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Abstract

We define diophantinely rings of algebraic integers O inside their polynomial rings O[T ]
using only constant coefficients from Z. The result is motivated by minimizing the number of
occurrences of T and its exponent in a diophantine definition for the predicate t 6= 0 in O[T ].
Primary 03B99, Secondary 11D99.

1 Introduction

In this paper we will consider some issues of diophantine definability over rings. We concentrate
on rings of algebraic integers and their polynomial rings, and we hope to show some useful tricks.
Definition: For an abstract set of constants C, we call the language L = {+,−, ·, {0, 1} ∪
C} extension with constants of the formal language of rings. We say that the constants are
interpreted over some ring R if there is an interpretation of the language over R such that the
arithmetical operations keep their usual meaning and every constant become the name of a fixed
element of R. We say that a relation D ⊂ Rk is L-definabile iff there is a first order formula
φ(x1, . . . , xk) with k free variables in the language L such that D = {(x1, . . . , xk) ∈ Rk | there is an
extension with new constants a1, . . . , ak /∈ C of L so that according to the interpretation aR

i := xi

holds R |= φ(a1, . . . , an) }. If the formal definition φ is quantifier-free or contains only existential
quantifiers, we say that D is existentially L-definable. If φ is existential and, moreover, does not
contain any negation, we say that D is L-diophantine.
We start with a simple observation about the importance of the complement of 0.

Lemma 1.1 Let R be a ring and L be an extension with constants of the formal language of
rings, interpreted over R, such that the unary relation t ∈ R \ {0}, shortly denoted t 6= 0, is
L-diophantine. Then every existentially L-definable relation is L-diophantine.

2 Adequacy

The remark above justifies the following:
Definition: A ring R will be called adequate with respect to a language L iff all existentially
L-definable relations over R are L-diophantine over R.
A ring R is adequate with respect to L iff the relation t 6= 0 is L-diophantine, because the empty
prefix is also existential.
The following results show that the adequacy is strongly dependent on the interpretation of the
constants occurring in L.

Theorem 2.1 Let ∆ be a commutative ring not necessarily with 1.

1. Let L be an extension with constants of the formal language of rings interpreted over ∆. Let
T be transcendental over ∆. Then the polynomial ring ∆[T ] is not adequate with respect to
L.

∗Institut für Mathematik und Informatik, Universität Greifswald, Germany. These results occurred as technical
lemmata in author’s dissertation [P] at the University of Konstanz, Germany. During this dissertation the author
was partially supported by D.A.A.D. and by the University of Konstanz. The author kindly thanks his advisor,
Prof. Alexander Prestel, for all support.

1



2. Let Ω = ∆[T1, T2, . . . , Tn, . . . ] be the polynomial ring in ℵ0 variables over ∆. Then there is
no extension with constants L of the formal language of rings such that Ω is adequate with
respect to L.

Proof of 1: Let L = {+,−, ·, (a)a∈∆} be a new language which contains a name (constant) for
every element of ∆. For ∆[T ] we define the language LT = L ∪ {T}, with T interpreted as T .
Suppose now that the subset ∆[T ]\{0} is L-diophantine in ∆[T ]. Its positive existential definition
can be put in the normal form:

∆[T ] |= [ t 6= 0⇐⇒ ∃X1, . . . , Xn

∨
i

∧
j

Pij(t,X1, . . . , Xn) = 0 ],

where Pij ∈ ∆[t,X1, . . . , Xn] have coefficients which are constant terms over L and do not contain
T .
We remark that for an element a ∈ ∆ \ {0} is aT ∈ ∆[T ] \ {0}. (This is a precaution for the case
that the ring has no 1. Normally we work with the polynomial T .) We fix a choice of polynomials
Y1(T ), . . . , Yn(T ) and an index i0 such that

∆[T ] |=
∧
j

Pi0,j(aT , Y1(T ), . . . , Yn(T )) = 0.

For the ring ∆ with respect to L this is a conjunction of true polynomial identities in a new
constant T . The new constant may be substituted with every constant from L, leading to true
sentences. This is possible because T is transcendental over ∆. We substitute T with 0. From an
algebraic point of view this is the evaluation in T = 0 of a polynomial function. We get:

∆ and ∆[T ] |=
∧
j

Pi0,j(0, Y1(0), . . . , Yn(0)) = 0.

We remark that ∀k Xk := Yk(0) ∈ ∆ ⊂ ∆[T ]. Xk are again constant L-terms. The crucial fact
that T did not occur in the coefficients of Pij allowed us to keep and get back these polynomials
after the evaluation. Now:

∆[T ] |= ∃X1, . . . , Xn

∧
j

Pi0,j(0, X1, . . . , Xn) = 0,

∆[T ] |= ∃X1, . . . , Xn

∨
i

∧
j

Pij(0, X1, . . . , Xn) = 0.

If we remember the way in which we have defined t 6= 0, we get finally:

∆[T ] |= 0 6= 0.

This is a contradiction. 2

Proof of 2: We are following the proof of 2.1.1 insisting on some differences. We introduce the
language LT∞ = L ∪ {T1, T2, . . . }. It is the strongest extension with constants of the formal
language of rings for Ω, in the sense that all elements of Ω can be represented as constant LT∞-
terms. We prove that the subset Ω \ {0} is not LT∞-diophantine in Ω, and it is sufficient for our
conclusion.
As before suppose that Ω \ {0} was LT∞-diophantine and had a positive existential definition
in prenex normal form given by Pij ∈ Ω[t,X1, . . . , Xn]. Only a finite set of variable-names may
occur in the Pij ’s, say without restricting the generality T1, T2, . . . , Tm. These are the constants
which will not be subjected to any substitution. We write also ∆m := ∆[T1, T2, . . . , Tm] and
LTm = L ∪ {T1, T2, . . . , Tm}.
Now for a ∈ ∆ \ {0} is again aTm+1 ∈ Ω \ {0}. We choose and fix elements Y1, . . . , Yn ∈ Ω and
one index i0 such that:

Ω |=
∧
j

Pi0,j(aTm+1, Y1, . . . , Yn) = 0.
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Only a finite number of variable-names can occur in the Yk’s, say T1, T2, . . . , Tm, Tm+1, . . . , Tm+p.
It might happen that the Yk’s are already elements in ∆m, but then this is anyway true for some
p ≥ 1.
Tm+1, . . . , Tm+p are new constants over (∆m, LTm) and may be substituted with any other con-
stants. We substitute Tm+1 with 0 and Tm+2, . . . , Tm+p with arbitrary other constants from L,
say am+2, . . . , am+p. If we denote now by Xk := Yk(T1, . . . , Tm, 0, am+2, . . . , am+p) ∈ ∆m ⊂ Ω, we
get:

∆m and Ω |= ∃X1, . . . , Xn

∧
j

Pi0,j(0, X1, . . . , Xn) = 0,

which means the contradiction Ω |= 0 6= 0. The crucial facts were the following: First T1, T2,
. . . , Tm have not been substituted, permitting us to get back the Pij ’s and the diophantine def-
inition. Second, no possible formal definition could use infinitely many constants (in our case,
variable-names). 22

Using the same procedure we can prove the following:

Remark 2.2 If ∆ is a commutative ring with 1 and L an extension with constants of the formal
language of rings interpreted over ∆, then the unary singleton relation {T} is not L-diophantine
over ∆[T ].

Fortunately for proving that the rings of algebraic integers are adequate a very simple idea does
work, see for example [Sauerland]:

O |= [ t 6= 0⇐⇒ ∃s ∈ O t | (2s− 1)(3s− 1) ].

Indeed, if the divisibility takes place, t may not be 0 because 1
2 and 1

3 do not belong to O.
If t is any nonzero element of O, it is enough to find a natural number s such that the norm
NK/Q(t) | (2s − 1)(3s − 1) in Z, because t |NK/Q(t) already in O and t = 0 ⇔ NK/Q(t) = 0. Let
±NK/Q(t) be a natural number whose decomposition in primes looks like 2n3mq where 2 and 3
do not divide q. Using the Chinese Remainder Theorem for 2n and 3mq and the fact that 2 and
3 are units in the rings Z/3mqZ and Z/2nZ, we get a natural number s such that

2s ≡ 1 mod(3mq),
3s ≡ 1 mod(2n).

This means that ±NK/Q(t) = 2n3mq | (2s− 1)(3s− 1), and we are done. 2

3 Main result

Theorem 3.1 If O is the ring of algebraic integers in a number field K, then the relation x ∈ O
is diophantine in the polynomial ring O[T ] due to a diophantine formula whose coefficients are
constant polynomials of O[T ]. Moreover, we can choose them to be elements of Z.

Proof: Before starting with the proof of this theorem, I will shortly comment on its history. For
O = Z this was known by Putnam and Davis, see [Davis-Putnam]. Their defining equation has
coefficients in Z and has been one of the first applications of the Pell equation for defining Z.
On the other hand Alexandra Shlapentokh diophantinely defined Z in R[T ] in a uniform manner
for all domains R of characteristic 0. Using her result and the appropriate language for O it is
quite trivial to define O. But the resulting definition would have not constant coefficients because
her definition displays T explicitly by using Pell equations with transcendental coefficients, like
X2 − (T 2 − 1)Y 2 = 1.
Recently Zahidi made such definitions for rings of algebraic integers in formally real number fields,
see [Zahidi]. Our method works more generally because uses valuations instead of orderings.
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Let K =Quot(O) be the corresponding number field and p any prime of K. After [Rumely] the
valuation ring Op is L-diophantine in K. We can choose a valuation ring Op which accepts a
definition with coefficients in Z.

K |= (x ∈ Op ⇐⇒ ∃x1, . . . , xn P (x, x1, . . . , xn) = 0).

We introduce new variables y1, . . . , yn and z which are interpreted as elements in O such that
for all i one has xi = yi

z . Multiplying P (x, x1
z , . . . ,

xn

z ) with a suitable power of z we obtain the
partially homogenized polynomial Q(x, x1, . . . , xn, z). Now we claim:

O[T ] |= (x ∈ O ⇐⇒ ∃x1, . . . , xn, z Q(x, x1, . . . , xn, z) = 0 ∧ z 6= 0).

Denote the subset of O[T ] defined on the right above by S; S ⊆ O[T ]. We prove S = O:
O ⊆ S: If x ∈ O then as element of K is x ∈ Op and thus x trivially satisfies the definition of S.
S ⊆ O: Suppose x ∈ S \ O and look at x as nonconstant polynomial function on K. Choose
polynomials y1, . . . , yn, z with Q(x, y1, . . . , yn, z) = 0 and z 6= 0. As polynomial z is not identical
0, so the set of elements of K which are zeros for z is at most finite.
Let vp be the valuation on K corresponding to p. For all nonconstant polynomials x the set

{u ∈ K | vp(x(u)) < 0}

is infinite, so we choose an u ∈ K such that vp(x(u)) < 0 and z(u) 6= 0.
But P (x(u), y1(u)

z(u) , . . . ,
yn(u)
z(u) ) = 0 implies vp(x(u)) ≥ 0. Contradiction.

In order to prove the diophantine character of this definition we must now eliminate the negation.
Without being able to define diophantinely z 6= 0 in O[T ] using only constant coefficients (see
2.1), we find a tricky way for this particular situation. We claim that in O[T ] |=:

(x ∈ O ⇐⇒ ∃x1, . . . , xn, z, s Q(x, x1, . . . , xn, z) = 0 ∧ z | (2s− 1)(3s− 1)).

Suppose x ∈ O and x1, . . . , xn ∈ K such that P (x, x1, . . . , xn) = 0. K being in fact O
N\{0} one can

find a common denominator z ∈ N \ {0} such that all xi = yi

z and depending on z find s ∈ N as
discussed before for the rings O.
On the other side if (x, ~y, z, s) ⊂ O[T ] is any solution of the system, we must have z 6= 0 because
1
2 and 1

3 do not belong to O[T ], and we may repeat the proof to conclude that x ∈ O. 22

4 One application

Corollary 4.1 The polynomial rings over the rings of algebraic integers are adequate with respect
to the formal language LT = {+,−, ·, 0, 1, T}.

Proof: We see that:

O[T ] |= (t 6= 0⇐⇒ ∃a, b a ∈ O ∧ b ∈ O \ {0} ∧ T − a | t− b ).

Indeed O is a diophantine subset in O[T ] as already proven in 3.1 and O\{0} is a diophantine subset
in O because O is adequate. The definition of O\{0} should be relativized to the definition of O in
O[T ] using new variables. The resulting definition is hence diophantine and says that a polynomial
is not the null polynomial iff its associate polynomial function takes at least one nonzero value.
We can choose a diophantine definition of O in O[T ] which contains only coefficients in Z. It
leads to a definition of O[T ] \ {0} using just the formal language of rings and no other constants,
excepting T . 2

We used the new constant T for only one occurrence in the defining formula. Because of Theorem
2.1, we could not avoid this.
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