A model-theoretic proof for $P \neq NP$ over all infinite abelian groups

Mihai Prunescu *

Abstract

We give a model-theoretic proof of the fact that for all infinite Abelian groups $P \neq NP$ in the sense of binary nondeterminism. This result has been announced 1994 by Christine Gaßner.

Key Words: BSS-model, $P \neq NP$, abelian group, ultraproduct. A.M.S.-Classification: 03C60.

Introduction: The result proven in this note was announced in a private communication hold by Christine Gaßner in 1994 at the University of Greifswald. When this note was in preparation, the result appeared also in a preprint of Menard Bourgade concerning the polynomial hierarchy over infinite abelian groups. All proofs known so far are complicated and contain a lot of calculations. We will show here a uniform model-theoretic proof.

Our work is compatible with approaches did independently by Poizat [P] and Hemmerling [H] in order to generalize the framework of Blum, Shub and Smale [BSS], [BCSS].

Problems: Given an infinite abelian group G, we call **input** over G a finite nonempty sequence of elements of G. Let G^{∞} be the set of all inputs. A **problem** Π over G is any set of inputs ($\Pi \subset G^{\infty}$). A *G*-machine is a computation system given by a finite description and able to work out inputs of arbitrary length according to a program. The length of an input is the measure of its (algebraic) complexity. By **polynomial time** we mean that the time of computation has at most a polynomial increment rate in the length of the input.

Nondeterminism: In the **binary** (called also boolean -, ramification -, or simply first kind of -) nondeterminism situations in which the machine can continue the computation in two different ways are allowed. The second kind of nondeterministic machines have **guess** instructions, assigning to some register any value picked up arbitrarily from the group. If one algebraic structure contains at least

^{*}Universität Greifswald, Germany and IMAR, Romania. The author thanks Christine Gaßner and Günter Asser for their work concerning this problem. See [A].

two elements and possess equality one can simulate any binary nondeterministic machine using a guess nondeterministic one.

Let K be an abstract set of constants. We consider an interpretation $(\underline{k}^G \in G)_{k \in K}$ of K in G and the structure $(G; (\underline{k}^G)_{k \in K}; +, -; =).$

Complexity: If we interpret the structure above as a model of computation, we can define the class P_G of problems decided by deterministic machines in polynomial time and the classes $N_i P_G$ ($i \in \{1, 2\}$) of problems recognized by the eventually halting of nondeterministic machines of the *i*-th kind in polynomial time. As we have seen, $P_G \subseteq N_1 P_G \subseteq N_2 P_G$.

Nullsack: We call Nullsack the following problem $\Sigma_G \subset G^{\infty}$:

$$\Sigma_G := \{ (x_1, \dots, x_n) \mid n \in \mathbb{N} \text{ and } \exists J \neq \emptyset; J \subseteq \{1, \dots, n\} \text{ so that } \sum_{j \in J} x_j = 0 \}.$$

 $\Sigma_G \in N_1 P_G$ parameter-free. We will show that $\Sigma_G \notin P_G$.

Lemma 1: Assume that G_1 and G_2 are infinite abelian groups such that for a given set of constants K and fixed interpretations $(\underline{k}^{G_i})_{k\in K}$ of the constants, the resulting structures $(G_i; (\underline{k}^{G_i})_{k\in K}; +, -; =)$ are elementary equivalent. Then $\Sigma_{G_1} \in P_{G_1}$ iff $\Sigma_{G_2} \in P_{G_2}$.

Proof: Assume that $\Sigma_{G_1} \in P_{G_1}$. There is a deterministic machine which decides Σ_{G_1} in a time given by a polynomial *pol* in the length *n* of the input. All the possible paths of computation have a length $\leq pol(n)$, just some of them end with a positive answer. Any test performed along such a path has the form "Is $\vec{a} \cdot \vec{x} = c$?" where all $\vec{a} \in \mathbb{Z}^n$ and *c* is a linear combination of constants $(\underline{k}^{G_1})_{k \in K}$. We denote by ψ_n the universal proposition which states that for all *n*-tuple of elements of the group, being a solution of the problem Σ is equivalent to traversing an accepting path. The left hand side of this equivalence should be a disjunction taken over all accepting paths consisting of conjunctions of $\leq pol(n)$ (negated, if necessary) tests along a given path.

If $\Sigma_{G_1} \in P_{G_1}$, then for all $n \in \mathbb{N}$, $G_1 \models \psi_n$. So also $G_2 \models \psi_n$ for all n, thus the machine obtained by substituting the parameters $(\underline{k}^{G_1})_{k \in K}$ with corresponding parameters $(\underline{k}^{G_2})_{k \in K}$ will decide Σ_{G_2} in polynomial time.

This proof does not use the fact that the sequence (ψ_n) is recursive. Thus Lemma 1 is also true for the non-uniform computation class \mathbb{P}_G .

Definition: Let $p \in \mathbb{N}$ be a prime. We recall the notation \mathbb{Z}_p for the unique group with p elements. Let \mathbb{H}_p be the p-elementary group:

$$\mathbb{H}_p := \bigoplus_{\omega} \mathbb{Z}_p$$

The group \mathbb{H}_p is an infinitely dimensional vector space over the field \mathbb{F}_p with p elements. We denote by \mathcal{H} the following set of infinite abelian groups:

$$\mathcal{H} := \{\mathbb{Z}, \mathbb{H}_2, \mathbb{H}_3, \mathbb{H}_5, \dots, \mathbb{H}_p, \dots\}.$$

The following result was proved by Klaus Meer [M] for the additive group of \mathbb{R} and by Bruno Poizat [P] for the group \mathbb{H}_2 :

Lemma 2: Let $H \in \mathcal{H}$ be a group. If we consider the complexity classes defined according to the structure (H; 0; +, -, =) then $\Sigma_H \notin P_H$. Consequently, $P_H \neq N_1 P_H$.

Proof: For $m, n \ge 1$ we fix arbitrary numerical vectors $\vec{a} \in \{0, 1\}^n, \vec{b}_1, \ldots, \vec{b}_m \in \mathbb{Z}^n \setminus \vec{0}$. For all $H \in \mathcal{H}$, if no \vec{b}_i is a multiple of \vec{a} and, in case that $H = \mathbb{H}_p$, no unequation reduces to $0 \ne 0$ because of the characteristic p, then the system:

$$\vec{a} \cdot \vec{x} = 0, \ \vec{b}_1 \cdot \vec{x} \neq 0, \ldots, \ \vec{b}_m \cdot \vec{x} \neq 0$$

has infinitely many solutions $\vec{x} \in H^n$.

If we suppose that a deterministic machine decides Σ_H in a polynomial time pol(n), we choose an n such that $2^n - 1 > pol(n)$ and we use the observation above for constructing inputs Y and N of length n with the following properties: $Y \in \Sigma_H$, $N \notin \Sigma_H$, but both inputs traverse the unique computation path defined by a sequence of $\leq pol(n)$ negative answers to all non-trivial tests. This is a contradiction.

Lemma 3: Let G be an infinite abelian group and G^* its classical ultrapower. There is a group $H \in \mathcal{H}$ and an embedding of H in G^* which makes $H \leq G^*$ so that $H \cap G = \{0\}$.

Proof: If G contains an element of infinite order or if the set of orders for elements in G is unbounded, then G^* contains a non-standard element of infinite order. This element generates a subgroup of G^* that is isomorphic with \mathbb{Z} and has the desired property. If all orders are finite and their set is also finite, a theorem of Prüfer implies that there is a prime number p such that the set of all elements of order p is infinite. Then there are infinitely many non-standard elements of order p and we can find a copy of \mathbb{H}_p whose non-zero elements are such non-standard elements.

Main result: If G is an infinite abelian group and the class P_G is defined according to the structure

 $(G; (g)_{g \in G}; +, -; =),$

then the problem $\Sigma_G \in N_1 P_G \setminus P_G$. Consequently is $P_G \neq N_1 P_G$.

Proof: Let G^* be the classical ultrapower of G. We define P_{G^*} to be the polynomial class over $(G^*; (\underline{g})_{g \in G}; +, -; =)$. We prove that $\Sigma_{G^*} \notin P_{G^*}$ and we use the elementary equivalence with $(G; (g)_{g \in G}; +, -; =)$ to get $\Sigma_G \notin P_G$.

We assume for the sake of contradiction that $\Sigma_{G^*} \in P_{G^*}$. Thus there is a G^* -machine M with parameters in G and a polynomial *pol* such that for inputs I of length n, M decides if $I \in \Sigma_{G^*}$ in a time $\leq pol(n)$.

There is a $H \in \mathcal{H}$ such that $H \leq G^*$ and $H \cap G = \{0\}$. Of course $\Sigma_H \subset \Sigma_{G^*}$. Any test done by M looks like "Is $\vec{a} \cdot \vec{x} = c$?" with $\vec{a} \in \mathbb{Z}^n$, $\vec{x} \in H^n$ and $c \in G$. Because $H \cap G = \{0\}$, one has for inputs $I \in H^\infty$:

$$\vec{a} \cdot \vec{x} = c \iff \vec{a} \cdot \vec{x} = 0 \text{ and } c = 0;$$

 $\vec{a} \cdot \vec{x} \neq c \iff \vec{a} \cdot \vec{x} \neq 0 \text{ or } c \neq 0.$

Let M_0 be the machine obtained from M by substituting all parameters occurring in the finite description of M by 0. For the inputs $I \in H^{\infty}$, M_0 works like M, thus it should decide Σ_H in time pol(n). This is a contradiction. \Box

Corollary: The stronger inequality $\mathbb{P}_G \neq N_1 P_G$ is also true for all infinite abelian groups G.

References

- [A] Günter Asser, Christine Gaßner, Mihai Prunescu: Für alle unendlichen abelschen Gruppen G ist $P(G) \neq NP(G)$. (drei Beweise) Preprint der Universität Greifswald, January 2000.
- [B] Menard Bourgade: Separations et transferts dans la hierarchie polynomiale des groupes abeliens infinis. Preprint, 2000.
- [BCSS] Lenore Blum, Felipe Cucker, Michael Shub, Steven Smale: Complexity and Real Computation. Springer-Verlag, New-York, 1998.
- [BSS] Lenore Blum, Michael Shub, Steven Smale: On a theory of computation and complexity over the real numbers. Bulletin A.M.S. 21, 1989.
- [H] **Armin Hemmerling**: On P vs. NP for parameter-free programs over algebraic structures. Mathematical Logic Quarterly, to appear.
- [M] **Klaus Meer**: Real Number Models under Various Sets of Operations. Journal of Complexity 9, 1993.
- [P] Bruno Poizat: Les petits cailloux. Aleas, Lyon 1995.