circuits and {∩,¯} - circuits are equivalent and can be effectively
translated one in another within linear consume of time and space. Moreover, it is sufficient for
computing to dispose of tests a = 0, because a = 1 iff ā = 0 and a = b iff ā ∩ b = 0 ∧ a ∩ b̄ = 0.

Definition: Let R ⊆ 2S be a represented Boolean algebra and Y ⊂ S be a proper subset. We
define the restricted Boolean algebra:

R|Y := {r ∩ Y | r ∈ R} ⊆ 2Y .

R|Y is never a proper sub-algebra of R because it has 1 = Y , but is a principal ideal of R if
Y ∈ R. In the last case the isomorphism class of R|Y does not depend of the representation.

Definition: x ∈ R is called an atom of R if R|x is isomorphic with the two-element Boolean
algebra F2. A Boolean algebra is called atomic if every element contains an atom. 2S is an atomic
algebra.

Finite Boolean algebras are always atomic and are isomorphic with the power-sets of their atoms.
If Fm is the finite Boolean algebra with m atoms then Fm has 2m elements. We can embed Fm

into Fm+1 in many ways, one possible embedding is defined by the following action on atoms:
{i}; {i} for i = 1, . . . ,m− 1 and {m}; {m,m+ 1}.
Let Fm be the Boolean algebra freely generated by m propositional variables X1, . . . , Xm. For
ε ∈ {0, 1} we denote by Xε := X + ε, such that X0 = X and X1 = X̄. With the m independent
variables we can construct 2m atoms:

Xε1
1 ∩ · · · ∩Xεm

m 6= 0.

It follows that Fm has 22m

elements and that Fm ' F2m . To find an isomorphism take for
all i = 1, . . . , 2m and k = 1, . . . ,m: i ∈ Xk ⇔ 2k−1 occurs in the shortest sum of two-powers
representing i.

2



Definition: Let R be a Boolean algebra. The problem Dependent D(R) is the set of all finite
strings x1, . . . , xn ∈ R such that there exist ε1, . . . , εn ∈ {0, 1} with:

xε1
1 ∩ · · · ∩ xεn

n = 0.

More generally, for a ring R we define the problem Zero-divisor Z(R) consisting of all finite strings
x1, . . . , xn ∈ R such that there exist ε1, . . . , εn ∈ {0, 1} with:

(x1 + ε1) . . . (xn + εn) = 0.

If R is a Boolean ring then Z(R) = D(R). Both problems are always NBP over the given
structures.

3 Main result

Theorem 3.1 There does not exist any infinite Boolean ring (algebra) R such that a deterministic
R-machine using arbitrary fixed constants c1, . . . , ck ∈ R could decide D(R) in polynomial time.
Consequently, infinite Boolean rings satisfy P 6= NBP and P 6= NP .

The proof is divided in three Lemmas. The first Lemma eliminates the constants like in [10],
the second Lemma reduces the problem to the existence of some uniform algorithm for all finite
Boolean algebras and the third Lemma shows that such an algorithm cannot exist. The last two
Lemmas are practically taken out from Poizat’s proof over atomless algebras. An earlier version of
the proof used the fact that every infinite Boolean algebra has a saturated extension that contains
an atomless Boolean algebra as a sub-algebra. This has been finally eliminated as superfluous.

Lemma 3.2 Let R be an infinite Boolean algebra. If there are constants c1, . . . , ck in R and
some R-machine M using these constants able to decide the problem D(R) in uniform polynomial
time p(n), then there exists an infinite Boolean algebra R1 and a parameter-free deterministic
R1-machine M1 able to decide the problem D(R1) in uniform polynomial time 2k+1p(n) + n+ 1.
(Recall that k is a constant.)

Proof: We represent R as a sub-algebra of 2S for some infinite set S. Let C be the finite sub-
algebra of R generated by the constants c1, . . . , ck. Let α1, . . . , αl be the atoms of C, l ≤ 2k. One
sees that α1 ∪ · · · ∪ αk = S and this is a partition. There must be an αi, say α1, such that the
restricted algebra R1 := R|α1 with 0 = ∅ and 1 = α1 is infinite.

Let x1, . . . , xn ∈ R1 be an input from R1. We observe:

~x ∈ D(R1)⇔ ~x ∈ D(R) ∨ R |= x̄1 ∩ · · · ∩ x̄n ∩ α1 = 0.

Indeed, if xε1
1 ∩· · ·∩xεn

n = 0 calculated in R1 and at least one εi = 0 then xε1
1 ∩· · ·∩xεn

n calculated
in R is a subset of xi ⊆ α1 so xε1

1 ∩· · ·∩xεn
n = 0 in R. If all εi = 1 then x̄1∩· · ·∩ x̄n = α2∪· · ·∪αl

in R but in this case x̄1 ∩ · · · ∩ x̄n ∩ α1 = 0 in R.

Step 1: we construct a R-machine M′ with constants c1, . . . , ck working over R and deciding
D(R1) in polynomial time p(n) + n + 1. M′ has the program: Input x1, . . . , xn ∈ R1; if
M(x1, . . . , xn) = yes then output yes and stop else if x̄1∩· · ·∩ x̄n∩α1 = 0 then output
yes and stop else output no and stop.

Step 2: we modify M′ in order to get a parameter-free R1-machine M1 deciding D(R1) in time
2k+1p(n) + n+ 1. Let C1 := C |α2 ∪ · · · ∪αl. Every element occurring during a calculation ofM′
with inputs in R1 has the form x = x′ ∪ x′′ where x′ ∈ R1 and x′′ ∈ C1. We see that M′ cannot
quit the algebra R1×C1. In the program ofM′ we replace the instruction input x1, . . . , xn with
x′1 := x1; . . . ;x′n := xn x′′1 := 0; . . . ;x′′n := 0. We replace x := y ∩ z by x′ := y′ ∩ z′ ; x′′ := y′′ ∩ z′′
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and x := z̄ by x′ := z̄′ ; x′′ := z̄′′. We replace x := x ∩ ci by x′ := 0 ; x′′ := x′′ ∩ ci if α1ci = 0
and by x′′ := x′′ ∩ (ci \ α1) if α1ci = α1. Finally, replace if x = 0 then ... else ... by if
x′ = 0 and x′′ = 0 then ... else ....

We observe now that all the computations in registers x′ don’t use any constants. The compu-
tations in registers x′′ take place in a finite algebra C1 with ≤ 2k − 1 atoms. All such possible
computations can be now coded in some fixed data-basis of length ≤ 22k+1

in the program ofM1.
They are binary searched in logarithmic time according to the length of this data-basis by any new
simulation done byM1 for aM′-computation over C1. M1 is parameter-free and deterministic.2

Lemma 3.3 If for a parameter-free machine M1 there is an infinite Boolean algebra R1 such
that M1 deterministically decides D(R1) in some polynomial time q(n), then M1 decides D(Fm)
in the same time q(n) uniformly in m for all finite Boolean algebras Fm.

Proof: R1 contains arbitrarily big finite sub-algebras, and because one can embed Fm ↪→ Fm+1,
contains R1 every finite Boolean algebra as a sub-algebra. M1 is parameter-free, so for inputs
from the isomorphic image of Fm remain all computations in this sub-algebra Fm. 2

Lemma 3.4 There is no parameter-free machine able to decide the problems D(Fm) in a uniform
polynomial time q(n) over all finite Boolean algebras Fm.

Proof: Choose an m big enough such that 2m > q(m) and consider inputs from the algebra
Fm ' F2m . If X1, . . . , Xm form a minimal set of free generators of Fm then the input ~X =
(X1, . . . , Xm) 6∈ D(Fm). Along its computation path at most q(m) atoms of the form Xε1

1 ∩ · · · ∩
Xεm

m have been tested if they are = 0 and all answers were negative. We can represent X1, . . . , Xm

as subsets of a set of 2m points. We color in red the points corresponding to the tested formal
atoms and in black all other points. Because 2m − q(m) > 0 there is at least one black point.

If we remove a black point i ∈ {1, . . . , 2m} and consider the sets Yk := Xk \ {i} as subsets of the
2m−1 set {1, . . . , 2m}\{i}, then is ~Y = (Y1, . . . , Ym) ∈ D(F2m−1) a positive input that will follow
the same computation path like the negative input ~X. This is a contradiction. 2

The Theorem is now proved. We remark that all considerations work also for the non-uniform
polynomial class P.

On the other hand we emphasize that the general P - NP question in the sense of [8] for a given
finite Boole algebra is equivalent with the classical P - NP Turing problem, so is sensibly more
difficult than questions considered in this paper.
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