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Abstract

General connections between quantifier elimination and decidability
for first order theories are studied and exemplified.

A.M.S.-Classification: 03C10, 03D80.

1 Introduction

We start by recalling the following definition: given a first order formal language
L and an L-structure S, one says that (the first order theory of) S admits
elimination of quantifiers (shortly E) if for every well formed L-formula ϕ there
is a quantifier-free L-formula ψ such that Free (ψ) ⊆ Free (ϕ) = {~x} and

S |= ∀~x (ϕ(~x) ↔ ψ(~x)).

We say that (the first order theory of) S allows an effective elimination procedure
(shortly EE) iff, in case that L is finite or has a recursive presentation, S allows
E and there is a deterministic algorithm finding for all formulas ϕ a quantifier-
free equivalent formula ψ.
The property to eliminate quantifiers is not related to some particular mathe-
matical content. The procedure of introducing new predicates for all formula
that doesn’t eliminate, called by Bruno Poizat ”Morleysation”, has the following
consequence: If L be a formal language and S is any L-structure, then there is
an extension L̃ of L with cardinality |L | ≤ | L̃ | ≤ max(|L | , ℵ0) and there is an
L̃-expansion S̃ of S such that the theory Th L̃ (S̃) admits quantifier elimination.
Most of the usual structures which are known to admit elimination, as like the
ring C, the ordered ring R or appropriated expansions of the rings Qp allow in
fact effective elimination procedures and have decidable first order theories. This
fact contributes to the false belief that quantifier elimination would be always
effective, or even that it was enough to get elimination for being decidable.
Let us denote by D the property of a structure to have a decidable first order
theory. The aim of this note is to show to what extent E, EE and D are
relatively independent properties.
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Theorem 1: Let L be a recursively presented formal language. For all L-
structure S, the following implications are true:

EE ⇒ E,

E +D ⇒ EE.

Moreover, if L contains at least a constant, a relation and a function then there
are no other generally true statements involving only E, EE and D.

Proof: The first implication is trivial, the second one is easy. We will con-
centrate on the proof of the second part. The proof will be done by giving
counterexamples. It is sufficient to consider the case of L consisting of exactly
one constant 0, one unary relation symbol V and one unary function symbol
s because L-structures can interpret any other more complicated languages by
forgetting variables. For example a binary relation R can always be interpreted
as R(x, y)↔ V (x) etc.

2 Z-structures

Definition: For the given language L, by a Z-structure we mean an L-
structure S, whose underlying set is a disjoint union of copies of the set Z of
all rational integers called components. The function s acts like the classical
successor function in all components. Some element of a component interprets
0.
Over Z-structures it is convenient to write shortly x + k for the term sk(x),
and only k for the term sk(0). Instead of the formulas V (x) and ¬V (x) we
introduce the alternative notation 1(x) and 0(x). This notation is inspired by
the characteristic function of the unary predicate and will be generalized as
follows:
Definition: A word w ∈ {0, 1}∗ given by w = ε0 . . . εn occurs in a Z-structure
S iff

S |= ∃x ε0(x) ∧ ε1(x+ 1) ∧ . . . ∧ εn(x+ n).

We write shortly S |= ∃x w(x). We will say that the word occurs infinitely
many times iff the set defined in S by the quantifier-free formula w(x) is infinite.

Theorem 2: Let S be a Z-structure. If at least one of the following conditions
holds:
a) For all binary words w ∈ {0, 1}∗, if S |= ∃x w(x) then S |= ∃∞x w(x).
b) S consists of only one component.
Then the first order theory of S admits quantifier elimination in the language
L extended with the predecessor function p.

Proof: It is sufficient to describe the elimination of one existential quantifier.
We consider a formula ∃ y ϕ(~x, y), where ϕ is quantifier-free. We observe also
that the existential quantifier commutes with the principal disjunction of some
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disjunctive normal form:

∃ y
∨

ki(~x, y) ↔
∨
∃ y ki(~x, y).

So we may suppose that ϕ is a conjunction of atomic formulas and negations of
atomic formulas.
If some atomic formula has the form xi + k = y + l or k = y + l, we write it in
some equivalent form y = xi +m, y = m, xi = y+m or y+m = 0 respectively
(m ∈ N). In the first two cases we delete this atomic formula and the existential
quantifier itself, and we substitute every occurrence of y by the term xi + m,
respectively m. In the other cases, we make use of the predecessor and pass to
equivalent formulas y = xi −m or y = −m. Then we continue like before.
If there is no such atomic formula in the conjunction, we write ϕ in the form:

∃ y ψ(~x) ∧
∧

y 6= xij
+ kj ∧

∧
y 6= mj ∧ γ(y).

Here contains ψ only the free variables ~x and possibly the constant 0, and γ
contains only the variable y, possibly in mixed equalities with the constant 0.
There are not negated equalities or formulas containing 0 alone in γ.
All that γ(y) could express is some information about a word in S around the
individual denoted by y. If every word in S occurs infinitely many times in S,
the finitely many middle inequalities do not express any relevant information.
Our existential formula is then equivalent with ∃ y ψ(~x) ∧ γ(y), and finally with

ψ(~x) ∧ ∃ y γ(y).

Now, if the statement ∃ y γ(y) is false over S, then the formula is equivalent
with the quantifier-free contradiction 0 6= 0. If the statement ∃ y γ(y) is true in
S, then the formula is equivalent with the quantifier-free formula ψ(~x). If ψ is
empty, we write 0 = 0.
If there was an effective procedure to decide the truth for existential conjunctive
statements ∃ y γ(y) over S, then S allows an effective elimination procedure.
If the structure consists of only one component Z all elements are expressible by
constant terms is p, s and 0. Like before, it is sufficient to consider simple exis-
tential conjunctive formulas without mixed equalities. In any of the situations
met above we are done.
If ZV |= ∃m y γ(y), these y’s interpret constant terms a1, . . . , am, and our
formula is equivalent with:

ψ(~x) ∧
m∨

i=1

(
∧
j

ai 6= xsj + kj ∧
∧
j

ai 6= lj).

If a one-component structure has a decidable theory, then there must be an
effective elimination procedure for this structure, as remarked in Theorem 1.
On the other side, for recursive V is the set of all true quantifier-free statements
decidable, thus the existence of an effective elimination procedure implies de-
cidability for the first order theory. 2
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3 Theories with essentially
non-effective elimination

As motivation for the following results, we start by making an inspiring mistake.

Mistake: There are 2ℵ0 possible predicates V over Z and all the resulting struc-
tures admit quantifier elimination. Because there are at most ℵ0 possible elim-
ination procedures, there must be (uncountably many) structures over Z that
admit quantifier elimination but don’t allow effective elimination procedures.

In the next section 2ℵ0 different structures over Z allowing the same elimination
procedure will be displayed.
It is not difficult to produce structures without effective elimination using the
first part of Theorem 2. Let Sn be the structure (Z, s, p, V ) without 0 with a
predicate V whose characteristic sequence is periodic and contains 1-blocks of
length n ≥ 0, creating the sequence . . . 0 1n 0 1n 0 1n 0 . . . . For a subset T ⊆ N
let the Z-structure ST be given by the disjoint union:

ST :=
⊔

n∈T

Sn,

where an element in some component Sn interprets 0. All structures ST admit
quantifier elimination, but ST allows an effective elimination procedure ⇔ T is
recursive.

Theorem 3: There are recursive Θ ⊂ Z such that the structure (Z, 0, s, p,Θ)
admits quantifier elimination but does not allow effective elimination procedures.

Proof: For constructing a recursive predicate Θ over Z which has the desired
properties, we consider a subset T ⊂ N that is recursively enumerable but not
recursive and a recursive enumeration (sn)n≥1 that covers T . The predicate Θ is
defined as follows. For the positive part of Z, Θ has the characteristic sequence
given by 1s1 0 1s2 0 . . . 0 1sn 0 . . . . For the negative part of Z, let Θ be empty.
Θ is recursive, so the quantifier-free true statements over ZΘ is decidable. ZΘ

admits quantifier elimination according to Theorem 2. If there was some ef-
fective elimination procedure, the theory of ZΘ should have been decidable.
This is not the case, because we cannot decide the existential propositions like
∃x 01k0(x). 2

Corollary: Using non-recursive sets for T , we get 2ℵ0 structures ST that ad-
mit quantifier elimination and do not allow any effective elimination procedure.
Over Z we get also ℵ0 recursively presented structures ZΘ with the same prop-
erties.

We notice the following conjecture: There are uncountably many structures
ZΘ with one component and essentially non-effective elimination.
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4 Undecidable theories with
effective elimination

Definition: For a subset T ⊆ N we define a structure ZV = (Z, 0, s, p, V ),
with the following predicate V : In the negative side of Z, let V be −T . For
the non-negative elements, the characteristic sequence of V has the form 0110-
111001011101111000100110101011 . . . . . . This sequence is constructed in the
following way: the natural numbers are represented in the binary system and
the representations are concatenated without punctuation. As we observe, the
positive part of V is recursive and every binary word w ∈ {0, 1}∗ occurs infinitely
many times in ZV .

Theorem 4: ZV allows an effective elimination procedure. Moreover, the first
order theory of ZV is decidable if and only if T is recursive.

Proof: According to Theorem 2, ZV admits elimination. We consider again
some conjunctive existential simple statement ∃ y γ(y). If some formula y =
y + k with k 6= 0 or some formula y + k 6= y + k or for some term t, both
formulas V (t) and ¬V (t) occur in the conjunction, then the statement is false.
In all other cases, the statement is true.
This is sufficient for ZV to have an effective elimination procedure.
Now, if Th (ZV ) is decidable, one can decide if k ∈ T by deciding the truth of
the statement V (−k). Thus T must be recursive. 2

Corollary: Using non-recursive sets for T , we get 2ℵ0 many one-component
structures such that all of them allow the same effective elimination procedure
but have different undecidable theories.

5 Commentaries

For a complete proof of Theorem 1 we remark that structures in all remaining
situations (D without E, or no such properties) are very easy to find.
In Theorem 3 we have seen recursive predicates without effective elimination
procedures and in Theorem 4 non-recursive predicates with effective elimination.
All examples were constructed ad-hoc.
The question if some predicate allows elimination procedures is sometimes very
difficult for natural predicates. To give an example, consider the structure
ZP = (Z, 0, s, p,P), where the predicate P is given by

P(n) ⇔ n ∈ N ∧ n is a prime.

ZP admits quantifier elimination, the set P is recursive, but we don’t know if
there is an effective elimination procedure for ZP. This question seems to be
more difficult as the well-known Twin Primes Conjecture. If a number-theoretic
conjecture of Schinzel would be true, then this structure will be decidable (see
[BJW]) and will have consequently an effective quantifier elimination.
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We finish by remarking that all structures given here as examples for essentially
non-effective quantifier elimination enjoy the property P 6= NP in the sense of
computability over algebraic structures introduced by [BSS] and generalized in
[H] and [BP]. The general NP -complete problem introduced in [BP] (satisfiabil-
ity for existential formulas with parameters) cannot be solved effectively in our
cases. This is an extreme example of P 6= NP whose complexity lies between
the trivial examples without elimination and the more subtle examples with
effective elimination, where the assymptotic growth of the exponential function
must be used.
We mention that for the structure (Z, 0, p, s) the P versus NP problem in the
sense of [BP] is equivalent with the classical P versus NP . It is true for all
examples given by Theorem 4, also.

Acknowledgments: Armin Hemmerling put the initial questions about ex-
amples with non-effective quantifier elimination. The question came from the
necessity to classify the general behavior of BSS computation systems over al-
gebraic structures. Bruno Poizat gave the great idea to use Z-structures during
a discussion in Oberwolfach. Günter Asser was interested in finding examples
without effective elimination over Z itself and proposed the nice example ZΘ.
Christian Michaux indicated us some classical results and the work of Semenov.
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