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Abstract

A recurrent 2-dimensional sequence a(m,n) is given by fixing particular sequences a(m, 0),
a(0, n) as initial conditions and a rule of recurrence a(m,n) = f(a(m,n − 1), a(m − 1, n −
1), a(m − 1, n)) for m,n ≥ 1. We generalize this concept to an arbitrary number of dimen-
sions and of predecessors. We give a criterion for a general n-dimensional recurrent sequence
to be alternatively produced by a n-dimensional substitution - i.e. to be an automatic se-
quence. We show also that if the initial conditions are p-automatic and the rule of recurrence
is an Fp-affine function, then the n-dimensional sequence is p-automatic. Consequently all
such n-dimensional sequences can be also defined by n-dimensional substitution. Finally we
show various positive examples, but also a 2-dimensional recurrent sequence which is not k-
automatic for any k. As a byproduct we show that for polynomials f ∈ Q[X] with deg(f) ≥ 2
and f(N) ⊂ N, the characteristic sequence of the set f(N) is not k-automatic for any k.
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1 Introduction

This note reveals a new intersection between recurrence and substitution. Both notions occur in a
field of interdisciplinary investigations unifying very heterogenous motivations and techniques. The
recurrence - although a very classical task - is more and more present in studies concerning cellular
automata, see [31, 13, 9] or the monograph [32]. Substitutions occur in various contexts such as
automatic sequences [12, 1, 2], aperiodic tilings [30, 24, 15, 8, 7], various fractal constructions
[23, 10, 25, 14] or mathematical quasicrystals [11, 5]. All objects and results introduced in this
article seem to be most related with those studied in [3].

Definition 1.1 Let A be a finite set and f : A3 → A a fixed function. We call the set A an
alphabet and the function f a recurrence. We will refer to the function f as f(x, y, z). We also
fix two sequences u, v : N → A with u(0) = v(0), called initial conditions. We say that the tuple
(A, f, u, v) defines a recurrent 2-dimensional sequence a : N2 → A if the following conditions are
fulfilled:

1. ∀ k ∈ N a(k, 0) = u(k) and a(0, k) = v(k).

2. ∀ m,n > 0 a(m,n) = f(a(m,n− 1), a(m− 1, n− 1), a(m− 1, n)).

∗Brain Products, Freiburg, Germany and Simion Stoilow Institute of Mathematics of the Romanian Academy,
Research unit 5, P. O. Box 1-764, RO-014700 Bucharest, Romania. mihai.prunescu@math.uni-freiburg.de.
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In the case that u = v we mention just one of them in the tuple. If u or v are periodic, we just
write down the period.

The author proved in [17] that recurrent two-dimensional sequences are Turing-complete.

The special recurrence introduced in the Definition 1.1 means that the running element a(m,n)
of a 2-dimensional sequence depends of the predecessors a((m,n)− (0, 1)), a((m,n)− (1, 1)) and
a((m,n)− (1, 0)). We say that the set P = {(0, 1), (1, 1), (1, 0)} ⊂ Z2 is the system of predecessors
for the given recurrence. The domain of the initial condition CP = {(x, y) ∈ N2 |x = 0 ∨ y = 0}
depends of the system of predecessors.

In Section 2 we start by generalizing the notion of recurrence for n-dimensional sequences, and for
arbitrary systems of predecessors. The technique needed is a rudiment of transfinite induction.
This generalization has many motivations in the actual state of the art. To recall just one of them,
the celebrated articles by Taylor [29] and by Socolar and Taylor [28] concerning the Ein Stein
Tiling Problem - to find an aperiodic tiling set with one element for the plane - also uses matching
conditions that do not concern only immediate but also further neighbors. In a narrow setting,
such conditions can be modeled by the notion of recurrence introduced here, using predecessors
which are not immediate neighbors of the element to be computed.

In Section 3 we define a notion of substitution which is appropriate for n-dimensional sequences
a : Nn → A. In short, the most elementary tiles used to define the substitution are n-dimensional
cubic matrices over the alphabet A with edge-length k, not necessarily equal 1. A substitution
rule is the prescription to substitute such a cube with a n-dimensional cube over the alphabet A
of edge length sk, with s ≥ 2. Such a cube consists of sn many cubes of edge k. For any of them
there is a substitution rule to be applied in the next step, and so on.

After understanding the self-similar nature of a narrow class of recurrent two-dimensional se-
quences in [18], the author finally conjectured that all recurrent two-dimensional sequences given
by homomorphisms of finite abelian p-groups and periodic initial conditions are produced by sys-
tems of substitution, see [18, 19, 20, 21]. In [22] the author considered some cases with initial
conditions given by non-trivial automatic sequences. Excepting the results of [18], all other struc-
tures of substitution proved in these notes are based on ad-hoc computer computations done for
particular cases. The main instruments used for these results were slightly weaker versions of our
Theorem 3.13, Section 3.

At this stage the author realized that the right notion lying between the phenomenon of sub-
stitution in 2-dimensional sequences is their automaticity. For example, periodic and ultimately
periodic sequences are k-automatic for all k and for all period-lengths. The successive constructions
done before consisted of recurrent 2-dimensional sequences given by homomorphisms of p-groups
as rules of recurrence, applied over constant, then periodic boreders, and finally morphic borders,
like the Thue-Morse Sequence. The point was that all such borders were automatic sequences.

In Section 4 different results of the monograph [1] are tracked together in order to show that
n-dimensional sequences defined by systems of substitutions given in Section 3 are exactly the
automatic sequences. Other characterizations of automaticity prove to be extremely useful, as for
example Christol’s Theorem - a result connecting the automaticity with the property of a sequence
to be an algebraic element over a field of rational functions, if seen as a formal series over a finite
field.

In Section 5 is proved the main result, which is the Theorem 5.2. This Theorem states that
Fp-affine recurrences, given by non-negative systems of predecessors over arbitrary finite fields
of characteristic p, always produce p-automatic n-dimensional sequences if they are applied on
p-automatic initial conditions. Unhappily, the proofs using Christol’s theorem are for the moment
not constructive enough, and we still must use computational methods like one suggested by our
Theorem 3.13 to obtain a concrete set of substitution rules generating the n-dimensional sequence
in question.

2



In terms of finite abelian p-groups, Theorem 5.2 solves the question of p-automaticity only for the
p-groups G = Fp × Fp × · · · × Fp with arbitrary homomorphisms f : G3 → G and p-automatic
sequences as initial conditions, and only for the so called moderate recurrence. It is also known
that Pascal’s Triangles modulo pk are pu-automatic; see, e.g., [1] for a proof. Several particular
cases proved by the author suggest that homomorphic n-dimensional sequences over finite abelian
p-groups with p-automatic initial conditions are automatic. A general proof of this fact is still
missing.

In Section 6 we give examples of recurrent 2-dimensional sequences which are nonautomatic. This
shows that the algebraic assumptions of the results above are necessary. As a byproduct we show
that for polynomials f ∈ Q[X] with deg(f) ≥ 2 and f(N) ⊂ N, the characteristic sequence of the
set f(N) is not k-automatic for any k.

In Section 7 various examples are shown, and some shorter substitutions are concretely described.
A less general form of Theorem 3.13 and example 7.7 were announced without proof in [22].

The Appendix called Section 8 provides some details for a counterexample stated in Section 6.

2 Recurrence

In this section a generalized notion of recurrence for n-dimensional sequences is introduced. An
n-dimensional sequence over a finite alphabet A is a function a : Nn → A. In order to write down
our definitions we need the notion of lexicographic order for the set Zn. We will always denote
the tuple (0, 0, . . . , 0) by ~0.

Definition 2.1 Let Z be the set of integers and let < be its relation of strict order. We extend
the order relation < to an ordering of the set Zn, also denoted by <, defined as follows: For all
~x, ~y ∈ Zn we say that ~x < ~y if and only if there is an i, 1 ≤ i ≤ n, such that x1 = y1, . . . ,
xi−1 = yi−1 and xi < yi. This relation is called lexicographic ordering of Zn. The restriction of
the relation < to the set Nn shall also be denoted by < and shall be called lexicographic ordering
of Nn.

Lemma 2.2 The ordered set (Nn, <) is a well-ordering.

Proof: The ordered set (Nn, <) is order isomorphic with the ordinal ωn. The isomorphism is
given by ι : ωn → Nn, ι(x1ω

n−1 + · · ·+ xn) = (x1, . . . , xn). 2

Definition 2.3 Fix m ≥ 1 and m many tuples ~v1, . . . , ~vm ∈ Zn such that all m tuples are
pairwise distinct and lexicographically positive: ~v1 > ~0, . . . , ~vm > ~0. Such a collection of distinct
lexicographically positive integral tuples is called a system of predecessors and will be denoted by
P = {~v1, . . . , ~vm}.

Definition 2.4 An n-dimensional rectangle is a subset of Zn of the form:

R = {x1, . . . , x1 + k1 − 1} × · · · × {xn, . . . , xn + kn − 1},

where k1, . . . , kn ≥ 1 are the edges of R. If k1 = · · · = kn = k, we call R an n-dimensional cube.

Definition 2.5 Let P = {~v1, . . . , ~vm} be a system of predecessors. The smallest n-dimensional
rectangle containing the set −P ∪ {~0} = {−~v1, . . . ,−~vm} ∪ {~0} shall be denoted by RP .

Definition 2.6 Let Y ⊂ Zn and ~x ∈ Zn. The set ~x + Y is defined as set of all elements ~x + ~y,
where ~y ∈ Y , and is called the translate of Y by ~x. If P is a system of predecessors and ~x ∈ Nn

we define RP (~x) := RP + ~x. RP (~x) is the smallest n-dimensional rectangle containing ~x and all
the differences ~x− ~vi.
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Definition 2.7 Let m ≥ 1 and let ~v1, . . . , ~vm ∈ Zn such that P = {~v1, . . . , ~vm} is a system of
predecessors. Consider the set C defined as:

CP = {~x ∈ Nn | ∃ i 1 ≤ i ≤ m ∧ ~x− ~vi ∈ Zn \ Nn} = {~x ∈ Nn |RP (~x) 6⊂ Nn}.

Any function c : CP → A is called initial condition for the system of predecessors P . The set CP

is the domain of the initial condition.

Definition 2.8 Let m ≥ 1 and let ~v1, . . . , ~vm ∈ Zn such that P = {~v1, . . . , ~vm} is a system
of predecessors. For j = 1, . . . ,m we write down the coordinates like ~vj = (v1j , . . . , v

n
j ). For

i = 1, . . . , n let di = max
j=1,...,m

max(vij , 0) be the depth of the recurrence for the direction i. We

observe that for at least one direction, the depth of the recurrence must be positive. The positive
number d = max

i=1,...,n
di is the depth of the system of predecessors P .

Lemma 2.9 Let m ≥ 1 and let ~v1, . . . , ~vm ∈ Zn such that P = {~v1, . . . , ~vm} is a system of
predecessors. In this case the domain of the initial condition is:

CP = {~x ∈ Nn | ∃ i xi < di}

Proof: Both inclusions are evident. 2

We observe that the domain of the initial condition CP is the union of some plane sections given
by equations xi = k for some i = 1, . . . , n and all 0 ≤ k < di, where di is the given depth. If
some di = 0 the set CP does not contain sections parallel with the plane xi = 0. According to the
lexicographic order, the first point that does not belong to CP , is ~d = (d1, . . . , di).

Definition 2.10 Let A be a finite alphabet. Fix m ≥ 1, a function f : Am → A called rule of
recurrence and ~v1, . . . , ~vm ∈ Zn a system of m distinct predecessors: ~v1 > ~0, . . . , ~vm > ~0, denoted
by P = {~v1, . . . , ~vm}. Given an initial condition c : CP → A for this system of predecessors, we
say that an n-dimensional sequence a : Nn → A satisfies the recurrence (A, f, P, c) if and only if
the following two conditions are fulfilled:

1. For all ~x ∈ CP , a(~x) = c(~x).

2. For all ~x ∈ Nn \ CP , a(~x) = f(a(~x− ~v1), . . . , a(~x− ~vm)).

Lemma 2.11 Let ~w,~v ∈ Nn and ~u ∈ Zn such that ~u > ~0 and ~v = ~w − ~u. Then ~w > ~v.

Lemma 2.12 Given a recurrence (A, f,~v1, . . . , ~vm, c) as defined in Definition 2.10, then there
exists a unique n-dimensional sequence a : Nn → A satisfying this recurrence.

Proof: For the proof we use the fact that (Nn, <) is a well-ordering (see Lemma 2.2) and we define
the elements a(~x) by transfinite induction. The induction starts with ~0. We observe that always
~0 ∈ CP , so we define a(~0) = c(~0), which is also the only one possibility to define it. Suppose that
we have already defined a(~y) for all ~y < ~x. If ~x ∈ CP then we define a(~x) = c(~x) and this is again
the unique possible value. If ~x /∈ CP , all elements ~x− ~v1, . . . , ~x− ~vm are in Nn and according to
Lemma 2.11 one has ~x−~v1 < ~x, . . . , ~x−~vm < ~x. According to the hypothesis of induction all the
values a(~x−~vj) have been already defined and were uniquely determined by the construction done
so far. Then we define a(~x) = f(a(~x−~v1), . . . , a(~x−~vm)) and that is again the unique possibility
to define this value. 2

Definition 2.13 Let m ≥ 1 and let ~v1, . . . , ~vm ∈ Zn such that P = {~v1, . . . , ~vm} is a system of
predecessors. We recall the notation ~vj = (v1j , . . . , v

n
j ). Let ei = − min

j=1,...,m
min(vij , 0). We call ei

the excess P in the direction i. The number e = max
i=1,...,n

ei is the excess of P . If e > 0 we say that

the system of predecessors P (the recurrence) has excess or is excessive. If e = 0 we say that the
system of predecessors P (the recurrence) lacks excess or is moderate.
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We observe that if a system of predecessors has excess, one can determine a(~x) only if one deter-
mines also some a(~y) with several coordinates yi > xi. However, for computing any a(~x) we must
compute only finitely many a(~y) with ~y < ~x. This is a direct consequence of the fact that (Nn, <)
is a well-ordering.

In the rest of this section some examples will be discussed.

• If n = 2 and P = {(0, 1), (1, 1), (1, 0)} we get again the recurrence introduced in Definition
1.1. In this case d1 = d2 = 1 and CP = {x = 0} ∪ {y = 0}. The excess is 0, so in order
to compute the value a(x, y) it is enough to have computed all the values in the rectangle
(0, 0) (x, 0) (x, y) (0, y). The recurrence works as shown in the following matrix:

c c c c
c v w ·
c u f(u, v, w) ·
c z · ·

 .

Here elements determined by the initial condition are denoted by c, already computed ele-
ments are denoted by u, v, w, z , and the element that has been computed at this step of
the recurrence is denoted f(u, v, w). The elements marked with points will be computed in
some future steps. In this case the rectangle RP (~x) is exactly the rectangle with vertices
marked v, w, f(u, v, w) and u.

• If n = 2 and P = {(1, 1), (1, 0), (1,−1)} we are facing a kind of recurrence used by many com-
puter scientists to simulate the evolution in time for cellular automata and Turing machines,
see for example [32]. In this case d1 = d2 = 1 and CP = {x = 0} ∪ {y = 0}. The excess is
equal to 1, so in order to compute the value of (x, y) one must have computed all values of
the elements in the sets V (a), where 0 ≤ a < x and V (a) = {(a, b) | 0 ≤ b < y + (x − a)y}.
The recurrence works as shown in the following matrix:

c c c c
c u t ·
c v f(u, v, w) ·
c w · ·

 .

The notation is similar with those used in the precedent example. In this case the rectangle
RP (~x) is exactly the rectangle with three vertices marked u, t and w. The fourth vertex is
marked in the matrix by a dot.

• If n = 2 and P = {(1,−2), (0, 2)}, then d1 = 1 and d2 = 2. The domain of the initial
condition is the set {x = 0} ∪ {x = 1} ∪ {y = 0}. The excess is equal to 2, so in order to
compute the value of (x, y) one must have computed all values of the elements in the sets
V (a), where 0 ≤ a ≤ x and V (a) = {(a, b) | 0 ≤ b < y+ 2(x− a)y}. The recurrence works as
shown in the following matrix: 

c c c c
c c c c
c t v ·
c z s ·
c q f(u, v) ·
c w · ·
c u · ·


.

Here we let c denote again elements determined by the initial condition, by t, z, q, w, u, v, s
already computed elements, and by f(u, v) the element that has been computed at this step
of the recurrence. The elements marked with points will be computed in some future steps.
In this case the rectangle RP (~x) is exactly the rectangle with three vertices marked t, v and
u. The fourth vertex is marked in the matrix by a dot.
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• If n = 2 and P = {(1, 0), (1,−1)}, then d1 = 1 and d2 = 0. The domain of initial condition
is the set {y = 0}. The excess is equal 1, and the recurrence works as follows:

c x y ·
c u v ·
c t f(t, z) ·
c z · ·

 .

3 Substitution

Definition 3.1 We recall that the set {0, . . . , d − 1}n is an n-dimensional cube. For some tuple
~u ∈ Nn, ~u = (u1, u2, . . . , un) we recall that {u1, . . . , u1 + d − 1} × · · · × {un, . . . , un + d − 1} =
~u+ {0, . . . , d− 1}n. For d ≥ 1 we define the following two infinite sets:

∆d = {d~u+ {0, . . . , d− 1}n | ~u ∈ Nn}.

Γd = {d~u+ {0, . . . , 2d− 1}n | ~u ∈ Nn}.

We call ∆d the d-division of Nn and Γd the 2d-covering of Nn.

Definition 3.2 Let A be a finite set (alphabet). An n-dimensional sequence is a function a :
Nn → A. A colored n-dimensional cube is a function D : {0, . . . , d − 1}n → A. We say that D
occurs in a at ~u ∈ Nn if ∀ ~x ∈ {0, . . . , d−1}n, a(~u+~x) = D(~x). We say that D occurs in a if there
is a ~u such that D occurs in a at ~u. We say that D occurs at some d-position in a if there ~u ∈ Nn

such that D occurs in a at d~u.

Definition 3.3 Let s ∈ N be a natural number ≥ 2 and let E : {0, . . . , ds − 1}n → A be
some n-dimensional cube over A. We define Dd(E) as the set of all colored n-dimensional cubes
D : {0, . . . , d− 1}n → A occurring in E in some d-position. If a : Nn → A, Dd(a) is the set of all
colored n-dimensional cubes D : {0, . . . , d− 1}n → A occurring in a in some d-position.

Definition 3.4 Let E : [0, sd−1]n → A be a n-dimensional cube. Let d ≥ 1 be a positive integer.
We define Cd(E) as set of all colored n-dimensional cubes F : {0, . . . , 2d − 1}n → A occurring
in E in some d-position. If a : Nn → A, then Cd(a) is the set of all colored n-dimensional cubes
F : {0, . . . , 2d− 1}n → A occurring in a in some d-position.

We observe that the sets Cd(a) and Dd(a) are finite, and that copies of the elements in Cd(a)
cover a with overlappings. Moreover, Cd(a) and Dd(a) are the set of traces of the covering Γd and
respectively of the division ∆d on the n-dimensional sequence a.

Definition 3.5 Let d ≥ 1 and s ≥ 2 two natural numbers. A n-dimensional system of substitu-
tions (for short, n-dimensional substitution) of type d→ sd over the finite set A is a tuple of finite
sets (A,D, E , D1,Σ), as follows:

D is a set of colored n-dimensional cubes D : {0, . . . , d− 1}n → A,

E is a set of colored n-dimensional cubes E : {0, . . . , 2d − 1}n → A, such that for every E ∈ E ,
Dd(E) ⊂ D, and

D1 ∈ D is a special element called start-symbol.

Finally, Σ is a function Σ : D → E , called the set of substitution rules, or simply the substitution.
The function Σ has a natural extension defined on the set of cubes F such that Dd(F ) ⊆ D. We
remark that if Dd(F ) ⊆ D then Dd(Σ(F )) ⊆ D, so Σ can be applied again to Σ(F ). Moreover, Σ
must fulfill the following condition:

Σ(D1) | {0, . . . , d− 1}n = D1.
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(In this case, we say that the substitution Σ is expansive.) The number s ≥ 2 is called the factor
of substitution.

Definition 3.6 A n-dimensional substitution (A,A, E , a1,Θ) of type 1→ s is called n-dimensional
uniform morphism over the alphabet A.

Indeed, in the last definition the n-dimensional cubes of edge 1 over A are identified with the
elements of A, E consists of n-dimensional cubes of edge s, and a1 ∈ A is the start symbol for the
substitution Θ : A→ E . The only one condition to fulfill now is that E1(~0) = a1.

As one immediately can prove by induction, the expansivity of Σ means that for all m ∈ N one
has that Σm(D1) | {0, . . . , dsm−1}n = Σm−1(D1). So we can define the n-dimensional sequence b:

Definition 3.7
b := lim

i→∞
Σi(D1)

We say that the n-dimensional sequence b is defined by substitution.

Substitution in multi-dimensional sequences and many aspects of this tool can be also found in
[26], [27], [16], [4] and in the references therein.

Lemma 3.8 Let R = ~x + {0, . . . , k1 − 1} × · · · × {0, . . . , kn − 1} be some rectangle and k =
max(k1, . . . , kn). Consider the covering Γd of Nn consisting of all cubes d~y + {0, . . . , 2d − 1}n,
where ~y ∈ Nn. If (d = 1 and k = 2) or if k ≤ d, then there exists E ∈ Γd such that R ⊆ E.

Proof: It is enough to prove the lemma for the cube W = ~x+ {0, . . . k − 1}n, because R ⊂W .

- Case k ≤ d: According to the principle of division with remainder, for all x ∈ N there exists
r, y ∈ N with 0 ≤ r < d such that x = dy+r. If we apply the division by d for all the coordinates xi
of x, we get a point d~y with the property that W = ~x+{0, . . . , k−1}n ⊂ E = d~y+{0, . . . 2d−1}n,
because 0 ≤ ri + k ≤ (d− 1) + d = 2d− 1, for all i = 1, . . . , n.

- Case d = 1 and k = 2: In this case we can always take E = W . 2

Definition 3.9 Let P = {~v1, . . . , ~vm} be a system of predecessors and f : Am → A be a function.
We say that a colored cube D : ~z + {0, . . . ,m − 1}n → A satisfies the recurrence given by P
and f , if for all ~x ∈ ~z + {0, . . . ,m − 1}n such that RP + ~x ⊂ ~z + {0, . . . ,m − 1}n, D(~x) =
f(D(~x−~v1), . . . , D(~x−~vm)). We say that a n-dimensional sequence satisfies the recurrence given
by P and f , if for all ~x ∈ Nn such that RP (~x) ⊂ Nn, a(~x) = f(a(~x− ~v1), . . . , a(~x− ~vm)).

Lemma 3.10 Let A be a finite set and a : Nn → A a n-dimensional sequence. Let P =
{~v1, . . . , ~vm} be a system of predecessors and f : Am → A a function. Let RP = ~u+ {0, . . . , k1 −
1} × · · · × {0, . . . , kn − 1} and let k = max(k1, . . . , kn). Consider a natural number d such that
(d = 1 and k = 2) or k ≤ d holds, and the covering Γd consisting of all cubes d~y+{0, . . . , 2d−1}n,
where ~y ∈ Nn. Then a : Nn → A satisfies the recurrence given by P and f if and only if for all
E ∈ Γd, the restriction a : E → A satisfies the recurrence given by P and f .

Proof: The property to satisfy the recurrence given by P and f is a universal property (can be
formalized using a universal quantifier), so is always inherited by subsets. If the n-dimensional
sequence a satisfies the recurrence given by P and f , so does any colored cube in its covering
Γd. Suppose now that any colored cube E ∈ Γd satisfies the recurrence given by P and f .
According to Lemma 3.8, for every ~x ∈ Nn, if ~x+ RP ⊂ Nn then there is some E ∈ Γd such that
~x + RP ⊂ E. But E satisfies the recurrence given by P and f by assumption, so the relation
a(~x) = f(a(~x− ~v1), . . . , a(~x− ~vm)) holds. 2

7



Remark 3.11 Given a : Nn → A, the sequence of sets (Cd(a | {0, . . . , dsM − 1}n))M∈N is always
ultimately constant, because for all M ∈ N, Cd(a | {0, . . . , dsM−1}n) ⊆ Cd(a | {0, . . . , dsM+1−1}n)
and the set of all possible colored cubes Y : {0, . . . , 2d− 1}n → A is finite.

For n-dimensional sequences defined by substitution one can prove more:

Lemma 3.12 Let (A,D, E , D1,Σ) be an n-dimensional substitution of type d → sd and M ∈ N
such that Cd(ΣM (D1)) = Cd(ΣM−1(D1)). We denote this finite set by Cd. Then for all i ≥M−1,
Cd(Σi(D1)) = Cd, and also Cd(limi→∞Σi(D1)) = Cd.

Proof: The conclusion is true for i = M by hypothesis. For the proof we will use the shorter
notation Cd(Σi) for Cd(Σi(D1)). Suppose that we have already proven that Cd(Σi) = Cd for some
i ≥M . Let U be a n-dimensional cube of edge 2d occurring in d-position somewhere in Σi+1. If we
consider the elements V of the covering Γd(Σi) and forget the colors of their elements, we see that
their images Σ(V ) build up together a covering Γsd(Σi+1). But 2d ≤ sd, so we may apply Lemma
3.8 with k substituted by 2d and with d substituted by 2sd, and so we conclude that there exists a
cube V with edge 2d occurring in Σi in some d-position, such that U is covered by Σ(V ). We know
that V ∈ Cd(Σi) = Cd, the last equality being the hypothesis of induction. But as we know that
Cd(Σi−1) = Cd, it follows that V ∈ Cd(Σi−1), so that U already occurs in Σi in some d-position,
as a sub-block in an occurrence of the block Σ(V ). This means that Cd(Σi+1) = Cd(Σi) = Cd. 2

Theorem 3.13 Let A be a finite set, let (A, f, P, c) be an n-dimensional recurrence (see Definition
2.10) and let (A,D, E , D1,Σ) be an n-dimensional substitution (see Definition 3.5). Suppose that
the recurrence generates an n-dimensional sequence a : Nn → A and that the substitution generates
an n-dimensional sequence b : Nn → A. Finally, suppose that the substitution is of type d → sd
and that the following conditions are satisfied:

1. If RP is the minimal rectangle containing −P and {~0}, k1, . . . , kn are the edge-lengths of
RP and k = max(k1, . . . , kn), then (d = 1 and k = 2) or k ≤ d.

2. For all ~x ∈ CP , a(~x) = b(~x).

3. There exists M ∈ N such that a | {0, . . . , dsM − 1}n = ΣM (D1) and Cd(ΣM−1(D1)) =
Cd(ΣM (D1)).

Then a = b.

Proof: According to Lemma 2.12, the sequence b = limi→∞Σi(D1) is identical with the sequence
a if and only if b satisfies the initial conditions of a, which is true by the second assumption,
and b satisfies the recurrence given by P and f . By Lemma 3.10 and by the first assumption
of the statement, it would be enough to prove that for all cubes W in the 2d-covering Γd, b |W
satisfies the recurrence given by P and f . The restrictions b |W with W ∈ Γd, translated in
~0, build together the finite set of colored cubes Cd(b). According to Lemma 3.12, the third
assumption implies that Cd(b) = Cd(ΣM (D1)), and Cd(ΣM (D1)) = Cd(a | {0, . . . , dsM − 1}n), so
Cd(b) = Cd(a | {0, . . . , dsM − 1}n). That means that all cubes in Cd(b) satisfies the recurrence
defined by P and f , so b satisfies this recurrence in all cubes of the 2d-covering Γd. Lemma 3.10
closes the argument. 2

4 Automatic n-dimensional sequences

The content presented is based on the monograph [1].
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Definition 4.1 An n-dimensional deterministic finite k-automaton with output (n-DFA) M con-
sists of a finite nonempty set of states Q, an input-alphabet Σ = [0, k − 1]n, a transition function
δ : Q×Σ→ Q, an initial state q0, an output-alphabet A and an output mapping τ : Q→ A. Any
tuple ~u ∈ Nn is written in the form ~u =

∑
0≤i≤v

ki~σi with ~σ0, . . . , ~σv ∈ Σ. We say that ~σv~σv−1 · · ·~σ0

is the k-code of ~u. An n-dimensional sequence a : Nn → A is produced by the k-automaton M if
for all ~u ∈ Nn, M stops in a state q ∈ Q with output τ(q) = a(~u) after reading the k-code of ~u. If
there is a n-dimensional k-automaton producing the n-dimensional sequence a we say that a is a
k-automatic sequence.

Definition 4.2 The k-kernel of a n-dimensional sequence a : Nn → A is the set of n-dimensional
sequences:

Kk(a) = {(a(ksu1 + v1, k
su2 + v2, . . . , k

sun + vn))~u | s ≥ 0, 0 ≤ vi < ks}.

In the next lines we recall some notions of algebra.

Let R be some domain. A formal series in n variables over R is a expression of the form

S =
∑
~x≥0

a(~x)Xx1
1 . . . Xxn

n ,

where all a : Nn → R. The formal series build together a domain R[[X1, . . . , Xn]]. From now on

we will denote the tuple of variables X1, . . . , Xn by ~X and the monomial Xx1
1 · · ·Xxn

n by ~X~x. Let

K be the field of quotients of R. The field of quotients of the domain R[[ ~X]] is denoted by K(( ~X))
and can be identified with the set of all series

S =
∑
~x≥k

b(~x)Xx1
1 . . . Xxn

n =
∑
~x≥k

b(~x) ~X~x,

where k ∈ Z, b : [k,+∞)n → K and ~x ≥ k means that all coordinates xi ≥ k.

If K is a field, the field of power series in n variables K(( ~X)) contains the field of rational functions

K( ~X). In order to make this embedding transparent, recall that polynomials are power series with
finite support, and rational functions are formal quotients of polynomials.

A formal series A ∈ K(( ~X)) is said to be algebraic over the field of rational functions K( ~X) if

there exist polynomials P0, . . . Ps ∈ K[ ~X], P0 6= 0, such that:

s∑
j=0

PjA
j = 0.

The elements of K(( ~X)) algebraic over K( ~X) build a subfield of K(( ~X)), called the relative

algebraic closure of K( ~X) in K(( ~X)).

We recall now that according to Definition 3.6 a substitution (B,B,Y, x1,Σ) of type 1 → s is
called n-dimensional uniform morphism.

Definition 4.3 Let (B,B, E , b1,Θ) be a uniform morphism. Given an alphabet A, some function
g : B → A will be called a coding of B.

Theorem 4.4 Let a : Nn → A be an n-dimensional sequence with values in a finite set A. Let p
be a prime. Then the following are equivalent:

1. a is p-automatic.

2. Kp(a) is finite.
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3. There exists an n-dimensional uniform morphism (B,B, E , b1,Θ) of type 1→ p that produces
an n-dimensional sequence b by substitution, i.e. Θ(b1)(~0) = b1 and b = lim

i→∞
Θi(b1)),

g : B → A is a coding of B, and a = g(b).

4. For every embedding ι : A → K in a sufficiently large finite field K of characteristic p, the
corresponding series S =

∑
ι(a(~x)) ~X~x is an element of K(( ~X)) algebraic over K( ~X).

5. There exists an embedding ι : A→ K in a sufficiently large finite field K of characteristic p,
the corresponding series S =

∑
ι(a(~x)) ~X~x is an element of K(( ~X)) algebraic over K( ~X).

The equivalences between 1, 2 and 3 are true also without the assumption that p is a prime.

The item 3 in Theorem 4.4 is known as Cobham’s Theorem. The item 4 is known as Christol’s
Theorem. The whole Theorem 4.4 seems to have been formulated and proven for the first time
in this form by Salon, see [26] and [27]. Cobham’s Theorem highlights the fact that automaticity
and substitution are related up to a coding. The next two results represent a slight generalization:
for a coding one can use n-dimensional cubes instead of individual letters.

Theorem 4.5 Let A be some finite set and u : Nn → A an n-dimensional sequence. For i =
1, . . . , n let ai ≥ 1 be natural numbers. If all a1a2 · · · an many n-dimensional sequences:

ub1,...,bn = (u(a1x1 + b1, . . . , anxn + bn))(x1,...,xn),

where 0 ≤ bi < ai, are s-automatic for some s ≥ 2, then u is s-automatic.

Proof: Proven as Theorem 14.2.7 in [1] for n = 2. The general proof works in the same way. 2

Corollary 4.6 Let k ≥ 1 and s ≥ 2 be two natural numbers. If the n-dimensional sequence
u : Nn → A is the result of a substitution of type k → sk then u is s-automatic.

Proof: Let (A,D, E , D1,Σ) be the substitution of type k → sk, such that u = limi→∞Σi(D1).
We define now a uniform n-dimensional morphism (F ,F ,V, f1,Θ) as follows:

- F = {f1, . . . , fr} is an abstract finite set and has the same number of elements as D =
{D1, . . . , Dn}. Let ϕ : D → F the bijection given by ϕ(Di) = fi. In particular the start symbol
f1 = ϕ(D1). This bijection extends naturally to words and to n-dimensional cubes. The extension
will be also called ϕ.

- V is a set of n-dimensional cubes of edge s over F . For any E : {0, . . . , sk − 1}n → A with the
k-division Dk(E) ⊂ D, if E | k~y + {0, . . . , k − 1}n = Di, then ϕ(E)(~y) = fi.

- Θ(fi) := ϕ(Σ(Di)).

Let v = limi→∞Θi(f1) be the n-dimensional sequence produced by the uniform n-dimensional
morphism (F ,F ,V, f1,Θ). In order to apply Theorem 4.5, take a1 = · · · = an = k and choose
arbitrarily b1, . . . , bi with 0 ≤ bi < k. Consider the coding πb1,...,bi : F → A given by πb1,...,bn(fi) :=
Di(b1, . . . , bn). According to Theorem 4.4, point 3, the kn-many sequences:

vb1,...,bn := πb1,...,bi(v),

are all s-automatic. On the other side vb1,...,bn = ub1,...,bn , the sequence defined in the hypothesis
of Theorem 4.5, hence the n-dimensional sequence u is itself s-automatic. 2

The next result is a converse:

Lemma 4.7 Let u : Nn → A be an s-automatic sequence. Then there are natural numbers r and
q such that 1 ≤ r < q and an n-dimensional substitution (A, E ,F , D1,Σ) of type sr → sq such that
u = limi→∞Σi(D1).
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Proof: Proven as Lemma 6.9.1 in [1] for n = 1. The general proof works in the same way. 2

The remaining results will be used in the next section:

Lemma 4.8 If b : N → B, b = (b(n))n∈N is k-automatic, A is some set and g : B → A is some
function, then the sequence a = g(b) = (g(b(n)))n∈N is k-automatic.

Proof: Let τ : Q → B be the output function of a deterministic finite k-automaton with output
producing (b(n)). Replacing τ : Q → B with g ◦ τ : Q → A we obtain a deterministic finite
automaton with output producing (g(b(n))). The proof works also in more dimensions. 2

Lemma 4.9 Let p be a prime, q = ps, Fq the finite field with q elements. Let {b1, . . . , bs} be a fixed
basis of Fq seen as a vector space over Fp, and let πj : Fq → Fp be the projection on the coordinate
j: for all λ1, . . . , λs ∈ Fp, πj(

∑
λibi) = λj. For a formal series A ∈ Fq((X)), A =

∑
anX

n, let
πj(A) ∈ Fp((X)) be defined by πj(A) =

∑
πj(an)Xn. If A is algebraic over Fq(X) then all πj(A)

are algebraic over Fp(X).

Proof: If A is algebraic over Fq(X) then the sequence (an) is p-automatic, by Theorem 4.4. By
Lemma 4.8 for k = p the sequence πj((an)) is p-automatic. Applying again Theorem 4.4 for the
field Fp, πj(A) must be algebraic over Fp(X). This proof also works equally in more dimensions.

2

5 Main result

Let p be a prime, q = ps, and let Fq be the field with q elements. We recall that a Fp-linear
function g : Fq → Fq is a polynomial

g(x) = a0x+ a1x
p + a2x

p2

+ · · ·+ as−1x
ps−1

= a0ϕ
0(x) + a1ϕ

1(x) + · · ·+ as−1ϕ
s−1(x)

where a0, . . . , as−1 ∈ Fq, ϕ(x) = xp is the Frobenius automorphism, ϕ0(x) = x and ϕk+1(x) =
ϕ(ϕk(x)). This polynomial representation of the Fp-linear applications of Fq in itself has the
advantage to be independent of the choice of a Fp-basis of Fq. However, in many concrete cases
it is more helpful to choose and fix an Fp-basis of Fq and to work with matrices. Such a situation
occurs in the proof of the main result.

Definition 5.1 Let p be a prime and Fq be the field with q = ps elements. A function f : Fm
q → Fq

is called Fp-affine if there are Fp-linear functions g1, . . . , gm : Fq → Fq and a constant t ∈ Fq such
that for all a1, . . . , am ∈ Fq one has f(a1, . . . , am) = g1(a1) + · · ·+ gm(am) + t.

Theorem 5.2 Let p be a prime, and let Fq be the field with q = ps elements. Let (Fq, f, ~v1, . . . , ~vm, c)
be an n-dimensional recurrence, such that the following conditions are fulfilled:

1. The system of predecessors P = {~v1, . . . , ~vm} ⊂ Zn is moderate (has excess eP = 0).

2. The function f : Fm
q → Fq is Fp-affine.

3. c : CP → Fq is an initial condition, such that for all i = 1, . . . , n and for all a ∈ N, if
(xi = a) ∩ Nn ⊂ CP , then c | (xi = a) ∩ Nn is a p-automatic (n− 1)-dimensional sequence.

Then the recurrence (Fq, f, ~v1, . . . , ~vm, c) produces a p-automatic n-dimensional sequence.

Proof: Let (a(~x)) be the n-dimensional sequence produced by the recurrence (Fq, f, ~v1, . . . , ~vm, c)

and let S =
∑
a(~x) ~X~x be the corresponding formal series over Fq. We want to prove that S is

algebraic over Fq( ~X).
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Fix a Fp-basis {b1, . . . , bs} of Fq. According to this basis the elements given by initial condition
have a linear decompositions c(~x) =

∑
bjc

j(~x) and the n-dimensional sequence a has a linear
decomposition a(~x) =

∑
bja

j(~x), for short a =
∑
bja

j . The functions cj , aj are defined in the

following way: cj : CP → Fp and aj : Nn → Fp. The formal series L =
∑
d(~x) ~X~x, element

of Fq(( ~X)), has a similar linear decomposition L =
∑
bjL

j , where Lj ∈ Fp((~x)). According to

Lemma 4.9, if L is algebraic over Fq( ~X), then all Lj are algebraic over Fp( ~X).

The Fp-affine function f : Fk
q → Fq is given by f(a1, . . . , ak) = g1(a1) + · · · + gm(am) + t, where

every gr : Fq → Fq is given by a square s × s matrix αr with elements in Fp. We recall that

S =
∑
bjS

j . We denote the monomial aj(~x) ~X~x by Sj(~x) . Let us concentrate our attention on
the monomial Sj(~x) for some ~x ∈ Nn \ CP . The recurrence means that for ~x ∈ Nn \ CP , the
following identity holds:

Sj(~x) =
∑
~v∈P

~X~v
s∑

i=1

αr
iS

i(~x− ~v) + tj ~X~x.

Here the constants αr
i build the row number j in the matrix αr. Consider the formal series:

T j = Sj −
∑
~v∈P

~X~v
s∑

i=1

αr
iS

i − tj
∑

~x∈Nn\CP

~X~x.

The last term belongs indeed to Fp( ~X):

∑
~x∈Nn\CP

~X~x = ~X
~d
∑
~y∈Nn

~X~y = ~X
~d

n∏
i=1

1

1−Xi
,

where ~d is the first point to be computed by applying the recurrence, as shown in the Lemma 2.9.

Case 1: ~x ∈ Nn \ CP . Then T j(~x) = 0, as shown above.

Case 2: ~x ∈ CP . In this case:

T j(~x) = Sj(~x)−
∑

{~v∈P | ~x−~v∈Nn}

~X~v
s∑

i=1

αr
iS

i(~x− ~v).

The system of predecessors lacks excess (i.e. eP = 0), so all ~v ∈ P have only non-negative
coordinates. This means that if ~x ∈ CP and ~x− ~v ∈ Nn then ~x− ~v ∈ CP , because CP is a union
of plane slices of the form Ki,m := (xi = m) ∩ Nn containing Ki,m for all m ≤ di - and this is
true for all i = 1, . . . , n. Also, we know from the second assumption of the Theorem to prove,
combined with Lemma 4.9, that every restriction Sj |Ki,m = c |Ki,m is algebraic over Fp( ~X). Of
course there are only finitely many slices Ki,m.

As P is finite, there are only finitely many possible substets of P able to arise as {~v ∈ P | ~x− ~v ∈
Nn}. It follows that the expression:

T j =
∑

~x∈CP

T j(~x) +
∑

~x∈Nn\CP

T j(~x) =
∑

~x∈CP

T j(~x)

is algebraic over Fp( ~X) as linear combination of series which are algebraic over Fp( ~X) with co-

efficients, which are elements of Fp( ~X). If we rewrite the definition of all series T j as linear

combinations of the series Sj with coefficients in Fp( ~X), we get the following expression:
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D( ~X)


S1

S2

...
Ss

 =


C1

C2

...
Cs

 .

Here C1, C2, . . . Cs ∈ Fp(( ~X)) are algebraic over Fp( ~X) and the matrix D( ~X) is an s × s matrix

over Fp( ~X). But from Lemma 2.12 we know that there exists a unique solution S1, . . . , Ss of this

linear system of equations, so the matrix D( ~X) is non-singular. Consequently all series S1, . . . , Ss

are algebraic over Fp( ~X), and S =
∑
biS

i is algebraic over Fq( ~X). 2

Remark 5.3 For all primes p, both constant sequences and ultimately periodic sequences are
p-automatic. This explains many examples given by the author with ad-hoc proofs in [19], [20],
[21]. Moreover if Fq = Fp and the borders consist of constant sequences, the formal series is a
rational function over Fp.

Remark 5.4 Theorem 5.2 guarantees the correctness of an algorithmic method to find out the
structure of the substitution, which is based on Theorem 3.13. Indeed, one orders all pairs (u, v)
of natural numbers in one sequence. For every pair one constructs the initial square puv × puv
of the recurrent n-dimensional sequence and checks the conditions of Theorem 3.13 to see if the
n-dimensional sequence is the result of a substitution of type u → pu. For p-affine recurrent
sequences this algorithm always stops and outputs a substitution.

At the end of Section 7 are listed some open problems. Three of them concern possible general-
izations of Theorem 5.2.

Example: Set n = 2, f(a1, a2, a3) = ua1 + va2 + wa3 + t for some fixed elements u, v, w, t ∈ Fq,
P = {(0, 1), (1, 1), (1, 0)} and p-automatic initial conditions (x(n)), (y(m)) as given in Definition
1.1. Let S(m,n) = a(m,n)XmY n be the corresponding monomial of the 2-dimensional series S.
The recurrence is expressed for monomials with m,n ≥ 1 by:

S(m,n) = uXS(m− 1, n) + vXY S(m− 1, n− 1) + wY S(m,n− 1) + tXmY n.

In order to find an algebraic relation for S we compute

T = S(1− uX − vXY − wY )− t
∑

m,n≥1

XmY n.

Let T (m,n) be the corresponding monomial of T . For m,n ≥ 1 one has:

T (m,n) = S(m,n)− uXS(m− 1, n)− vXY S(m− 1, n− 1)− wY S(m,n− 1)− tXmY n = 0, so

S(1− uX − vXY − wY )− t
∑

m,n≥1

XmY n = a(0, 0)(1− uX − wY ) + (1− uX)
∑
m≥1

xmX
m+

+(1− wY )
∑
m≥1

ymY
m.

We observe that
∑

m,n≥1
XmY n = XY (1−X)−1(1− Y )−1 and that A(X) = (1− uX)

∑
xmX

m ∈

Fq((X,Y )) and B(Y ) = (1 − wY )
∑
ymY

m ∈ Fq((X,Y )) are algebraic over Fq(X,Y ) because of
Theorem 4.4 and the fact that the sequences (xi) and (yj) are p-automatic. This implies that:

S = [tXY (1−X)−1(1− Y )−1 + a(0, 0)(1− uX −wY ) +A(X) +B(Y )](1− uX − vXY −wY )−1

is algebraic over Fq(X,Y ).

13



6 Nonautomatic recurrent 2-dimensional sequences

It is natural to ask whether Theorem 5.2 remains true for general functions f : Am → A. The
answer is negative, even for systems of predecessors P with eP = 0. One example of nonautomatic
2-dimensional sequence is given in [1]: Pascal’s Triangle modulo 6. This 2-dimensional sequence
can be defined as a recurrent sequence by A = Z/6Z, P = {(0, 1), (1, 0)}, f(x, y) = x + y and
initial conditions c({0} × N) = c(N × {0}) = 1. According to the Chinese Remainder Theorem
Z/6Z ' Z/2Z × Z/3Z, so the 2-dimensional sequence is an overlapping of two 2-dimensional
sequences, one of them being 2- and the other one 3-automatic. However, the proof of this non-
automaticity is not trivial (see Theorem 14.6.2 in [1]). The counterexample given here is based
upon a different phenomenon.

Theorem 6.1 There is no k ∈ N such that the recurrent 2-dimensional sequence a : N2 → F5

defined by P = {(0, 1), (1, 1), (1, 0)}, f(x, y, z) = 2x3y3z3 + 2xy2 + 2y2z + y and initial conditions
c({0} × N) = c(N× {0}) = 1 is k-automatic. See Figure 10.

Proof: Suppose that the 2-dimensional sequence a(m,n) is k-automatic for some k ≥ 2. Define
the 1-dimensional sequence b(n) := a(n + 1, n + 1) for all n ∈ N. According to Lemma 8.4, by
projecting the set {b, B, a} onto {0, 1} such that b and B are replaced by 0 and a is replaced by
1, b(n) has the following structure:

0 | 0, 1 | 1, 0, 1 | 1, 0, 1, 0 | 0, 1, 0, 1, 0 | 0, 1, 0, 1, 0, 1 | 1, 0, 1, 0, 1, 0, 1 | 1 . . .

The sequence b(n) consists of an alternate word of length 1, followed by an alternate word of
length 2 starting with the same letter in which the last alternate word ends, and so on. After an
alternate word of length n follows an alternate word of length n+ 1, whose first letter repeats the
last letter of the precedent word.

In [1] a finite-state transducer is defined as an automaton T = (Q,Σ, δ, q0,∆, λ) where Q is a
finite set of states, Σ an input alphabet, δ : Q× Σ → Q a transition function, q0 an initial state,
∆ an output alphabet and λ : Q × Σ → ∆∗ an output function. In the case that there is an
integer t such that for all q ∈ Q and a ∈ Σ one has |λ(q, a) | = t one says that the transducer is
t-uniform. We construct an 1-uniform transducer T as follows: Q = {u1, u2, z1, z2}, where q0 = z1
plays the role of initial state. We take Σ = ∆ = {0, 1} and we define the transition function
as follows: δ(z1, 0) = z2, δ(z1, 1) = u1, δ(u1, 0) = z1, δ(u1, 1) = u2, δ(z2, 0) = z1, δ(z2, 1) = u1,
δ(u2, 0) = z1, δ(u2, 1) = u1. The output function λ is defined such that λ(u1, x) = λ(z1, x) = 0 and
λ(u2, x) = λ(z2, x) = 1, for all x ∈ {0, 1}. The image of a sequence x : N → Σ by the transducer
T is defined as:

T (x) = λ(q0, x(0))λ(δ(q0, x(0)), x(1))λ(δ(δ(q0, x(0)), x(1)), x(2)) . . . .

We apply the transducer T constructed above to the sequence b, let c := T (b):

0 | 1, 0 | 1, 0, 0 | 1, 0, 0, 0 | 1, 0, 0, 0, 0 | 1, 0, 0, 0, 0, 0 | 1, 0, 0, 0, 0, 0, 0 | 1 . . .

We see by induction that c(n) = 1 if and only if there exists m ≥ 1 such that n = m(m+1)/2. The
sequence c : N→ {0, 1} is the characteristic function of the set of triangular numbers. In fact we
can modify the first term to 1 and delete the condition k ≥ 1; such modifications of finitely many
terms have no influence on the automaticity of the sequence. According to Theorem 6.9.2 in [1]
the image of a k-automatic sequence under a 1-uniform transducer is k-automatic. It remains to
show that the characteristic function of the triangular numbers cannot be an automatic sequence.
This follows from a more general statement:

Lemma 6.2 Let f ∈ Q[X] be a polynomial such that f(N) ⊂ N and deg(f) ≥ 2. Let x : N→ {0, 1}
be the characteristic function of the set f(N). Then the 1-dimensional sequence (x(n)) is not k-
automatic for any k.
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Proof: This is a direct consequence of the following dichotomy: An infinite set of natural numbers
S = {s1, s2, . . . } with s1 < s2 < · · · is k-automatic then either is syndetic, i.e. there is some C > 0
such that si+1 − si < C for all i, or there is some ε > 0 such that si+1/si > 1 + ε for infinitely
many i. The first occurrence of this result was in A. Cobham’s clasical paper [6] as Theorem 10,
p. 184. Moreover, if deg(f) ≤ 1 then the sequence is k-automatic for all k. 2

7 Examples

All examples are 2-dimensional sequences. Excepting the last subsection, all examples given uses
the system of predecessors (0, 1), (1, 1), (1, 0) or one of its subsets. Also, we look now only to
Fp-affine functions, neglecting other homomorphisms of p-groups.

7.1 Tensor power carpets and patchwork carpets

Definition 7.1 Let Fp be a prime finite field. By the term tensor power carpet we mean a
recurrent 2-dimensional sequence (Fp, (1, 0), (1, 1), (0, 1), x + my + z, 1) where m ∈ Fp. By the
term patchwork carpet we mean a recurrent 2-dimensional sequence (Fp, (1, 0), (1, 1), (0, 1), ax +
by + cz + d, e) where a, b, c, d, e ∈ Fp.

In [18] the author proved that the recurrent 2-dimensional sequences (Fp, (1, 0), (1, 1), (0, 1), x +
my + z, 1) are indeed tensor powers of their starting p × p left-upper minor, called there a fun-
damental block. Their geometry can be roughly classified according to the parameter m. Those
recurrent 2-dimensional sequences contain big square regions which are constantly equal to 0,
called the holes. The name carpets comes from the previously known example of this kind,
(F3, (1, 0), (1, 1), (0, 1), x + y + z, 1) - the Sierpinski Carpet. For m = 0 one gets Pascal’s Tri-
angle modulo p. For both examples, see [18].

On the other hand the name of the patchwork carpets comes fom the empiric observation that
those carpets have in general the same geometric content as the tensor power carpets, up to the
fact that the holes are filled with periodic domains giving the illusion of a patchwork with different
kinds of tissues. Some exceptions are given by some 2-dimensional sequences which are periodic
or which present only two tissues, one over the main diagonal and one below it.

In Figure 1 we see the carpet (F3,(1,0),(1,1),(0,1), x + y, 1), which is a patched Pascal Triangle
modulo 3. In Figure 3 we see (F5, (1, 0), (1, 1), (0, 1), 3x + 4y + 3z + 3, 1). This carpet has the
geometric behavior of the tensor power carpet (F5, (1, 0), (1, 1), (0, 1), x+ y+ z, 1), Figure 2 in the
sense that every hole of (F5, (1, 0), (1, 1), (0, 1), x+y+z, 1) (see [18] for some properties) is covered
by some homogeneous patch.

Applying the Theorem 3.13 we get rid of:

Example 7.2 The 2-dimensional sequence (F3, (1, 0), (1, 1), x + y, 1) is 3-automatic and can be
generated by a substitution of type 3→ 9 with 9 rules. See Figure 1.

The system of substitutions ({0, 1},D, E , D1,Σ) consists of the following sets. The set D =
{D1, . . . , D9}:

D1 =

 1 1 1
1 2 0
1 2 1

 D2 =

 1 2 1
1 2 1
1 2 1

 D3 =

 2 0 2
2 1 1
2 1 2



D4 =

 0 1 0
0 0 1
0 0 0

 D5 =

 2 1 2
2 1 2
2 1 2

 D6 =

 0 2 0
0 0 2
0 0 0
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Figure 1: F3, (1, 0), (1, 1), x+ y, 1 , 729× 729.

D7 =

 1 0 1
1 2 2
1 2 1

 D8 =

 0 0 0
0 0 0
0 0 0

 D9 =

 2 2 2
2 1 0
2 1 2


The set E = {E1, . . . , E9} as given below. The function Σ : D → E is defined such that Σ(Di) = Ei

for all i = 1, . . . , 9.

E1 =

 D1 D1 D1

D2 D3 D4

D2 D5 D1

 E2 =

 D2 D5 D2

D2 D5 D2

D2 D5 D2

 E3 =

 D3 D6 D3

D5 D1 D7

D5 D2 D3



E4 =

 D4 D7 D4

D8 D4 D1

D8 D8 D4

 E5 =

 D5 D2 D5

D5 D2 D5

D5 D2 D5

 E6 =

 D6 D3 D6

D8 D6 D9

D8 D8 D6



E7 =

 D7 D4 D7

D2 D9 D3

D2 D5 D7

 E8 =

 D8 D8 D8

D8 D8 D8

D8 D8 D8

 E9 =

 D9 D9 D9

D5 D7 D6

D5 D2 D9



Example 7.3 The 2-dimensional sequence (F5, (1, 0), (1, 1), (0, 1), 3x+4y+3z+3, 1) is 5-automatic
and can be generated by a substitution of type 5 → 25 with 125 rules. See Fig. 3. One remarks
that this 2-dimensional sequence has the same geometric behavior like the tensor power carpet
(F5, x+ y+ z, 1) shown in Figure 3. The last is a substitution of type 1→ 5 with 5 rules, see [18]
for the proof.
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Figure 2: F5, (1, 0), (1, 1), (0, 1), x+ y + z, 1 , 625× 625.

7.2 The free term

There are seldom cases where by adding a free term to a linear rule of recurrence one obtains some
geometric behavior that cannot be obtained using only linear recurrences.

In order to give an example we shortly recall the structure of the field F4. F4 = F2[ω] where ω is
a solution of the equation ω2 + ω + 1 = 0 over F2. The elements of F4 are {0, 1, ω, ω + 1} and the
set {1, ω} is a F2-basis of the F2-vector field F4.

Now consider the F2-linear function f(x, y, z) : F3
4 → F4 given by g(x, y, z) = ωx + y + ωz. The

recurrent 2-dimensional sequence (F4, (1, 0), (1, 1), (0, 1), g, 1) is constant, because g(1, 1, 1) = 1.
But if we consider instead f(x, y, z) = g(x, y, z) + k with k ∈ {1, ω, ω + 1} we get a totally
new geometric behavior, which cannot be found by any linear recurrence over F4. See [21] for
a classification of all those recurrent 2-dimensional sequences, and for other properties of this
2-dimensional sequence, last but not least that it can be generated by a primitive substitution.

Example 7.4 The 2-dimensional sequence (F4, (1, 0), (1, 1), (0, 1), ωx+y+ωz+ω, 1) is 2-automatic
and can be generated by a substitution of type 2→ 4 with 12 rules. See Figure 4.

7.3 Non-trivial occurrences of Frobenius

The non-trivial occurrences of Frobenius in the rule of recurrence enlarge sensibly the set of
examples. For a systematic review of all linear recurrent 2-dimensional sequences over F4 we refer
again to [21].

Example 7.5 The 2-dimensional sequence (F4, (1, 0), (1, 1), (0, 1), ωx + ωx2 + ωy + ωz + ωz2, 1)
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Figure 3: F5, (1, 0), (1, 1), (0, 1), 3x+ 4y + 3z + 3, 1 , 625× 625.

is 2-automatic and can be generated by a substitution of type 2→ 4 with 41 rules. See Figure 5.

7.4 Non-constant borders

The first examples of non-constant borders studied by the author were periodic borders, see
[20]. It is known that all ultimately periodic sequences are k-automatic, for all k ≥ 2. Here,
we prefer to present two examples with nonperiodic automatic borders. The first example uses
the Prouhet-Thue-Morse sequence, which is a morphic sequence; the second one uses the Rudin-
Shapiro sequence, which can be generated by a one-dimensional substitution of type 2→ 4.

Definition 7.6 The Prouhet-Thue-Morse Sequence t(n) is a 2-automatic sequence t(n) produced
by the following uniform morphism (substitution of type 1 → 2): 0 → 01, 1 → 10 with start
symbol 0. The Thue-Morse-Pascal 2-dimensional Sequence is the recurrent 2-dimensional sequence
(F2, (1, 0), (0, 1), x+ y, t, t).

Example 7.7 The Thue-Morse-Pascal 2-dimensional sequence is 2-automatic and can be gener-
ated by a substitution of type 4→ 8 with 15 rules. See Figure 6.

The system of substitutions ({0, 1},D, E , D1,Σ) consists of the following sets. The set D =
{D1, . . . , D15} consists of the matrices:

D1 =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 D2 =


1 0 0 1
0 0 0 1
1 1 1 0
1 0 1 1

 D3 =


1 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

 D4 =


0 1 1 0
1 0 1 1
0 0 1 0
0 0 1 1


18



Figure 4: F4, (1, 0), (1, 1), (0, 1), ωx+ y + ωz + ω, 1, 512× 512.

D5 =


1 0 1 1
0 0 1 0
0 0 1 1
1 1 0 1

 D6 =


0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

 D7 =


1 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

 D8 =


1 1 0 1
1 0 0 1
1 1 1 0
1 0 1 1



D9 =


0 1 0 0
1 0 0 0
1 1 1 1
0 1 0 1

 D10 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 D11 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 D12 =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0



D13 =


0 0 1 0
0 0 1 1
0 0 1 0
0 0 1 1

 D14 =


1 1 1 1
1 0 1 0
0 0 1 1
1 1 0 1

 D15 =


0 0 0 0
0 0 0 0
1 1 1 1
0 1 0 1


The set E = {E1, . . . , E15} consists of the matrices:

E1 =

(
D1 D2

D5 D6

)
E2 =

(
D3 D4

D7 D8

)
E3 =

(
D3 D4

D9 D6

)
E4 =

(
D1 D2

D10 D8

)

E5 =

(
D3 D7

D9 D14

)
E6 =

(
D11 D8

D14 D6

)
E7 =

(
D3 D7

D7 D11

)
E8 =

(
D12 D13

D12 D8

)
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Figure 5: F4, (1, 0), (1, 1), (0, 1), ωx+ ωx2 + ωy + ωz + ωz2, 1, 512× 512.

E9 =

(
D1 D10

D5 D14

)
E10 =

(
D1 D10

D10 D11

)
E11 =

(
D11 D11

D11 D11

)
E12 =

(
D12 D12

D12 D11

)

E13 =

(
D11 D8

D11 D8

)
E14 =

(
D12 D12

D15 D14

)
E15 =

(
D11 D11

D14 D14

)
The matrix D1 is the start symbol, and ∀ i Σ(Di) = Ei.

We can verify by hand the first condition of Theorem 3.13. Only the substitution rules for D1,
D2, D3 and D4 touch the horizontal border. Let Mi = Di ∩ (y = 0). The relevant parts of
the substitution rules read M1 → M1M2, M2 → M3M4, M3 → M3M4 and M4 → M1M2,
where M1 = M4 = 0110 and M2 = M3 = 1001. So the horizontal border is the sequence given
by start word 0110 and by the rules α : 0110 → 01101001 and β : 1001 → 10010110. Let
h : {0, 1}∗ → {0, 1}∗ be the homomorphism of monoids h whose fixed point is the Prouhet-
Thue-Morse sequence. The homomorphism h is defined by h(0) = 01 and h(1) = 10. The start
word 0110 = h2(0) and every further complete substitution step using both rules α and β has
the same effect as applying h2. It follows by induction that the horizontal border is exactly the
Prouhet-Thue-Morse sequence. The proof is similar for the vertical border.

The second condition of Theorem 3.13 has been checked using a computer program. The program
generated a 8000× 8000 initial square of the recurrent 2-dimensional sequence, checked that this
square was identical with the corresponding square produced by substitution, and checked the
fact that all 8× 8-squares occurring in 4-position have already occurred in some 4-positions in the
4000× 4000 left-upper quarter of this initial square. This way the conditions of Theorem 3.13 are
fulfilled. 2
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Figure 6: F2, (0, 1), (1, 0), x+ y, Thue-Morse, 512× 512.

For the next example we use the Rudin-Shapiro sequence, which is originally a sequence in the
alphabet {+1,−1}. Because −1 does not make sense in F2 we use here an isomorphic sequence
over the alphabet {0, 1}.

Definition 7.8 The Rudin-Shapiro Sequence r(n) is a 2-automatic sequence produced by the
following substitution of type 2 → 4: 00 → 0001, 01 → 0010, 10 → 1101, 11 → 1110 with
start word 00. The Rudin-Shapiro-Pascal 2-dimensional Sequence is the recurrent 2-dimensional
sequence (F2, (1, 0), (0, 1), x+ y, r, r).

Example 7.9 The Rudin-Shapiro-Pascal 2-dimensional sequence is 2-automatic and can be gen-
erated by a substitution of type 4→ 8 with 44 rules. See Figure 7.

7.5 Excessive recurrence

Extremely interesting are the examples of recurrence with positive excess, where the alphabet is
some finite abelian p-group and the recurrence is a homomorphism of p-groups. Although they
are not proven to be automatic by Theorem 5.2, in all examples computed by the author one
can guess a substitution and then prove the identity of the 2-dimensional sequence obtained by
substitution with the 2-dimensional sequence got by recurrence, using Theorem 3.13. We show
two examples:

Example 7.10 The 2-dimensional sequence defined by a recurrence with system of predecessors
(0, 1), (1,−1) and the rule x+ y over the field F2, with initial condition a(i, 0) = 1, a(0, j) = 1, is
2-automatic and can be generated by a substitution of type 4→ 8 with 16 rules. See Figure 8.
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Figure 7: F2, (0, 1), (1, 0), x+ y, Rudin-Shapiro, 512× 512.

Example 7.11 The 2-dimensional sequence defined by a recurrence with system of predecessors
(1, 0), (1,−2), (0, 1) and the rule x + y + z over the field F2, with initial condition a(i, 0) = t(i),
a(0, j) = t(j), where t is the Thue-Morse sequence starting with 0, is 2-automatic and can be
generated by a substitution of type 4→ 8 with 32 rules. See Figure 9.

Open problems:

1. Prove that every non-periodic and non-diagonal patchwork carpet has the geometric behavior
of some tensor power carpet.

2. Find a connection between the coefficients of a patchwork carpet and its geometric behavior.

3. Does Theorem 5.2 hold true for excessive recurrence?

4. Does Theorem 5.2 remain true for arbitrary homomorphisms of groups f : Gm → G, where
G is any finite abelian p-group?

5. Does Theorem 5.2 remain true in the most general setting in which we dare to formulate
that question: general recurrence and homomorphisms of finite abelian p-groups?

Up to now all examples computed by the author confirm positive conjectures for the questions 1,
3, 4 and 5.

8 Appendix: The anatomy of Stairway

The recurrent two-dimensional sequence Stairway (see Figure 10) has the system of predeces-
sors {(1, 0), (1, 1), (0, 1)}, constant borders a(i, 0) = a(0, j) = 1 and is given by the polynomial
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Figure 8: F2, (0, 1), (1,−1), x+ y, 1, 512× 512.

f(x, y, z) = 2x3y3z3 + 2xy2 + 2y2z+ y over F5. The goal of this Appendix is a short study of this
recurrent 2-dimensional sequence, in order to complete the proof of Theorem 6.1.

The function f(x, y, z) has the property f(x, y, z) = f(z, y, x). This implies that the recurrent
2-dimensional sequence fulfills a(m,n) = a(n,m), i.e. is diagonally symmetric.

In spite of the fact that there are 125 triples (a, b, c) ∈ F3
5, we will see that only 32 triples consisting

of coordinates different from 0 really appear in the sequence. In order to understand how the
sequence works, it is useful to enumerate them here. All rules of recurrence will be represented in
the form:

R =

(
y z
x f(x, y, z)

)
Because of the diagonal symmetry stated above, if a rule R does concretely occur in the recurrent
2-dimensional sequence, its transposed RT also occurs in the sequence. This fact help us for a
faster and easier enumeration of the rules.

We change the notation of the elements of F5 \ {0} in the following way: 1 = a, 2 = B, 3 = A
and 4 = b. In Figure 10 you see 1 = red, 2 = green, 3 = blue and 4 = yellow. According to this
notation, there are:

6 Sporadic Rules

S1 =

(
a a
a B

)
, S2 =

(
a a
B A

)
, ST

2 , S3 =

(
B A
A b

)
, S4 =

(
A A
b a

)
, ST

4 .

2 Square Start Rules

N1 =

(
a A
A a

)
, N2 =

(
b B
B b

)
.
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Figure 9: F2, (1, 0), (1,−2), (0, 1), x+ y + z, Thue-Morse, 512× 512.

4 Alternate Square Margin Rules

M1 =

(
A B
a b

)
, MT

1 , M2 =

(
B A
b a

)
, MT

2 .

4 Exterior Stripe Rules

E1 =

(
A A
B B

)
, ET

1 , E2 =

(
B B
A A

)
, ET

2 .

4 Interior Stripe Rules

I1 =

(
a a
b b

)
, IT1 , I2 =

(
b b
a a

)
, IT2 .

2 Wave Rules

W1 =

(
A A
A B

)
, W2 =

(
B B
B A

)
.

4 Square Corner Rules

C1 =

(
A A
a A

)
, CT

1 , C2 =

(
B B
b B

)
, CT

2 .

2 Diagonal Rules

D1 =

(
a b
b b

)
, D2 =

(
b a
a a

)
.
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Figure 10: F5, (0, 1), (1, 1), (1, 0), 2x3y3z3 + 2xy2 + 2y2z + y, 1, 58× 58.

4 Monochrome Square Margin Rules

Q1 =

(
a a
A A

)
, QT

1 , Q2 =

(
b b
B B

)
, QT

2 .

This enumeration of matrices must not be confounded with seemingly similar lists written down
in Section 7. All those sets of matrices are left-hand sides of substitution rules, so they will finally
build together the set Dd(a) for some 2-dimensional sequences a. In other words, those d × d
matrices will arise in the respective 2-dimensional sequences in d-positions. On the other side, the
rules of recurrence listed here build the covering C2(a) for the 2-dimensional sequence a called
Stairway.

Definition 8.1 Let t(n) = n(n + 1)/2 be the n-th triangular number. Let Tn be the square
starting at (t(n) + 1, t(n) + 1) of edge-length n+ 1, that is T (n) = {t(n) + 1, . . . , t(n) + n+ 1} ×
{t(n) + 1, . . . , t(n) + n + 1}. The eck-points of T (n) are: e(n) = (t(n) + 1, t(n) + 1), v(n) =
(t(n) + n + 1, t(n) + 1), f(n) = (t(n) + n + 1, t(n) + n + 1) and w(n) = (t(n) + 1, t(n) + n + 1).
The square T (n) contains its eck-points.

Definition 8.2 The wave V (n) consists of the union of the sets {v(n) + (1,−1) + (k, k) | 0 ≤ k ≤
n+ 1} and its mirrored image along the diagonal {w(n) + (−1, 1) + (k, k) | 0 ≤ k ≤ n+ 1}. Every
segment is parallel to the diagonal and consists of n + 2 elements. Let i(n) = v(n) + (1,−1)
and j(n) = w(n) + (−1, 1) be the two initial points of V (n). Let x(n) = v(n) + (n + 2, n) and
y(n) = w(n) + (n, n+ 2) be the two final points of V (n).

Definition 8.3 A stripe is a vertical or horizontal finite or infinite subword of the 2-dimensional
sequence Stairway, consisting of at least two equal letters.
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Lemma 8.4 Only the elements 1, 2, 3, 4 ∈ F5 (that have been renamed as a, B, A, b) really occur
in Stairway and only the given 32 rules of recurrence are needed to constuct it. The Sporadic
Rules S are applied only once respectively, all other rules occur infinitely often. Every triangle
(e(n) − (0, 1))i(n − 1)x(n − 1) consists of n + 1 alternating vertical stripes in A and B. Every
segment of the wave V (n) consists of alternating letters A and B. The first letter of a segment of
V (n) is always the same as the last letter of a segment of V (n−1). The squares T (n) in Stairway
consist only of the letters a and b. The letter occurring in e(n) is always the same as the letter
occurring in f(n− 1). The diagonal of Stairway starts with a, B, b, a and continues as follows:

a |B | b, a | a, b, a | a, b, a, b | b, a, b, a, b | b, a, b, a, b, a | a, . . .

Proof: The proof works by induction over the sets M(i), where M(1) = {0, 1, 2, 3} × N ∪ N ×
{0, 1, 2, 3} and for n ≥ 2, M(n) = {t(n) + 1, . . . , t(n) + n + 1} × {x ∈ N |x ≥ t(n) + 1} ∪
{x ∈ N |x ≥ t(n) + 1} × {t(n) + 1, . . . , t(n) + n + 1}. This is possible because the system of
predecessors {(0, 1), (1, 1), (1, 0)} has excess = 0 and makes possible both a row-wise and a column-
wise recurrence.

Induction start. By constructing M(1) we apply every Sporadic Rule once and the Rule D2 once.
The result is the square T (1) of the form: (

b a
a a

)
.

On the left border (respectively under the bottom border) of the square T (1) we apply Q1 (re-
spectively QT

1 ). We get that T (1) is bordered by A’s. At a(4, 1) and a(1, 4) we apply W1, at
a(5, 2) and a(2, 5) we apply W2, at a(6, 3) and a(3, 6) we apply again W1 - and so we produced
the wave V (1). Both branches of V (1) have colors A, B, A respectively. Left and downwards from
V (1) there are only monochrome stripes in colors A, B, A, parallel to the axes, so the triangle
e(2) − (0, 1), i(1), x(1) consists of 3 alternating vertical stripes in A and B. The segments of the
wave V (1) bend an A-stripe and a B-stripe with 90◦. Finally we observe that the points i(2)
and j(2) are also colored in M(1) by the rule E1 and respectively ET

1 , an that they are neigh-
bors with x(1) and respectively y(1) on the same line (column) so they all get the same color:
a(x(1)) = a(i(2)) = a(y(1)) = a(j(2)). The diagonal sequence constructed so far is a,B, b, a.

Induction Step. Suppose that we have already constructed the set M(n− 1) and we are about to
construct M(n). The first point of M(n) is e(n), which is constructed using an appropriate Square
Start Rule and consequently has the same color as f(n− 1). Remember that M(n− 1) contained
the triangle e(n)− (0, 1), i(n− 1), x(n− 1), consisting of n+ 1 vertical stripes in A and B. From
e(n) we continue horizontally with the rules M1 and M2, since we arrive at v(n) (we continue
vertically with the rules MT

1 , MT
2 since we arrive at w(n)). Here one has got the configurations:(

a(x(n− 1)) = C a(i(n)) = C
v(n) C

)
,

(
a(y(n− 1)) = C a(w(n)) = C

j(n) C

)
.

The points x(n − 1), i(n), y(n − 1), j(n) have already been constructed in M(n − 1) according
to the hypothesis of induction and have all the same color C ∈ {A,B}. By the rules Ci the new
point to be constructed is in both cases a C. The construction of the square T (n) is closed now by

applying the rules Q
(T )
i for the last two edges, and the rules I

(T )
i , Di inside T (n). We check that

all the letters used for T (n) are a and b, and that the edge-length of T (n) equals the length of one
segment of the wave V (n−1), which is (n−1)+2 = n+1. Finally, in the rest of M(n) we apply the
Exterior Stripe Rules, then the Wave Rules, and finally again the Exterior Strip Rules. By the first
application of the Exterior Stripe Rules we get the triangle e(n+ 1)− (0, 1), i(n), x(n) consisting
of n + 2 many alternating stripes in A and B, and its mirrored image along the diagonal. Then
we construct the wave V (n), and the infinite stripes starting by the wave segments. In particular
we observe that a(i(n+ 1)) = a(x(n)) = a(j(n+ 1)) = a(y(n)) because the points i(n+ 1) is the
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right neighbor of x(n) on a horizontal stripe (because j(n+ 1) is the downward neighbor of y(n)
in a vertical stripe). At the diagonal sequence constructed so far we append an alternated word
of length n + 1 in a and b which starts with the same letter in which the last appended word of
length n has ended. 2

Acknowledgements: The author thanks both anonymous referees for independently suggesting
a shorter proof of the fact that images of polynomials are not automatic, and for their great effort
to improve the whole paper.
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