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Abstract

We give a model-theoretic proof of the fact that for all infinite Abelian
groups P 6= NP in the sense of binary nondeterminism. This result has
been announced 1994 by Christine Gaßner.
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Introduction: The result proven in this note was announced in a private commu-
nication hold by Christine Gaßner in 1994 at the University of Greifswald. When
this note was in preparation, the result appeared also in a preprint of Menard
Bourgade concerning the polynomial hierarchy over infinite abelian groups. All
proofs known so far are complicated and contain a lot of calculations. We will
show here a uniform model-theoretic proof.
Our work is compatible with approaches did independently by Poizat [P] and
Hemmerling [H] in order to generalize the framework of Blum, Shub and Smale
[BSS], [BCSS].

Problems: Given an infinite abelian group G, we call input over G a finite non-
empty sequence of elements of G. Let G∞ be the set of all inputs. A problem
Π over G is any set of inputs (Π ⊂ G∞). A G-machine is a computation system
given by a finite description and able to work out inputs of arbitrary length
according to a program. The length of an input is the measure of its (algebraic)
complexity. By polynomial time we mean that the time of computation has at
most a polynomial increment rate in the length of the input.

Nondeterminism: In the binary (called also boolean -, ramification -, or sim-
ply first kind of -) nondeterminism situations in which the machine can continue
the computation in two different ways are allowed. The second kind of nondeter-
ministic machines have guess instructions, assigning to some register any value
picked up arbitrarily from the group. If one algebraic structure contains at least
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two elements and possess equality one can simulate any binary nondeterministic
machine using a guess nondeterministic one.

Let K be an abstract set of constants. We consider an interpretation (kG ∈ G)k∈K

of K in G and the structure (G; (kG)k∈K ; +,−; =).

Complexity: If we interpret the structure above as a model of computation,
we can define the class PG of problems decided by deterministic machines in
polynomial time and the classes NiPG (i ∈ {1, 2}) of problems recognized by the
eventually halting of nondeterministic machines of the i-th kind in polynomial
time. As we have seen, PG ⊆ N1PG ⊆ N2PG.

Nullsack: We call Nullsack the following problem ΣG ⊂ G∞:

ΣG := {(x1, . . . , xn) |n ∈ N and ∃ J 6= ∅; J ⊆ {1, . . . , n} so that
∑
j∈J

xj = 0}.

ΣG ∈ N1PG parameter-free. We will show that ΣG /∈ PG.

Lemma 1: Assume that G1 and G2 are infinite abelian groups such that for
a given set of constants K and fixed interpretations (kGi)k∈K of the constants,
the resulting structures (Gi; (kGi)k∈K ; +,−; =) are elementary equivalent. Then
ΣG1 ∈ PG1 iff ΣG2 ∈ PG2.

Proof: Assume that ΣG1 ∈ PG1 . There is a deterministic machine which decides
ΣG1 in a time given by a polynomial pol in the length n of the input. All the
possible paths of computation have a length ≤ pol(n), just some of them end
with a positive answer. Any test performed along such a path has the form ”Is
~a · ~x = c?” where all ~a ∈ Zn and c is a linear combination of constants (kG1)k∈K .
We denote by ψn the universal proposition which states that for all n-tuple of
elements of the group, being a solution of the problem Σ is equivalent to traversing
an accepting path. The left hand side of this equivalence should be a disjunction
taken over all accepting paths consisting of conjunctions of ≤ pol(n) (negated, if
necessary) tests along a given path.

If ΣG1 ∈ PG1 , then for all n ∈ N, G1 |= ψn. So also G2 |= ψn for all n, thus the
machine obtained by substituting the parameters (kG1)k∈K with corresponding
parameters (kG2)k∈K will decide ΣG2 in polynomial time.

This proof does not use the fact that the sequence (ψn) is recursive. Thus Lemma
1 is also true for the non-uniform computation class PG. 2

Definition: Let p ∈ N be a prime. We recall the notation Zp for the unique
group with p elements. Let Hp be the p-elementary group:

Hp :=
⊕

ω

Zp .

2



The group Hp is an infinitely dimensional vector space over the field Fp with p
elements. We denote by H the following set of infinite abelian groups:

H := {Z, H2, H3, H5, . . . , Hp, . . . }.

The following result was proved by Klaus Meer [M] for the additive group of R
and by Bruno Poizat [P] for the group H2:

Lemma 2: Let H ∈ H be a group. If we consider the complexity classes defined
according to the structure (H; 0; +,−,=) then ΣH /∈ PH . Consequently, PH 6=
N1PH .

Proof: For m,n ≥ 1 we fix arbitrary numerical vectors ~a ∈ {0, 1}n, ~b1, . . . ,~bm ∈
Zn \ ~0. For all H ∈ H, if no ~bi is a multiple of ~a and, in case that H = Hp, no
unequation reduces to 0 6= 0 because of the characteristic p, then the system:

~a · ~x = 0, ~b1 · ~x 6= 0, . . . , ~bm · ~x 6= 0.

has infinitely many solutions ~x ∈ Hn.
If we suppose that a deterministic machine decides ΣH in a polynomial time
pol(n), we choose an n such that 2n − 1 > pol(n) and we use the observation
above for constructing inputs Y and N of length n with the following properties:
Y ∈ ΣH , N /∈ ΣH , but both inputs traverse the unique computation path defined
by a sequence of ≤ pol(n) negative answers to all non-trivial tests. This is a
contradiction. 2

Lemma 3: Let G be an infinite abelian group and G∗ its classical ultrapower.
There is a group H ∈ H and an embedding of H in G∗ which makes H ≤ G∗ so
that H ∩G = {0}.

Proof: If G contains an element of infinite order or if the set of orders for elements
in G is unbounded, then G∗ contains a non-standard element of infinite order.
This element generates a subgroup of G∗ that is isomorphic with Z and has the
desired property. If all orders are finite and their set is also finite, a theorem of
Prüfer implies that there is a prime number p such that the set of all elements of
order p is infinite. Then there are infinitely many non-standard elements of order
p and we can find a copy of Hp whose non-zero elements are such non-standard
elements. 2

Main result: If G is an infinite abelian group and the class PG is defined ac-
cording to the structure

(G; (g)g∈G; +,−; =),

then the problem ΣG ∈ N1PG \ PG. Consequently is PG 6= N1PG.

Proof: Let G∗ be the classical ultrapower of G. We define PG∗ to be the polyno-
mial class over (G∗; (g)g∈G; +,−; =). We prove that ΣG∗ /∈ PG∗ and we use the
elementary equivalence with (G; (g)g∈G; +,−; =) to get ΣG /∈ PG.
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We assume for the sake of contradiction that ΣG∗ ∈ PG∗ . Thus there is a G∗-
machine M with parameters in G and a polynomial pol such that for inputs I of
length n, M decides if I ∈ ΣG∗ in a time ≤ pol(n).
There is a H ∈ H such that H ≤ G∗ and H ∩ G = {0}. Of course ΣH ⊂ ΣG∗ .
Any test done by M looks like ”Is ~a · ~x = c?” with ~a ∈ Zn, ~x ∈ Hn and c ∈ G.
Because H ∩G = {0}, one has for inputs I ∈ H∞:

~a · ~x = c ⇔ ~a · ~x = 0 and c = 0;

~a · ~x 6= c ⇔ ~a · ~x 6= 0 or c 6= 0.

Let M0 be the machine obtained from M by substituting all parameters occurring
in the finite description of M by 0. For the inputs I ∈ H∞, M0 works like M ,
thus it should decide ΣH in time pol(n). This is a contradiction. 2

Corollary: The stronger inequality PG 6= N1PG is also true for all infinite abelian
groups G.
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